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Rate dependent shear bands in a shear transformation zone model of amorphous solids

M. L. Manning,∗ E. G. Daub, J. S. Langer, and J. M. Carlson
Department of Physics, University of California, Santa Barbara, 93106

(Dated: August 4, 2008)

We use Shear Transformation Zone (STZ) theory to develop a deformation map for amorphous
solids as a function of the imposed shear rate and initial material preparation. The STZ formulation
incorporates recent simulation results [Haxton and Liu, PRL 99 195701 (2007)] that show the
steady state effective temperature is rate dependent. The resulting model predicts a wide range
of deformation behavior, from homogeneous deformation to extremely thin shear bands and the
onset of material failure. In particular, we specify which types of deformation are predicted for
each set of initial conditions, account for the brittle to ductile transition as a function of strain rate
in amorphous materials, and provide a new explanation for the thickness of shear bands in bulk
metallic glasses. We compare rate and state friction models, which have a single state variable, to
the STZ formulation, which resolves dynamics within the sheared interface. We find that the STZ
model predicts a different macroscopic friction coefficient than the rate-and-state law when shear
banding occurs.

I. INTRODUCTION

Amorphous solids such as foams, dense colloids, bulk
metallic glasses, and granular fault gouge are ubiquitous
in engineering applications and natural systems. Al-
though these materials exhibit a yield stress on exper-
imental time scales, they flow, deform, and fail in a man-
ner which is different from crystalline solids or Newtonian
fluids. Many of these materials undergo strain localiza-
tion, where a small region deforms much more rapidly
than adjacent regions. For example, bulk metallic glasses
develop very thin shear bands [1, 2], fault gouge in earth-
quake faults develops a prominent fracture surface that
accommodates most of the slip [3], and colloidal systems
develop broad shear bands [4].

Surprisingly, the mechanisms that lead to this strain
localization have remained elusive. An early theory of
shear banding [5] suggests that a small increase in the
thermal temperature lowers the viscosity, resulting in
more rapid deformation and a local increase in temper-
ature. However, Lewandowski and Greer showed that
shear bands in bulk metallic glasses can not be explained
by adiabatic thermal effects [6]. Although thermal heat-
ing must play a role at high strain rates, it does not
appear to govern the formation of shear bands in many
materials.

In a recent paper [7], we found that at low strain rates
the Shear Transformation Zone (STZ) theory for amor-
phous solids predicts shear band formation. These bands
are generated by feedback between the local strain rate
and the configurational disorder of an amorphous pack-
ing. In a separate paper [8], we used STZ theory to fit
data over a wide range of strain rates from a simulation of
glassy disks by Haxton and Liu [9]. These data indicate
that dynamics of the glassy material change dramatically
at large strain rates.
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In this paper, we study deformation in the STZ model
as a function of the initial material preparation and ex-
ternally imposed strain rate, and include the rate depen-
dence observed by Haxton and Liu in our model. This
STZ formulation is valid for a large range of strain rates
and predicts four different types of deformation behavior:
homogeneous deformation, thick disorder limited shear
bands, thin diffusion limited shear bands, and material
failure. We describe the mechanism that generates shear
bands and the processes that determine the width and
longevity of these inhomogeneous flows. We numerically
integrate the STZ equations to produce a deformation
map that shows what type of deformation is predicted as
a function of the initial conditions, and discuss implica-
tions for material failure.

Shear bands in this STZ formulation occur due to a
feedback between the effective temperature, which de-
scribes the configurational disorder in a glassy or jammed
material, and the local strain rate. In a sheared, steady
state, non equilibrium amorphous material, the effective
temperature can be calculated by measuring the fluctu-
ations and linear response of an observable such as the
pressure and applying the fluctuation-dissipation theo-
rem (FDT) [9, 10, 11]. Ono, et al. have shown that in
several simulated foams, measurements of different ob-
servables yield a single, rate dependent steady state effec-
tive temperature which is distinct from the thermal tem-
perature [11]. In addition, these authors show that the
FDT effective temperature is consistent with an entropic
definition: the effective temperature is the derivative of
the configurational entropy with respect to the (poten-
tial) energy. This definition suggests that slow steady
shearing causes the material to ergodically explore all
possible configurational packings, and therefore the sys-
tem maximizes a configurational entropy.

The STZ model describes plastic deformation in amor-
phous material as a series of localized plastic events that
occur in susceptible regions, or zones [12, 13, 14]. Follow-
ing Falk and Langer, we model STZs as bistable regions
that are more likely than the surrounding material to
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deform under stress, and are created and annihilated as
energy is dissipated in the system [14]. This model has
successfully been used to describe bulk metallic glasses,
thin films, and hard spheres in several different geome-
tries [7, 15, 16, 17, 18].

An important feature of all STZ formulations is that
the zones are activated by an effective temperature or
free volume, and there is a feedback between packing
structure and deformation. In particular, we postulate
that an STZ is an unlikely, high energy configuration of
an amorphous packing. Because the effective temper-
ature governs the statistics of configurational packings,
the steady state density of STZs should correspond to a
Boltzmann factor,

Λ̂ = exp

[

−Ez

kB Teff

]

≡ exp

[

−
1

χ

]

, (1)

where Λ̂ is proportional to the steady state STZ density,
Ez is an activation energy, kB is the Boltzmann constant,
Teff is the effective temperature, and χ ≡ Ez/(kBTeff )
is a dimensionless effective temperature [15].

Because plastic deformation occurs only at these STZs,
the plastic strain rate in pure shear is proportional to this
density, and in many situations can be written as follows:

τ0γ̇ = 2 e−1/χf(s), (2)

where f(s) is a function of the deviatoric stress s and
τ0 is an internal timescale such as the phonon frequency.
For the remainder of this paper we will refer to the di-
mensionless strain rate, q = γ̇τ0.

For completeness, Appendix A reviews the STZ model
and defines the exact equations and parameters used in
this work. The model is vastly simplified by focusing on
materials in a simple shear geometry at thermal temper-
atures far below the glass transition temperature, and
can be summarized by two equations.

The first specifies that the effective temperature ap-
proaches its steady state value, χ̂(q) as plastic work is
dissipated, and it also diffuses:

dχ

dγ
=

2 sχ

c̃0s0q
f(s)e−1/χ(1 −

χ

χ̂(q)
) + a2γ̇pl

∂2χ

∂y2
, (3)

where γ is strain, q = (V0/L) τ0 is the imposed average
strain rate times the STZ time scale, c0 is a dimensionless
specific heat, a is a diffusion length scale on the order of
an STZ radius, and s0 is the stress threshold for the onset
of plastic deformation. For the remainder of this paper,
a symbol with an overline denotes a quantity that is a
spatial average or constant as a function of position. The
functions f(s) and χ̂(q) are detailed in the Appendix.

A second equation specifies that elastic deformation
increases the shear stress, while plastic deformation de-
creases it:

ds

dγ
= µ∗

(

1 −
2

q
f(s) Λ

)

, (4)

where µ∗ is the ratio of the elastic modulus to the yield
stress, and Λ is the spatial average of the STZ density
Λ = exp(−1/χ).

As noted above, this paper focuses on deformation in
geometries where the equilibrium shear stress is constant
across the sample. Although there are many interesting
geometries with shear stress gradients (and STZ theory
can explain these shear bands [18]), stress effects gener-
ally dominate the more subtle internal structural dynam-
ics. In contrast, experiments in simple shear geometries
observe strain localization even though the equilibrium
stress is constant, indicating that some property of the
internal state governs shear band formation.

Shear banding is caused by the coupling in Eq. (2) be-
tween a configurational or structural parameter and the
plastic rate of deformation. Although the stress equili-
brates quickly, the effective temperature dynamics con-
tinue to evolve over much longer timescales. Materials
that develop long-lived shear bands exhibit a very differ-
ent macroscopic rheology compared to those that deform
homogeneously [19]. The type of deformation has im-
portant implications for the macroscopic material and
frictional properties — systems that localize also weaken
rapidly.

The remainder of this paper is organized as follows.
In section II we study the stability of the model given
by Eqs. (3) and (4) with respect to perturbations, and
find that shear bands develop due to an instability in the
transient response when the material is sheared starting
from rest. We numerically integrate the STZ equations
to validate our analytic stability results in Section III
and study the different types of deformation that persist
for long times in Section IV. Section V concludes with a
discussion of our results and open questions.

II. STABILITY ANALYSIS

We now study shear band formation for systems with a
rate dependent steady state effective temperature χ̂(q).
The fact that shear bands persist in the STZ model is
somewhat surprising, given that the only true stationary
state of Eqs. (3) and (4) is homogeneous deformation.
In the following sections, we provide an explanation for
shear band formation and evolution across a wide range
of strain rates.

We emphasize that all of the shear bands discussed
below are transient phenomena – at very large strains
the shear bands diffuse across the entire width of the
material and deformation once again becomes homoge-
neous. However, because the internal dynamics of the
configurational degrees of freedom can be very slow com-
pared to the stress evolution timescale, shear bands per-
sist for very long times. Although in many cases the
shear stress appears to have reached a steady state, the
effective temperature field is still slowly diffusing. In or-
der to understand and predict the behavior of the highly
nonlinear dynamical model given by Eqs. (3) and (4), we
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must therefore study more than just the steady state.
In a recent paper [7], we showed that at low strain

rates the STZ model often does not reach a homoge-
neous steady state. Instead, the system develops shear
bands that persist for extremely long time scales (> 800%
strain).

Although χ̂(q) approaches a constant value χ0 at low
strain rates, simulations by Haxton and Liu [9] and Ono,
et al. [11] show that the steady state effective tempera-
ture becomes rate dependent at higher strain rates. This
indicates that the amorphous packing structure in a shear
band can be very different from that in a steady state ho-
mogeneous solution.

First, the evolution equations for χ and s can be writ-
ten as follows:

ṡ(s, χ) = µ∗

(

1 − 2 f(s)

∫

dy e−1/χ

)

; (5)

χ̇(s, χ) = 2f(s)e−1/χ

(

sχ

c0s0

(

1 −
χ

χ̂

)

+ a2 ∂2χ

∂y2

)

,(6)

where the (·) operator indicates a derivative with respect
to time in units of strain. Then the Jacobian J evaluated
at s = s, χ = χ is given by:

J11 =
dṡ

ds
= −2µ∗e

−1/χf ′(s), (7)

J12 =
dṡ

dχ
= −2µ∗e

−1/χf(s)W (δχ)/χ2, (8)

J21 =
dχ̇

ds
=

−2χe−1/χ

s0c0χ̂
(χ − χ̂) (f ′(s) + f(s)) , (9)

J22 =
dχ̇

dχ
=

−2e−1/χf(s)s

s0c0χχ̂

(

χ + 2χ2 − χ̂ − χχ̂
)

.(10)

The term W (δχ) is a spatial integral over one period of
the perturbation function; it selects only the zero wave
number component of the perturbing function because
the other components must satisfy periodic boundary
conditions:

W (δχ) =

∞
∑

k=−∞

1

2L

∫ +L

−L

dy δχk eikπy/L; (11)

=

{

1 for k = 0,

0 for k 6= 0.
(12)

Details can be found in [7].
The system is linearly stable with respect to perturba-

tions from a homogeneous steady state, χ = χ̂, because
in this case the lower left entry in the Jacobian (J21) is
zero, the Jacobian is upper triangular, and the diagonal
entries are strictly negative. In other words, a steady
state, homogeneously deforming system will always re-
main homogeneous.

However, experiments and simulations show that many
systems never reach this homogeneous steady state. This
leads us to investigate the frozen time stability of pertur-
bations to a spatially homogeneous trajectory. In other

words, we study the stability of a perturbation to the
effective temperature field χ(y) at each point in time,
assuming that the system deforms homogeneously up to
that point.

First note that due to the integral in Eq. (5), spa-
tial perturbations to χ with zero mean do not change
the equation for ṡ to first order in δχ : ṡ(s, χ + δχ) =
ṡ(s, χ)+O(δχ2). In this case the linear stability is deter-
mined solely by the equation for χ and the sign of J22.
Above the yield stress, χ and f(s) are strictly greater
than zero and therefore J22 is negative (and the trajec-
tory is linearly stable) whenever the following criterion is
met:

χ > χcrit =
1

4

(

(χ̂ − 1) +
√

1 + 6χ̂ + χ̂2

)

. (13)

By inserting values for χ̂(q) into Eq. (13), we derive a
linear stability prediction for the boundary between these
two regimes as a function of the average initial effective
temperature χ and the applied strain rate q. We choose
χ̂(q) to fit the data from Haxton and Liu [8, 9].

Linear stability deformation map
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FIG. 1: Predicted deformation map based on initial condi-
tions only, determined using a frozen time linear stability
analysis. The solid line represents the frozen time linear sta-
bility criterion predicted by Eq. (13), which does not take into
account finite amplitude perturbations. R is a more accurate
generalized stability criterion that takes into account finite
amplitude perturbations. For R < 1 (white) homogeneous
deformation is predicted and for R > 1 (shaded) strain lo-
calization is predicted. For reference, the upper dashed line
shows the χ̂(q) fit to the data from Haxton and Liu [9].

Unlike linear stability analysis for steady states, frozen
time stability analysis for time varying trajectories can
not predict the final state of the system. It provides an
indication that a transient instability is possible, but it
does not specify global stability. The frozen time analy-
sis is accurate only when the perturbations grow rapidly
compared to the growth of the underlying trajectory.
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We therefore use the more general localization ratio R
to characterize the transient instability. First discussed
in [7], this ratio compares the growth rate of pertur-
bations (determined by frozen-time stability analysis) to
the growth of the underlying trajectory:

R = δχ
exp[J22(sm, χini)∆t]J22(sm, χ)

χ̇(sm, χ)
, (14)

where δχ is the magnitude of the perturbation, χini is
the initial effective temperature, sm is the approximate
maximum shear stress given by the solution of the equa-
tion q = 2ǫ0f(sm) exp[−1/χini], and ∆t is the approxi-
mate time in units of strain it takes to achieve the stress
maximum. Localization is expected to occur when R is
greater than unity.

The localization ratio given by Eq. (14) depends on
the magnitude of the perturbation δχ. In the low strain
rate limit, we have studied the localization ratio R as
a function of perturbation amplitudes and found that it
accurately predicts that larger perturbations lead to en-
hanced localization [7]. For simplicity, we have chosen
δχ to be 5 % of the average value of the effective tem-
perature, which is consistent with perturbations to the
potential energy per atom for a Lennard-Jones glass cal-
culated by Shi, et al [19]. Systematically studying the
effects of perturbation magnitude as a function of strain
rate is beyond the scope of this paper.

Figure 1 is a deformation map that predicts the type
of flow as a function of the initial conditions for the sim-
ulated glassy material studied by Haxton and Liu [9].
The bold line is the linear stability criterion defined by
Eq. (13). Because a frozen time analysis does not take
into account finite amplitude perturbations or the growth
rate of the underlying trajectory, we use the localization
ratio, R, to predict localization. The shaded region in
Fig. 1 corresponds to R > 1 where we predict the sys-
tem will localize, calculated for δχ = 0.05 × χini, and
∆t = 0.03= 3 % strain.

III. NUMERICAL SOLUTIONS TO STZ
EQUATIONS

To check these analytic predictions, we numerically in-
tegrate the STZ partial differential equations. The nu-
merical solutions exhibit three broad categories of de-
formation behavior: homogeneous deformation, shear
bands, and melting or failure. This section discusses
qualitative features of each kind of deformation, while
Section IV develops a deformation map using a quantita-
tive criterion for each category and discusses macroscopic
implications.

To resolve extreme localization, we use an irregular
mesh and a combination of fixed-step and adaptive-step
finite difference methods. For each pair of initial condi-
tions, the average initial effective temperature χini and
the externally applied strain rate q = τ0(V0/L), we nu-
merically integrate the STZ equations (Eqs. (3) and (4))

from 0 to 20 % strain. The initial effective temperature
function χini(y) is a constant perturbed by a hyperbolic
secant function of height δχ and width L/10, normalized
so that its average is χini, and the initial shear stress
is 0.0001. All stresses are in units of the yield stress sy

unless otherwise noted.

For comparison, we also numerically integrate a single
degree of freedom STZ model, where the effective tem-
perature is constrained to be constant across the width of
the material, and no perturbations are permitted. The
initial effective temperature χini and the initial stress
sini are specified and the system of ordinary differential
equations given by Eqs. (3) (with no diffusion) and (4) is
integrated numerically in time.

This simple model cannot localize and has been used to
describe macroscopic frictional behavior for boundary lu-
brication in thin films [17] and on earthquake faults [20].
The ODE model is an example of a “rate and state”
friction law. These laws are frequently used in geophys-
ical modeling of earthquake ruptures, and describe the
response of a sheared frictional interface as a function
of the slip rate (or strain rate) and a single state vari-
able, often denoted θ. While the STZ PDE resolves in-
ternal dynamics of the effective temperature within the
interface, the STZ ODE is constant across the interface.
Comparing the two models allows us to study the effect of
small scale dynamics such as strain localization on model
predictions for macroscopic behavior.

In some simulations of the full PDE model, the steady
state effective temperature χ̂ approaches infinity. Al-
though the STZ model given by Eqs. (3) and (4) is still
well-defined in this limit, the shear heating term becomes
considerably amplified, indicating a situation where the
amorphous packing becomes more and more disordered
inside the band. In every instance where χ̂ → ∞, the
shear band becomes so thin that the numerical integra-
tion routine fails.

We suggest that this numerical failure corresponds to
material failure. The smallest length scale in the model
is a, the diffusion length scale which is on the order of
the radius of an STZ. We do not expect the STZ model
to hold at length scales smaller than a, and because our
numerical mesh is fine enough to resolve a band ten times
smaller than a, numerical failure corresponds to a shear
band that rapidly becomes so thin that the model itself
breaks down. Interestingly, in these cases the size of the
region where the effective temperature is raised signifi-
cantly above its average (prior to failure) is still of order
a.

Although the simple STZ model developed here does
not specify the rheology at strain rates above this “melt-
ing” point, it does suggest that the solid-like STZ theory
must be replaced by a liquid-like theory (such as mode
coupling or Bagnold scaling) inside these bands. There-
fore, integration of the STZ model indicates that when
the disorder temperature approaches infinity, the mate-
rial can no longer support a static shear stress; it liquefies
and fails.
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In simulations where the effective temperature remains
finite, we numerically track the shear stress s and the
effective temperature field χ(y) as functions of time, or
equivalently, strain. In each case, the stress first responds
elastically, and then begins to deform plastically above
the yield stress sy. As plastic deformation increases the
effective temperature, the material softens and the stress
relaxes to its flowing value, sf . A sample stress vs. strain
curve is given by the dashed blue line in Fig. 2. For com-
parison, the dash-dotted (magenta) line in Fig. 2 shows
the solution to the rate and state law with a single inter-
nal state variable that is constant across the width of the
material. The STZ model with the effective temperature
field weakens much more rapidly than a rate and state
model with similar initial conditions – we will discuss this
in detail later.
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FIG. 2: (color online) Shear stress s vs. strain calculated
by numerically integrating the STZ equations of motion with
initial conditions χini = 0.0674, and imposed strain rate q =
1.015×10−6 . The dashed (blue) curve represents the solution
to the perturbed system, while the dash-dotted (magenta)
curve represents a homogeneous solution where the effective
temperature is constrained to be constant inside the material.
The colored symbols correspond to the plots shown in Fig. 3.
At about 2% strain, the perturbed system begins to localize.
At this point the blue curve weakens much more rapidly than
the magenta curve.

Meanwhile, the effective temperature field is also evolv-
ing in space and time. The effective temperature field
is initially constant with a small, centered perturbation,
and the field remains static during the elastic response.
At the onset of plastic deformation, the effective tem-
perature begins to rise. In systems that deform ho-
mogeneously the average value of the effective tempera-
ture rises and the perturbation shrinks, while in systems
which develop shear bands the effective temperature rises
much more rapidly inside the band and reaches a slowly
evolving state where the shear bands diffuse outwards.

Figures 3(a) and (b) both include a series of plots of
the effective temperature as a function of position for a
material that develops a shear band. Each colored line
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FIG. 3: Diffusion-limited shear band(color online) (a) Ef-
fective temperature as a function of position and time for a
material with initial conditions χini = 0.0674, and imposed
strain rate q = 1.01510−6 . Each line represents the effec-
tive temperature field as a function of position at a different
time, as indicated by the legend (all times are in units of
strain). The effective temperature field is initially a constant
with a small perturbation centered in the middle(blue). This
perturbation grows rapidly (green) and forms a shear band,
which then diffuses outward slowly (red). (b) Inset shows the
same data on a different scale: the position axis is magnified
to give a clearer picture of the dynamics within the narrow
band. The strain associated with each line is also indicated in
Fig. 2; localization coincides with rapid dynamic weakening of
the shear stress. (c) Similar plot for normalized plastic strain
rate γ̇τ0/q. The plastic strain rate is initially zero (during
elastic deformation) but rises at the onset of plastic deforma-
tion and becomes very sharply peaked (green). This shear
band is extremely narrow with a width of about 0.015, which
is approximately the same as the diffusion length scale a. As
the stress relaxes the strain rate also relaxes, and the shear
band becomes wider and less sharply peaked (red).(d)Inset
shows magnified position and strain rate axes. Although the
maximum strain rate in the band decays significantly with
time, it remains large (> 25 times the imposed strain rate).

represents a different time in units of strain. The effective
temperature rises rapidly in the band, saturates at χ ∼
0.22, and then slowly diffuses outward.

Finally, the plastic strain rate also evolves in space
and time. We first focus on the average plastic strain
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FIG. 4: Average plastic strain rate,
R

dy γ̇(y) τ0/q as a func-
tion of strain for the same integration data shown in Fig. 2.
Initially the average plastic strain rate is zero during the ma-
terial elastic response. The average plastic strain rate then
rises rapidly during the stress overshoot, when the system re-
leases stored elastic energy. Finally, it relaxes back to unity
in the flowing regime, when all the strain must be accommo-
dated plastically.

rate, and Fig. 4 shows the average plastic strain rate as a
function of time. At early times when the stress is below
the yield stress sy, the system deforms elastically and
the plastic strain rate is zero everywhere. At the onset
of plastic deformation the average plastic strain rate in-
creases continuously from zero, attains a maximum, and
then relaxes back to the externally imposed strain rate (in
the flowing regime all the deformation is plastic.) While
the plastic strain rate is greater than unity, stored elastic
energy is being dissipated.

Although the stress is the same across the width of the
material, regions with a higher effective temperature de-
form more rapidly. In systems that develop shear bands,
the plastic strain rate rises much more quickly in the in-
cipient shear band so that the plastic strain rate as a
function of position in sharply peaked. Figures 3(c) and
(d) show the dimensionless plastic strain rate as a func-
tion of position and time. The dimensionless strain rate
is the strain rate at each point divided by the externally
imposed strain rate; in the flowing regime the integral of
the dimensionless strain rate with respect to y necessarily
equals one. Each colored line represents a different time
in units of strain; plots show the plastic strain rate as a
function of position. The plastic strain rate rises rapidly
in the band at the onset of deformation and becomes
very sharply peaked, and then becomes less peaked at
later times as the system softens and relaxes.

Comparing numerical results to analytic predictions re-
quires a method for measuring the degree of localization
in a given numerical simulation. The degree of localiza-
tion can be quantified using the Gini coefficient φ [21],

defined as:

φ(t) =
1

2n2Dpl

∑

i

∑

j

|Dpl(yi, t) −Dpl(yj , t)|, (15)

where {yi} is a uniform grid of n points in position space.
The Gini coefficient is equal to zero if the material de-
forms homogeneously and increases as the plastic strain
rate field becomes more sharply peaked. A delta func-
tion has a Gini coefficient of 1. During a given numerical
simulation, the Gini coefficient φ(t) starts out as a very
small number and then increases rapidly as the shear
band forms. Then, as the shear band diffuses the Gini
coefficient decreases. Because we are focusing on the ini-
tial transient, we first study the maximum value of the
Gini coefficient attained during a given numerical simu-
lation.

Figure 5(a) is an intensity plot of the maximum value
of the Gini coefficient as a function of the average initial
effective temperature, χini and the natural logarithm of
the dimensionless imposed strain rate log(q). This defor-
mation map indicates that material deformation grad-
ually changes from homogeneous flow to shear banding
as a function of the initial conditions. In figure 5(a),
black boxes indicate that χ̂ approached infinity during a
particular numerical integration, and the STZ solid-like
description breaks down.

While the Gini coefficient is a direct indicator of local-
ization, it is perhaps a less familiar metric. For compari-
son, Figure 5(b) shows that maximum plastic strain rate
attained in the band as a function of the initial condi-
tions. A larger plastic strain rate is attained in a thinner,
more localized band, and therefore Fig. 5(b) is very sim-
ilar to Fig 5(a). Again, black boxes correspond to shear
bands where the plastic strain rate reaches the melting
point and the model breaks down.

IV. DEFORMATION MAP AND
MACROSCOPIC IMPLICATIONS

We have shown that shear bands can develop in the
STZ model, but we would also like to understand what
types of shear bands persist and what determines the
thickness of the bands. In addition, what are the im-
plications of this localization for macroscopic system re-
sponse?

The internal state of the system at each point in time
is completely determined by the deviatoric stress s and
effective temperature field, χ(y). We have seen in the
previous section that the transient dynamics can lead
to inhomogeneous flows. We now ask a different ques-
tion: Assuming that transient inhomogeneous flows oc-
cur, which types of deformation will persist long enough
for experiments and simulations to identify them? We
now show that there are three three different internal
states for which the χ dynamics, Eq. (6), slow down dras-
tically, in addition to the material failure state discussed
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FIG. 5: (color online) A diagram showing the degree of lo-
calization found in by numerically integrating the STZ equa-
tions. (a) The maximum Gini coefficient, Eq. (15), as a func-
tion of the average initial effective temperature and the exter-
nally imposed strain rate. A higher Gini coefficient indicates
more localization. (b) The log of the maximum plastic strain
rate attained in the band normalized by the externally im-
posed strain rate. In both figures, black boxes correspond
to numerical simulations where the magnitude of the strain
rate was so large that χ̂ → ∞, as discussed in the text. The
solid white line corresponds to the predicted localization ratio
R = 1: Localization is expected for initial conditions below
this line. See, e.g. results for χini = 0.0674, q = 1.015× 10−6

in Fig.4.

in the previous section. These are states with the poten-
tial to persist for long times.

A. Homogeneous deformation

The first and simplest state, “homogeneous deforma-
tion,” occurs when the effective temperature field is con-
stant everywhere and equal to χ̂(q), where q is the exter-
nally imposed dimensionless strain rate. Since both the
shear heating and diffusion terms are zero in Eq. (6), this
is a true steady state that persists forever. The magenta
dash-dotted line in Fig. 6 is a plot of stress vs. strain for

the single degree of freedom rate and state STZ model,
which is constrained to be homogeneous. The dashed
blue line in Fig. 6 is a plot of the stress as a function of
time for the full STZ model with a small initial pertur-
bation to the effective temperature field, but the initial
conditions are such that the perturbation relaxes and the
deformation relaxes towards homogeneous flow. The two
curves lie on top of one another, as expected, indicat-
ing that the simple ODE model matches the more com-
plicated PDE when the system deforms homogeneously.
The colored symbols correspond to plots in Figs. 7(a)
and 7(b).

The effective temperature as a function of position
is shown in Fig. 7(a), and each colored line represents
the state of the system a different time. A small initial
perturbation to the effective temperature dissipates as a
function of time, although the average value of the effec-
tive temperature increases as plastic work is dissipated.
Note that the scale of the effective temperature on this
plot is much smaller than that in Fig. 3(a).

A similar plot for the plastic strain rate is shown in
Fig. 7(b). The plastic strain rate is zero during the elastic
response, and although the perturbation to the effective
temperature generates a small perturbation to the strain
rate at the onset of plastic deformation, the strain rate
relaxes towards a homogeneous state. The normalized
strain rate is always of order one, so that the scale in
Fig. 7(b) is much smaller than that in Fig. 3(b).
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FIG. 6: (color online) Deviatoric stress s vs. strain calculated
by numerically integrating the STZ equations of motion with
initial conditions χini = 0.0674, q = 1.015×10−6 . The dashed
(blue) curve represents the solution to the perturbed system,
while the dash-dotted (magenta) curve represents a homoge-
neous solution where the effective temperature is constrained
to be constant inside the material. In this plot the two curves
are indistinguishable. The colored symbols correspond to the
plots shown in Fig. 7. Because χini is large, the system be-
gins with a large number of plasticity carriers and therefore
the stress peak is negligible. This system does not localize.



8

0 0.5 10.19

0.195

0.2

0.205

0.21

y  position

Ef
fe

cti
ve

 te
m

pe
ra

tu
re

, 
0.0000
0.0101
0.0135
0.0143
0.0151
0.0185
0.0310
0.0643
0.0893

0 0.5 10

0.2

0.4

0.6

0.8

1

1.2

1.4

y  position

No
rm

ali
ze

d p
las

tic
 st

ra
in

 ra
te

0.0000
0.0101
0.0135
0.0143
0.0151
0.0185
0.0310
0.0643
0.0893

(a)

(b)

FIG. 7: (color online) Relaxation to homogeneous flow: (a)
effective temperature and (b) normalized plastic strain rate
γ̇(y)τ0/q as a function of position, for a material with initial
conditions

R

dy χ(y, t = 0) = χini = 0.20, and imposed strain
rate q = 1.015 × 10−6. Different (colored) lines represent dif-
ferent times. A small initial perturbation to the effective tem-
perature relaxes, although the average effective temperature
increases. (The effective temperature scale is much smaller
than Fig. 3(a). At the onset of plastic deformation the plas-
tic strain rate is also perturbed, but this perturbation also
decays.

B. Diffusion limited shear bands and failure

A second state, called “diffusion limited localization,”
occurs when the shear heating and diffusion terms in
Eq. (6) balance. In this case the effective temperature
field is far from its steady state value χ̂ at all points in
space, so that the factor (1 − χ/χ̂) is close to unity and
the shear heating term sχ/(s0c0), which is of order one,
balances the diffusion term a2. This type of shear band
persists for long times in STZ simulations for earthquake
faults, where the parameters are chosen to match labora-
tory experiments for granular fault gouge [22]. Diffusion
also limits the width of shear bands in several of the

numerical simulations performed in this paper, although
these shear bands continue to evolve and grow, as we
discuss in detail in Section IVE.

Diffusion limited shear bands can be identified by their
narrow width, which is of order a, although the exact
value varies with the stress overshoot and specific heat
c0. In this 2D model, we use the term “width” to refer
to the extent of the shear band in the direction orthog-
onal to the slip plane – this is referred to as the shear
band “thickness” in literature on three-dimensional sys-
tems [2]. Although diffusion of potential energy (and
presumably effective temperature) has been seen in sim-
ulations [19], the length scale a associated with this diffu-
sion constant is relatively unconstrained by simulations
or experiments. A reasonable postulate is that a is on
the same order as the radius of an STZ, or equivalently,
a few particle radii. This suggests that diffusion limited
shear bands are very narrow.

The stress vs. strain curve for a material that develops
a diffusion limited shear band is given by the dashed blue
line in Fig. 2. The stress weakens very rapidly as the
diffusion limited shear band forms. For comparison, the
dash-dotted magenta curve in Fig. 2 is the stress response
of the ODE rate and state model with the same average
initial conditions. This illustrates that thin shear bands
drastically change the macroscopic system response, and
that this dynamic weakening is not captured by a single
degree of freedom rate and state model.

An example of the time evolution for the effective tem-
perature and normalized plastic strain rate for a diffusion
limited shear band is shown in Figures 3(a)-(d). A small
initial perturbation to the effective temperature is driven
by a dynamic instability to a much higher value, and
then the effective temperature diffuses slowly outward.
The plastic strain rate is initially zero (blue line), but
localization of the effective temperature field results in
a very narrow peak in the strain rate field (green line).
Note that the strain rate in the center of the shear band
is nearly 3000 times larger than the externally imposed
strain rate. As the stress continues to relax, the strain
rate becomes less sharply peaked (red line). The inset
plots magnify the position axis.

A third state is described as “material failure.” For a
certain subset of initial conditions the system is highly
unstable with respect to shear bands, and the local strain
rate in the bands becomes so large that the steady state
effective temperature χ̂ approaches infinity, indicated by
black boxes in Fig 5. As discussed in Section II, this
causes the shear heating term to increase so rapidly that
the width of the band becomes smaller than the diffusion
length scale and the numerical integration fails. This
failure is not an artifact of our numerical methods; it
signifies a break down in the STZ model that occurs when
the effective temperature increases without bound. We
associate this runaway process with the onset of material
failure because the solid-like STZ description fails as the
material liquefies.

Although we can not track the width of the band be-
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low the grid resolution during this runaway process, we
do observe that just prior to failure the effective temper-
ature in these simulations is elevated significantly above
its average in a region of width a. In other words, the dif-
fusion length scale appears to be an upper bound on the
size of the region where structural changes occur during
these shear failure events.

C. Disorder limited shear band

The fourth “disorder limited” localized state is less in-
tuitively obvious, but occurs frequently in our numerical
STZ solutions. Neglecting the diffusion term, the right
hand side of Eq. (6) is proportional to the product of
two factors, exp(−1/χ) and (1 − χ/χ̂). The former is
very close to zero whenever χ is significantly less than
χ0, and the latter is zero when χ = χ̂. The disorder lim-
ited state occurs exactly when the small-χ condition is
met outside the shear band and χ = χ̂ inside the band,
so that χ̇ in Eq. (6) is always small. This type of shear
band was first described in [7], and captures features of
shear bands observed in simulations by Shi, et al. [19].

Figure 8 is a plot of the shear stress s vs. strain for a
system that develops a disorder-limited shear band. This
plot is calculated by numerically integrating the STZ
equations of motion with initial conditions χini = 0.1042
and q = 8.7 × 10−6. The blue curve represents the so-
lution to the perturbed system, while the magenta curve
represents a homogeneous solution where the effective
temperature is constant as a function of position inside
the material. The colored symbols correspond to the
plots shown in Fig. 9. Although the localized system
weakens slightly faster than the homogeneous system,
the effect is small and on this scale the two curves are
indistinguishable.

We show the effective temperature and strain rate
fields for a numerical solution that exhibits a disorder
limited shear band in Figs. 9(a) and 9(b). The perturba-
tion to the effective temperature field grows very slowly
at first, then more rapidly as χ → χ̂, and finally the peak
begins to diffuse slowly outward. Similarly, the normal-
ized plastic strain rate begins at zero (blue), then rises
quickly (green) and relaxes slightly (red).

The width of disorder limited bands is not set by a sim-
ple internal length scale such as a. Instead, the width is
determined dynamically by the externally imposed strain
rate and the initial conditions. Let us assume for the
moment that a single shear band forms in the material.
This is explicitly enforced for the numerical integration
in this paper because the initial hyperbolic secant per-
turbation at y = 0 leads to a single shear band at that
position. In addition, a single shear band is observed
in simulations [19] and numerical integration of the STZ
model with random perturbations to the initial effective
temperature [7] at low strain rates.

Under this assumption, almost all of the deformation
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FIG. 8: (color online) Shear stress s vs. strain calculated
by numerically integrating the STZ equations. The dashed
(blue) curve represents the solution to the STZ PDE, while
the dash-dotted (magenta) curve represents a solution where
the effective temperature is constant inside the material. The
colored symbols correspond to the plots shown in Fig. 9. Al-
though the localized system weakens slightly faster than the
homogeneous system, the effect is small and on this scale the
two curves are indistinguishable.

is accommodated in a band of width w:

q = τ0V0/L ≃ τ0 (w/L) γ̇band. (16)

Using Eqs. (2) and (16) we derive the following relation-
ship between the stress s, the width of the shear band w
and the externally imposed strain rate q:

q 2L

w
≃ 2f(s) exp

[

−
1

χ̂(q2L/w)

]

. (17)

This is not a prediction for the width of the shear band,
because the final stress, s is not specified. Unfortunately,
we can not derive an approximate value for s because
it depends on the entire history of deformation in the
material. In addition, the final value of s is generally
close to the yield stress, and f(s) is very sensitive to
s in this regime. However, we can check to see if the
shear bands in a given numerical simulation satisfy the
criterion given by Eq. (17).

D. Deformation map at the time of maximum
deformation rate

We now determine which of these states occur and
persist as a function of the initial conditions in the nu-
merically integrated solutions. As mentioned earlier, the
stress appears to achieve a steady state quickly – in all
numerical STZ solutions the stress changes by less than
5 % between 7 % and 20 % strain. In comparison, the
effective temperature field often remains highly local-
ized for t > 20% strain, and broadens over much longer
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FIG. 9: Disorder limited shear band(color online) (a)
Normalized plastic strain rate γ̇(y)τ0 /q and (b) effective tem-
perature as a function of position (y), for a material with
initial conditions χini = 0.1042, and imposed strain rate
q = 8.7 × 10−6. Different (colored) lines represent different
times; cooler colors (blue) correspond to earlier times, while
warmer colors (red) correspond to later times. The plastic
strain rate in the band increases significantly (about 800 %),
although much less than in the diffusion limited shear band.
The width of this band at its peak is about 0.2, much larger
than the width of a diffusion limited shear band.

timescales than the stress. We measure the shear band
width for each numerical solution at two times: the time
tqmax at which the strain rate in the shear band attains
its peak and the shear band width is minimized, and at a
later time t = 0.2 where the stress appears to be in steady
state. The first measurement captures information about
the initial transient and the maximum deformation, while
the second measurement identifies how the shear bands
diffuse and evolve.

We first study the shear bands when the plastic strain
rate is most highly localized. Let qmax(y) be the normal-
ized plastic strain rate γ̇(y, t)τ0 /q evaluated at the time
tqmax when the strain rate achieves its absolute maxi-
mum. sqmax is the shear stress at tqmax. The width
wqmax of the shear band in a numerical solution is de-
fined to be the fraction of the real line between −1 and

1 where the function qmax(y) is sufficiently large:

wqmax =

∫

I

dy. (18)

The region I is defined as follows:

I = {y ∈ [−1, 1] | qmax(y) > 1 + h sup
y

qmax(y)}, (19)

where h is an arbitrary fraction. Although we choose h =
1/10, in most cases the calculated width is insensitive to
the value of h because the strain rate function is sharply
peaked.

Figure 10 is a plot of the shear band width at the time
of maximum strain rate wqmax as a function of the initial
conditions. At high initial effective temperatures when
the system deforms homogeneously, the width wqmax is
not well-defined. In this case Eq. (18) becomes extremely
sensitive to the fraction h and is no longer accurate.
White boxes in Figure 10 correspond to simulations in
this homogeneously deforming regime where the maxi-
mum Gini coefficient is less than 0.35.

Although the shear bands are continuously diffusing
and evolving, it is useful to determine if the deformation
at the time tmax appears to be homogeneous, a diffusion
limited shear band, a disorder limited shear band, or an
example of material failure. Except for material failure
these categories are fuzzy, because as shown in Fig. 10
the deformation varies continuously from homogeneous
to highly localized. However, by identifying these dif-
ferent regions in phase space we hope to identify length
scales and features that might be measured in experi-
ments.

To determine if a shear band width is consistent with
disorder limited deformation, we rearrange Eq. (17), in-
serting wqmax and sqmax:

log

(

q 2L

2f(sqmax)wqmax

)

+
1

χ̂(q2L/wqmax)
= 0. (20)

A shear band in a numerical solution is said to be “dis-
order limited” if Eq. (20) is approximately satisfied, (i.e.,
the left hand side equals 0±0.08.) Similarly, a shear band
is “diffusion limited” if its width is approximately equal
to the diffusion length scale a, (i.e. 0 < wqmax < 0.03),
and homogeneous if the maximum Gini coefficient is less
than 0.5. Although these cutoffs are somewhat arbi-
trary, they are chosen to ensure that the regions are non-
overlapping, which proves to be a fairly strong constraint.
Finally, a material is said to fail if χ̂ approaches infinity
during the course of integration. Figure 11 is a deforma-
tion map that indicates where each of these criteria are
satisfied.

E. Deformation map at 20 % strain

The discussion in the previous paragraphs analyzes
shear bands at their peak, when the plastic strain rate
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FIG. 10: (color online) Shear band width at the time of max-
imum strain rate wqmax, Eq. (20), for numerical STZ solu-
tions as a function of the initial conditions χini and log(q).
The black boxes correspond to initial conditions for which
χ → ∞ during an integration, while the white boxes corre-
spond to initial conditions for which the flow is homogeneous
(the maximum Gini coefficient, φmax < 0.35) The color scale
is set such that the maximum width is 0.2
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FIG. 11: (color online) Deformation map that uses the widths
shown in Fig. 10 to determine if the deformation at time
tqmax is diffusion or disorder limited localization. Diffusion
limited shear bands (very dark gray/dark red) and failure
(black) occur where 0 ≤ w < 0.035, and disorder limited
shear bands (medium gray/orange) occur where the left-hand
side of Eq. (20) is less than 0.7. The very light gray (light
yellow) region indicates homogeneous flow. Because this is
a snapshot of the the deformation types at t = tqmax, for
some initial conditions the system is transitioning between
two types of flows. The red region represents a transition
regime between diffusion limited and disorder limited shear
bands, while dark yellow represents a transition between dis-
order limited shear bands and homogeneous flow. Blue outline
boxes indicate initial conditions detailed in Figs. 3, 7, and 9.

is maximized. This generally occurs at less than 7 %
strain. As mentioned in earlier sections, however, the
shear bands continue to diffuse and widen, albeit slowly,
even though the stress appears to have reached a steady
state. Fig. 12 shows the shear band width at at 20 %
strain. In each case the shear bands have become wider,
as expected. (Note that the maximum width shown in
this plot is 0.3, as compared to 0.2 in Fig. 10.) This
highlights the fact that these systems are never in equi-
librium, or even in a stationary state. However, these
slowly evolving states are observable, and the widths of
the shear bands can be measured. This type of measure-
ment was made, for example, by Shi et al. [19].

Shear band width at 20 % strain

ln(imposed strain rate)
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FIG. 12: (color online) Shear band width at 20 % strain for
numerical STZ solutions as a function of the initial condi-
tions χini and log(q). The black boxes correspond to initial
conditions for which χ → ∞ during an integration, while
the white boxes correspond to initial conditions for which
the flow is homogeneous (the Gini coefficient at 20 % strain,
φ(t = 0.2) < 0.35) Note that the scale for this plot is larger
than that in Figure 10 – the shear bands are significantly
wider at 20 % strain than at tqmax

The same criteria for deformation categories that were
used at tqmax in Fig. 11 can also be used to categorize
shear bands at 20% strain. Thinner bands that were pre-
viously diffusion limited or transitional at tqmax now fit
the criteria for disorder limited bands at t = 0.2, and
some disorder limited shear bands have transitioned to-
wards homogeneous flows. This is illustrated in Fig. 13.

While we predict that the types of deformation
mapped in Figs. 11 and 13 will occur in a wide range
of amorphous solids, the exact location of boundaries
between types and the longevity of each type are prob-
ably material-dependent. These deformation maps are
strongly influenced by the definition of the steady state
effective temperature χ̂(q). In this paper we used a
function χ̂(q) that fits the data by Haxton and Liu for
simulated repulsive disks; different materials may have
slightly different steady state effective temperatures, al-
though it is also possible that χ̂(q) is universal. While
diffusion limited shear bands broaden to become disor-
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FIG. 13: (color online) Deformation map at 20 % strain, that
uses the widths shown in Fig. 12 to determine the type of de-
formation. Failure (black) occurs where χ̂ → ∞ during a nu-
merical simulation, and disorder limited shear bands (medium
gray/orange) occur where the left-hand side of Eq. (20) is less
than 0.7. The very light gray (light yellow) region indicates
homogeneous flow. At t = 0.2, the dark gray (red) transi-
tion region in Fig. 11 has disappeared – the shear bands have
widened to become disorder limited shear bands. In addi-
tion, the diffusion limited shear bands have also widened to
become disorder limited, and some of the shear bands which
were disorder limited in Fig. 11 have transitioned towards ho-
mogeneous flow (light gray/dark yellow). Blue outline boxes
indicate initial conditions detailed in Figs. 3, 7, and 9.

der limited shear bands in our numerical solutions, other
studies of the STZ model indicate that diffusion limited
shear bands can persist for very long times [22]. These
studies use the function χ̂(q) with different parameters
chosen to fit granular fault gouge experiments.

The most important conclusion to be drawn from these
figures is that for a large range of initial conditions, shear
bands are a robust feature that persist for long times.
Moreover, STZ theory provides an explanation for their
width that is not necessarily defined by an internal model
parameter such as a diffusion length scale, but instead
is determined dynamically by the initial and boundary
conditions.

In the above analysis, we have assumed a single shear
band. Experiments and simulations of bulk metallic
glasses show that the material develops multiple shear
bands at higher strain rates [19, 23]. Developing a model
for the number and spacing between shear bands is be-
yond the scope of this paper, but the STZ model should
provide an excellent starting place for these analyses.

V. CONCLUSIONS

In previous sections, we have shown that shear band-
ing in the STZ model results from an instability that
develops during a transient stress response, which occurs
when a material is driven from rest or driven at a new
velocity, but does not occur in steady state. Although
the instability occurs during the initial transient, the dy-
namics of the internal state χ(y) becomes very slow and
therefore shear bands persist for long times.

By including information about the rate dependence
of the steady state effective temperature, χ̂(q), we show
that the STZ model generates a deformation map that
includes homogeneous deformation, thick “disorder lim-
ited” shear bands, thin “diffusion limited” shear bands,
as well as the onset of material failure.

The shear bands that emerge spontaneously in the STZ
model capture several important features seen in simu-
lations and experiments. First, the STZ model predicts
that shear band formation coincides with stress relax-
ation after the initial stress overshoot in start-up flows.
In cases where the material does not fail, the model pre-
dicts that shear bands gradually broaden over large (
> 20%) strains.

For a fixed initial effective temperature, the STZ model
predicts that the shear bands become thinner and that
their internal structure becomes more disordered as the
strain rate increases. This is similar to the “ductile to
brittle” transition seen in amorphous materials as a func-
tion of the strain rate [23]. At lower strain rates the ma-
terial deforms nearly homogeneously and appears ductile,
but at higher strain rates all the deformation is localized
in a thin shear band or mode II crack.

At very high strain rates and low initial effective tem-
peratures, the effective temperature approaches infinity
at the center of the band during the transient response
and the system “melts”, which is consistent with “brittle”
material failure seen at high strain rates in bulk metallic
glasses.

The model predicts that for materials that fail via
this shear banding mechanism, the apparent shear band
width should be at most the diffusion length scale a. Al-
though a has not been measured experimentally, a rea-
sonable assumption is that it is on the order of an STZ ra-
dius. In bulk metallic glasses this scale should be at most
30 atomic radii, on the order of 10 nm [1], which is much
smaller than the thermal diffusion length scale (100-240
nm [6]), and this could explain the shear band width mea-
sured in these materials. The STZ radius has not been
estimated in granular fault gouge, but this could provide
an explanation for the scale of the prominent fracture
surface, which is orders of magnitude smaller than other
length scales in earthquake faults.

We have also shown that these localization dynamics
can not be captured by a single degree of freedom rate
and state friction law, and that analyzing steady state
model dynamics can often be misleading. This is because
the structural degrees of freedom parameterized by χ(y)
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evolve much more slowly than the stress dynamics, so
that the microstructure continues to evolve although the
stress appears to have reached a steady state. This in-
sight is particularly important for materials that develop
highly localized shear bands, as the friction law based on
homogeneous dynamics is vastly different from one that
accounts for transient shear band development. We sug-
gest that localization may play a role in dynamic weak-
ening seen at high shear speeds in granular materials.

While this is an exciting starting point for studying
deformation and failure for amorphous materials, many
fundamental questions remain. We discuss a few of them
below.

What is χ̂(q) for various amorphous materials?

Throughout this paper, we have used a fit to data gen-
erated by Haxton and Liu [9] as the definition for χ̂(q).
Haxton and Liu simulate a 2D amorphous packing of har-
monically repulsive discs at thermal temperatures above
and below the glass transition temperature, and used
FDT to extract an effective temperature at each ther-
mal temperature and strain rate. To our knowledge, this
is the only such data set. It would be very interesting
to use FDT to extract effective temperatures from sim-
ulations of other types of amorphous packings, such as
the Lennard Jones glass studied by Shi et al. [19], foams,
amorphous silicon, or bulk metallic glasses. Is χ̂(q) sim-
ilar for all of these materials? Is the effective glass tran-
sition temperature, χ0, universal?

One possibility is that the transition from glassy be-
havior to simply activated behavior should occur when
q = 1, (i.e., when the strain rate is the same as the inter-
nal rate 1/τ0). However, it is also possible that in compli-
cated materials like bulk metallic glasses, the transition
occurs at slower rates than 1/τ0, since the STZs in these
systems are large, multi-component regions that likely
evolve more slowly than the phonon frequency.

Are there other ways to measure χ̂(q), such as
looking at the behavior of a tracer harmonic oscillator
inside a simulation box? Is it possible to define the
effective temperature by quantifying the change in
configurational entropy as a function of the potential
energy? Numerical results from Ono, et al. suggest
that this type of calculation is possible, but they were
not able to sample enough low probability states to
state conclusively that the FDT and entropic definitions
generate the same effective temperature. These are im-
portant questions because it is very difficult to measure
fluctuations in position or stress precisely enough in ex-
periments to extract an effective temperature using FDT.

What are the effects of geometry and boundary condi-

tions? We have so far restricted ourselves to the simplest
possible shear geometry and periodic boundary condi-
tions on the effective temperature. The boundary con-
ditions on the effective temperature help determine the
location of shear bands within the material as well as the
steady states of the system. In many experiments and

in some earthquake faults, shear bands tend to localize
along the boundary [24]. Why does this occur?

Different geometries can be modeled in STZ theory
by adjusting the boundary conditions on the effective
temperature. For example, an amorphous material ad-
jacent to a rigid solid surface could be modeled by no
conduction boundary conditions on the effective temper-
ature, because no disorder can propagate into the rigid
solid. Crystalline solids might impose a constant, more
ordered boundary condition on the effective temperature.
It would be very interesting to investigate the effects of
these conditions on shear band evolution.

In addition, many engineering materials are tested
under tension and compression, or a “notch” is placed
on the surface of the material. In these cases there is a
free boundary which can deform, leading to a coupling
between deformation and stress. The necking instability
has been investigated using earlier STZ models [25]
– it would be interesting to repeat this analysis with
our improved understanding of the coupling between
structure and deformation.

Is the localized state weaker in absolute terms than the
homogeneous state? Does this matter? Although strain
localization leads to a rapid decrease in the shear stress,
the final stress state of the localized system is not neces-
sarily lower than the final stress state of a homogeneous
system. In the special case where the initial effective tem-
perature perturbation is a step function, the final stress
of the localized state is smaller than the homogeneous
stress [22]. However, in most numerical solutions to the
STZ equations (e.g. Fig. 2), the final stress state in the
localized system is equal to or higher than the stress in
the homogeneous system. In absolute terms, the local-
ized system is stronger (or at least no weaker) than the
homogeneous system, which is counter-intuitive.

There are several ways to reconcile this information
with intuition. First, we note that the rate at which
the localized system weakens is much more rapid than
the homogeneous system. For dynamic phenomena, such
as stick-slip instabilities and stop-start experiments, the
weakening rate and the total stress drop help determine
the dynamic response. Is the rapid weakening seen in
systems that localize large enough to cause stick-slip?
Another possibility is that many of these systems attain
strain rates at which the STZ solid-like description breaks
down. Although we do not explicitly model this here,
it seems likely that the liquid-like material in the band
possess a vastly reduced strength compared to the solid
outside the band.
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APPENDIX A: STZ MODEL DETAILS

A mean field theory for shear transformation zones has
been developed in a series of papers [14, 26, 27, 28], and
we use this theory as a general model for a wide range of
amorphous solids.

In analyzing the dynamics of shear transformation
zones, we develop equations of motion for five internal
variables: the deviatoric stress s, the pressure p, the den-
sity of STZs oriented parallel and perpendicular to the
principal stress directions n±, and the effective tempera-
ture, χ. In a simple shear geometry at low temperatures,
the model can be further simplified so that the state of
the system is entirely specified by s and χ alone. The
following sections review the STZ equations and specify
the parameters and simplifications used in this paper.

1. Overview of equations of motion

In the slowly sheared materials we are modeling, the
speed of sound in the material is very fast compared to
the rate of plastic deformation. In this case the stress
gradients equilibrate very quickly, and we take the zero
density limit of the momentum conservation equations.
This results in static elastic equations for the stress:

∂σij

∂xj
= 0. (A1)

The rate of deformation tensor is the sum of elastic and
plastic parts:

Dtotal
ij =

1

2

(

∂vi

∂xj
+

∂vj

∂xi

)

=
D

Dt

(

−
p

2K
δij +

sy

2µ
sij

)

+ Dplast
ij , (A2)

where D/Dt is the material or co-rotational derivative.
To simplify notation, the deviatoric stress has been
nondimensionalized by an effective shear modulus sy that
specifies the stiffness of the STZs. The stress scale sy also
characterizes the stress at which the material begins to
deform plastically. This yield stress is distinct from the
maximum stress attained, sm, and the steady state flow
stress, sf , both of which are sometimes also referred to
as the yield stress in the literature.

The plastic rate of deformation tensor can be written
in terms of dynamical variables from STZ theory. We
postulate that under shear stress, each STZ deforms to
accommodate a certain amount of shear strain, and can-
not deform further in the same direction. This is modeled
by requiring that each STZ be in one of two states: ori-
ented along the principal stress axis in the direction of

applied shear, which we will denote “+”, or in the per-
pendicular direction, “−”.

Under applied strain, the STZ will flip in the direction
of strain, from “−” to “+”. Under shear stress in the
opposite direction, the STZs can revert to their original
configurations, which corresponds to a flip from “+” to
“−”. We assume that the STZ density is small and each
STZ interacts with other STZs through continuum fields
such as the stress. Therefore the rearrangements or flips
occur at a rate R(s)/τ0, which depends on the stress and
a characteristic attempt frequency 1/τ0.

Because each STZ can flip at most once in the direction
of applied strain, STZs must be created and annihilated
to sustain plastic flow. Based on these considerations,
the number density of STZs in each direction, n±, obeys
the following differential equation

τ0ṅ± = R(±s)n∓ − R(∓s)n± + Γ
(n∞

2
e−1/χ − n±

)

,

(A3)
where R(±s)/τ0 is the rate of switching per STZ as a
function of stress, Γ is the rate at which energy is dissi-
pated per STZ, and n∞ e−1/χ is the steady state density
of STZs in equilibrium.

The plastic rate of deformation tensor is given by the
rate at which STZs flip:

Dpl =
ǫ0

n∞τ0

(R(s)n− − R(−s)n+) , (A4)

where ǫ0 is a strain increment of order unity and n∞ is
a density roughly equal to the inverse of the volume per
particle.

The first two terms in Eq. (A3) correspond to STZs
switching from “+” to “−” states and vice-versa, while
the last term enforces detailed balance: STZs are created
at a rate proportional to n∞e−1/χ and annihilated at a
rate proportional to their density. The creation rate is
proportional to the probability of a configurational fluc-
tuation that corresponds to an STZ. As discussed in the
introduction, this probability is exp[−1/χ], where χ is
an internal state variable that characterizes the configu-
rational disorder. To close the system of equations, the
model requires an equation of motion for χ.

Ono et al. [11] and Haxton and Liu [9] show that a
driven amorphous system possesses a well-defined steady
state effective temperature, χ̂, at each value of the im-
posed strain rate. In these simulations, a thermostat
ensures homogeneous deformation within the glass and
the particles are sheared for long periods of time before
the steady state measurement is taken.

To model deformation in time varying systems, such as
start-up flows, we have to estimate how the effective tem-
perature changes in time. As detailed in [15], we assume
that the heat content in the configurational degrees of
freedom is driven by two independent sources, mechan-
ical work and thermal fluctuations. Therefore we make
the simplest assumption: the mechanical heat drives the
effective temperature towards χ̂ according to the con-
ventional linear law of heating. The rate of heat per unit
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volume that enters the configurational degrees of freedom
is Qc = Teff (dSc/dt)mech.

In addition, we postulate that the heat produced by
thermal fluctuations, QT = Teff (dSc/dt)therm, drives
the effective temperature towards the thermal equilib-
rium bath temperature θ according to the linear law of
cooling. The resulting equation of motion for χ is:

χ̇ =
1

Ceff Tz

[

Teff

(

dSc

dt

)

mech

[

1 −
χ

χ̂

]

+ Teff

(

dSc

dt

)

therm

[

1 −
χTz

T

]]

+ D
∂2χ

∂y2
,(A5)

where Ceff is a specific heat, Tz = Ez/kB is the STZ
formation energy in temperature units, and the last term
represents diffusion of effective temperature.

Because the effective temperature governs the config-
urational degrees of freedom, only configurational rear-
rangements, i.e. plastic events, permit diffusion of the
effective temperature. This suggests that the diffusivity
should vary with strain rate, so that D = a2|γ̇pl|, where
a is a length scale that corresponds to the radius of an
STZ.

2. Simplifying assumptions

Pechenik [29] generalized Eqs. (A3) and (A4) to the
case where the principal axes of the STZ orientation ten-
sor nij are not aligned with principal axes of the stress
tensor sij . These generalized equations can be written in
terms of two new variables, Λ and m, which appear often
in literature on STZs:

Λ ≡ ntot/n∞; (A6)

mij ≡ nij/n∞, (A7)

where ntot is the tensorial generalization of (n+ + n−)
and nij is the tensorial generalization of (n+ −n−). The
scalar Λ is the total density of zones in a sample, while
the tensor m corresponds to the STZ orientational bias.

In this paper we focus on materials in a 2D simple
shear geometry, so that the diagonal terms in the devi-
atoric stress tensor (sxx, syy) and STZ orientational bias
(mxx, myy) are significantly smaller than off-diagonal
terms and can be neglected. Let s = sxy = syx and
m = mxy = myx. In this geometry the pressure p does
not change with time and Dp/Dt in Eq. (A2) is zero.

As noted in [28] the density of STZs, ǫ0Λ, is necessarily
small. In a simple shear geometry, the equations of mo-
tion for the stress s and the effective temperature χ each
contain this factor in their numerators, and they equili-
brate very slowly compared to m and Λ. Therefore we
replace Λ and m by their steady state values. Combining
Eqs. (A3), (A6), and (A7), we find that the steady state
value of Λ is exp[−1/χ], and that m exchanges between
two steady states (elastic vs. plastic deformation) near
s = sy. Below the yield stress the deformation is almost

entirely elastic because all the existing STZs are already
flipped in the direction of stress. Above the yield stress
STZs are continuously created and annihilated to sustain
plastic flow. Details can be found elsewhere [15].

We also make the simplifying assumption that the ma-
terial is below the thermal glass transition temperature
T0, so that particle rearrangements are not activated by
thermal fluctuations. In this case the thermal entropy
contribution to the effective temperature equation of mo-
tion, (dSc/dt)therm in Eq. (A5), is zero. This is always
true, for example, in granular materials. In addition, we
make the approximation that at very low temperatures
the STZs do not flip in a direction opposite the direction
of applied stress: R(−|s|) = 0.

The functional form of Γ, the energy dissipated per
STZ that appears in Eq. (A3), is considerably simplified
for T < T0. Under the assumption that an STZ does
not flip in a direction opposite to the direction of applied
stress, no energy can be stored in the plastic degrees of
freedom. This means that the plastic work is equal to
the energy dissipated:

Dpl
ijsij = γ̇s = Q. (A8)

Following Pechenik [29], we postulate that the total en-
ergy dissipation rate, Q, is proportional to Γ:

Q = s0

ǫ0
τ0

Λ Γ, (A9)

where s0 is a stress scale we return to below.
Combining Eqs. A4, A8, and A9 results in the following

expression for Γ:

Γ(s) =
2

s0ǫ0
s f(s), (A10)

where the function f(s), which also appears in Eq. (2),
is defined as follows:

f(s) = ǫ0
R(s)

2

[

1 − m(s)
]

. (A11)

In simple shear below the thermal glass transition, the
two steady states of the equation of motion for the STZ
bias are also very simple:

m(s) →

{

1 for s < sy

s0/ s for s > sy,
(A12)

and s0 = sy is the yield stress – the stress at which the
two stability branches intersect.

We now turn to the parameters in Eq. (A5). In [15] the
rate at which configurational entropy is being produced
by mechanical deformation, (dSc/dt)mech, is assumed to
be proportional to the product of the STZ density and
the STZ creation rate:

(

dSc

dt

)

mech

=
kBνZ

Ω

ǫ0
τ0

ΛΓ, (A13)
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where Ω is a volume per molecule and kBνZ is the entropy
per STZ [15].

We also need to specify the steady state effective tem-
perature, χ̂ that appears in Eq. (A5). Recent simulations
by Haxton and Liu [9] suggest that the steady state ef-
fective temperature is rate dependent. In steady state,
the inverse strain rate 1/q can be viewed as a function of
the steady state effective temperature χ̂, much like the
viscosity is a function of the thermal temperature T . We
have shown [8] that the the glassy steady state effective
temperature is well fit by the following functional form:

1

q(χ̂)
=

1

q0

exp

[

A

χ̂
+ αeff (χ̂)

]

, (A14)

A discussion of this effective temperature glass transition
is given in [8], we adopt the super-Arrhenius function
αeff identified in that paper:

αeff (χ) =
χ1

χ − χ0

exp[−b(χ − χ0)/(χA − χ0)], (A15)

where χ0 is the thermal glass transition temperature, χA

is the temperature at which the system begins to exhibit
Arrhenius behavior, and b, χ1 are fit parameters. The
super-Arrhenius component (Eq. (A15)) ensures that the
effective temperature approaches a constant, χ0, as the
strain rate approaches zero, which is seen in simulations.

Putting everything together, we arrive at an equation
of motion for the effective temperature:

dχ

dγ
=

2 sχ

c̃0s0q
f(s)e−1/χ(1 −

χ

χ̂(q)
) + a2γ̇pl

∂2χ

∂y2
,(A16)

where γ is strain, q is the imposed strain rate times the
STZ time scale, (V0/L) τ0 and c̃0 = CeffΩ/ (kBνz). In-

serting Eq. (2) into the equation for the rate of deforma-
tion tensor, Eq. (A2), and integrating across the width
of the material (in the y-direction) results in a second
equation for the stress dynamics:

ds

dγ
= µ∗

(

1 −
2

q
f(s) Λ

)

, (A17)

where µ∗ is the ratio of the elastic modulus to the yield
stress, and Λ is the spatial average of the STZ density
Λ = exp(−1/χ).

Determining an exact function R(s) from first prin-
ciples is a difficult many body problem. However, we
do know how R(s) behaves in the limits of very small
and very large stresses, and we choose a function that
smoothly interpolates between these two regimes. R(s)
exhibits Eyring-like behavior far below the yield stress,
and power law behavior above the yield stress:

R(s) = exp

[

−
TE

T
e−s/µ̃

]

[

1 +

(

s

s1

)2
]n/2

. (A18)

The first factor on the right-hand side of Eq.(A18) is the
Eyring rate in a form similar to that used in [14], where
the exponential function of s/µ̃ causes the rate to sat-
urate at large s. Here, TE is the height of the Eyring
activation barrier in units of temperature. The expo-
nent n in Eq.(A18) specifies the large stress power law
behavior; possible values are discussed in [8]. Analysis
of simulation and experimental data suggest that n = 1
is valid for bulk metallic glasses [15] while n = 1/2 is
relevant for purely repulsive harmonic disks [8].
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