
Channel flow over a compliant wall

M. Manning, B. Bamieh

August 10, 2007

1 Introduction

In 1960 Kramer [8, 9] published a series of papers describing experiments where
he covered an underwater object with rubber and found considerable reductions
in the drag. Experiments have been conducted to study other flows past com-
pliant boundaries — blood flow in arteries, dolphin propulsion, etc. Since then,
there has been significant theoretical effort expended to understand how com-
pliant walls affect hydrodynamic stability. The first papers by Benjamin [2] and
Landahl [11] and more recent papers [4, 6, 10] study two-dimensional (stream-
wise and wall-normal) flow using standard stability analysis.

The starting point for these studies is Tollmien-Schlicting (TS) waves, which
are the most unstable modes of the 2D linearized Navier Stokes (LNS) opera-
tor for channel and Blasius boundary layer flow. In a certain parameter range,
the flexible wall modifies and stabilizes these “Class A” streamwise undulat-
ing waves. The flexible wall also supports surface waves with a characteristic
wavespeed; in another parameter range the fluid excites these “Class B” modes
in the wall and the system becomes unstable [2, 11]. Essentially, then, stability
is enhanced in a small parameter range where Class A waves are suppressed
and Class B waves are not excited. Carpenter and Garrad highlight the fact
that there is an additional “Class C” mode that occurs as a coalescence of Class
A and Class B modes. This mode is call “standing wave flutter” and is an
oscillating staing wave. [?].

An important question is whether these two-dimensional flow models capture
the important details of three dimensional flow. For flow past a rigid wall, this is
not the case. TS waves have been experimentally verified [?] in experiments with
extremely low environmental noise and geometric irregularity. However, in many
experiments researchers do not see TS waves but instead streamwise streaks and
vortices [], which are not the unstable eigenfunctions of the respective linearized
equations.

One explanation for this is that there may be eigenmodes of the LNS operator
which experience large transient growth, even though they are linearly stable.
This is possible because the LNS operator is highly non-normal at high Reynolds
number, and therefore its eigenmodes are non-orthogonal. In this case small
perturbations to laminar flow can be significantly amplified so that the orginal
linearized description is no longer valid.
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These ideas were perhaps first highlighted by Butler and Farell [3], who
studied perturbations to the initial conditions of the system, and later by Tre-
fethen et. al [13] who studied perturbations to the differential operator itself.
Other studies have confirmed that non-normal, stable modes of the LNS op-
erator undergo large transient growth []. Borrowing tools from control theory,
“Input/output”(I/O) analysis provides an algorithmic method for incorporat-
ing uncertainty as input body forces and pinpointing energy amplification in
the system [?, ?]. It can be shown that “input-output” analysis encompasses
both “optimal perturbation” methods and “psedospectral” analyses. The goal
of the analysis is to find the “most resonant modes” — those modes which are
most likely to result from amplification of small perturbations.

A study by Jovanovic and Bamieh of the 3D LNS equations [?] shows that
streamwise vortices are the “most resonant mode” in rigid-wall channel flows.
This agrees with flow structures seen in transition to turbulence in noisy exper-
iments, and suggests a novel approach for studying transition to turbulence in
flow past compliant walls. In this paper, we perform an input-output analysis of
a simplified channel flow model (2D/3C) that captures the energy amplification
seen in full three-dimensional models. We show that . . . .

The paper is organized as follows. In Section 2, we review the spectral
theorem for normal, linearized operators, and discuss how transient growth is
possible for linearly stable eigenmodes of non-normal operators. We also discuss
how Input-Output analysis identifies this transient amplification. In Section 3
we discuss our simplified model for the fluid and the compliant wall, and lin-
earize the system about planar Couette flow, and implement the system in
MATLAB using descriptor notation. In Section ?? we use I/O analysis as a
tool to understand the natural modes of the wall, and arrive at a more detailed
understanding of the surface waves described by Benjamin [2]. Section ?? de-
scribes an I/O analysis of the fluid coupled to a compliant boundary. We first
investigate a simple Kramer-type boundary [?, ?], and later expand the model
to allow stretching in the spanwise direction, as first explored in [12].

2 Background: Linear and Input-Output stabil-
ity analysis

Linear stability is often used to understand and predict the behavior of dynam-
ical systems. The goal is to find eigenvalues of a linearized dynamical operator.
Eigenvalues with negative real parts correspond to eigenmodes that will even-
tually decay, and a system where all the eigenmodes eventually decay is linearly
stable. This technique usually makes correct predictions, but there are sev-
eral important instances where it is known to fail – channel and pipe flows,
for example. One way to explain this failure is to say that the linear operator
is highly sensitive to small perturbations or model uncertainty. We can still
study the linear operator to predict system behavior, by adding a disturbance
input to the operator and seeing what types of perturbations are most ampli-
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fied. This disturbance input can mimic inhomogeneous boundaries and model
uncertainty as well as perturbations to initial conditions. Although all perturba-
tions must eventually decay, certain resonant perturbations can be transiently
amplified by large factors if the linear operator is non-normal (eigenmodes are
non-orthogonal). This amplification of the “most resonant modes” is easily
studied using input-output (I/O) techniques from control theory in engineering.

Given a dynamical system described by the following linear equation:

ẋ = Ax, (1)

it is well-known that if A is a normal linear operator and all of its eigenvalues
have negative real parts, then eigenmodes of A decay monotonically and the
system is aymptotically stable. However, this is not true for non-normal linear
operators. The fact that the eigenmodes of these operators are not orthogonal
has important implications for stability and transient growth.

Recall that an operator A is normal if it satisfies the equation AAT = ATA.
A consequence of this definition is that A has orthogonal eigenvectors that span
Rn and therefore A is diagonalizable. We can find an change of variables x = Sy
such that ẏ = S−1ASy and S−1AS is diagonal. This implies that the dynamics
of each component are decoupled,

ẏj = λjyj j ∈ 1 . . . n, (2)

and each component has the solution

yj = yj0e
λjt. (3)

Obviously, if all the λj have negative real parts, then each eigenmode decays ex-
ponentially. Note that Hermitian and unitary operators are both normal, which
may explain why scientists and engineers are so familiar with this behavior.

Non-normal operators may or may not be diagonalizable, and we can not
always describe them as a series of decoupled eigenmodes. We can build some
intuition about these operators by examining a specific example. Let A be
defined as:

A =

[
λ1 N
0 λ2

]
. (4)

Because the matrix is upper triangular, λ1 and λ2 are its eigenvalues, and the
eigenmodes are the following vectors:

e1 =

[
1
0

]
; e2 =

[
N/(λ1 − λ2)

1

]
; (5)

Note that e1 and e2 are linearly independent (unless λ1 = λ2), but as N increases
they become more and more parallel to one another. In this sense, N can be
considered a measure of the non-normality of the operator A. Even if A is
linearly stable (λ1 and λ2 both negative), a perturbation u = (u1,u2) can grow
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transiently if N is large enough:

∂tu1 =

[
u1 + u2

N

(λ1 − λ2)

(
e(λ1−λ2)t − 1

)]
eλ1t

∂tu2 = u2e
λ2t (6)

Figure 1 shows the vector field of the nonnormal operator A and time evolution
of an initial perturbation u = (0.5, 0.5) acted upon by that operator. Non-
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Figure 1: a) Vector Field of operatorA given by Eq. 4, with λ1 = −1.1, λ2 = −1,
N = 10. b) Time evolution of an initial perturbation u = (0.5, 0.5) acted upon
by A.

normal operators can exhibit large transient behavior in the presence of small
perturbations, even when those operators are linearly stable. This mechanism
can be used to explain why linear stability analysis fails in some shear flows.

3 Model equations for the fluid/wall system

3.1 2D/3C

In the full 3D system with rigid walls, Jovanovic and Bamieh found that the
spanwise periodicity is much smaller than the streamwise periodicity, suggest-
ing that the most resonant modes can be approximated by streamwise constant

structures. This possibility was first explored by Bobba et al. [7]. These authors
consider a system which has streamwise constant flow perturbations in three di-
mensional plane couette flow. This results in a two-dimensional model (in y and
z) which contains all three components of the velocity (u, v, w), called the two-
dimensional/three component (2D/3C) model. This 2D model is different from
most 2D hydrodynamic models which study the wall-normal (y) and streamwise
(x) directions; we study a cross-section of the channel in the wall-normal and
spanwise directions. Numerical simulations indicate that the 2D/3C model does
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an excellent job of capturing the resonant modes found in the full 3-D analysis,
while greatly simplifying the expressions.

In this work we modify the 2D/3C model so the bottom wall of the channel
is no longer fixed, but is instead a compliant/flexible wall that can interact with
the flow moving over it. A schematic diagram is shown in Figure 2.

Figure 2: Illustration of geometry for 2D/3C model with flexible boundary

Motivated by 3D simulations for the rigid wall case, we assume that the im-
portant interactions between the wall and fluid are approximately streamwise
constant. It is possible that the flexible wall causes perturbations with small
streamwise periodicity to become important(which is the focus of work by Be-
jamin, Landahl and others [2, 11]), but we do not consider that possibility here.
The 2D/3C model is an analytically tractable starting point for this analysis,
but a more complicated 3D model could capture additional features and should
be an avenue for future study.

Our goal is find the LNS operator which describes the 2D/3C model for
channel flow with a flexible boundary. We then analyze this operator using
input/output techniques to determine the effect of the flexible wall (and wall
parameters) on the amplification of the most resonant modes.

In this section we develop equations for the 2D/3C dynamics of the fluid as
well as the compliant, flexible wall. In the following section we nondimension-
alize the equations, and linearize the system around steady state channel flow.
Section IV describes the steps necssary to numerically represent the linearized
operator, including homogenizing the boundary conditions and representing the
pressure in terms of other state variables. Finally, we evaluate the generalized
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stability of the linearized operator.

3.2 Linearized 2D/3C Equations for the fluid

We use the three-dimensional nonlinear incompressible Navier-Stokes (NS) equa-
tions to describe the dynamics of the fluid dynamics in the bulk. The interaction
between the wall and the fluid enters these equations through the boundary con-
ditions, and therefore doesn’t affect the conservation or constitutive equations
for the bulk fluid. The NS equations are:

ρ∗(∂∗t v
∗ + ∇∗

v∗v
∗) = −∇∗p∗ + η∗∇∗2

v
∗ + d

∗ (7)

0 = ∇∗ · v∗ (8)

where v
∗ is the fluid velocity field, ρ∗ is the fluid volummetric density, and η∗

is the viscosity. Throughout this paper we use the convention that starred vari-
ables are dimensional and unstarred variables are dimensionless. These equa-
tions contain an additional body force, denoted d

∗. This input uncertainty

term enables us to analyze how small body forces might dramatically change
the system behavior. These body forces could be caused by external vibrations,
air currents, wall roughness, small obstacles, and can even be used to capture
model uncertainty. We will return to these input forces in Section V.

For a channel flow, we can analyze the linearized dynamics of the fluid ve-
locities about a flow state composed of a purely streamwise component, denoted
V0. Using the 2D/3C model and linearizing Eq. (7) about V0 results in simple
equations for the three components of the fluid velocity, vx, vy, vz:

ρ∗
∂v∗x
∂t∗

= −ρ∗V ∗′
0 v∗y + η∗∇2∗v∗x; (9)

ρ∗
∂v∗y
∂t∗

= −
∂p∗

∂y∗
+ η∗∇2∗v∗y ; (10)

ρ∗
∂v∗z
∂t∗

= −
∂p∗

∂z∗
+ η∗∇2∗v∗z . (11)

Conservartion of momentum, Eq. 16, yields an additional constraint:

0 =
∂v∗y
∂y∗

+
∂v∗z
∂z∗

. (12)

As customary for channel flows, we nondimensionalize the equations so that the
remaining parameter is the Reynolds number, Re = (V ∗

0 L
∗ρ∗)/η∗. In this case,
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the equations are:

∂vx

∂t
= −V ′

0vy +
1

Re
∇2vx; (13)

∂vy

∂t
= −

∂p

∂y
+

1

Re
∇2vy; (14)

∂vz

∂t
= −

∂p

∂z
+

1

Re
∇2vz ; (15)

0 =
∂vy

∂y
+
∂vz

∂z
, (16)

where p is defined by p∗ = pρV 2
0 .

The partial differential equations for the fluid velocities require boundary
conditions. Let the upper boundary be a flat wall at y = y+ = 1, while the
lower boundary is displaced a distance uy(x, z, t).

y = y− = −1 + uy(x, z, t). (17)

We enforce a no-slip boundary condition:

vi(x, y = y+, z, t) =
∂ui

∂t
= 0, i = x, y, z. (18)

3.3 Compliant wall model

There are many possible models for the compliant wall: an elastic half-space,
viscoelastic fluid, and tensioned sheet are just a few of the examples found
in the literature [2, 11]. We will use a plate-membrane model for the wall,
which consists of a spring-backed sheet under tension that dissipates energy
proportional to the velocity. While this model might have been first used to
model dolphin skin [?], it can be used to describe many other systems. The
plate spring model encompasses many simpler models, and in this paper we
invesitgate simpler models by setting various model parameters to zero.

In the majority of previous studies, the wall is constrained to move only
in the wall-normal direction, while the tangential motion is ignored. However,
Thaokar, Shankar and Kumaran have shown that the spanwise tangential com-
ponent of motion in the membrane is critical in understanding low Reynolds
number 2D fluid flow. [12] In this investigation we permit the wall to stretch in
both streamwise and spanwise directions.

A starting point for the plate-membrane model is an elastic sheet – a 2D
lattice of masses in x and z that are confined by a harmonic potential in the
limit that the lattice spacing goes to zero. The model assumes that energy is
dissipated in the solid at a rate proportional to the velocity individual lattice
points. In the 2D/3C model, all displacement fields must be constant in the
x-drection. This results in three equations for the three component of the wall
displacement, ux, uy, and uz:

σ∗ü∗i (z) +D∗
i u̇

∗
i (z) = f∗

i + T ∗
i

∂2u∗i (z)

∂z∗
i = 1, 2, 3, (19)
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where σ∗ is the areal mass density of the wall, D∗
i is a damping coefficient

density, T ∗
i is a tension and fi is the sum of external stresses in the i-direction.

A derivation of these equations can be found in Appendix ??

This is essentially the model used by Benjamin and Landahl. The simple
elastic model misses some features of real materials. This model contains no
energy penalty for bending in the wall-normal direction or for uniform trans-
lation. The first problem is corrected by adding a bending term, with energy
density Ey to the potential energy. The second problem is solved by adding
spring tethers with spring constant Ji that attach each node to a point in phys-
ical space. (These are different from the springs that connect nodes.) In [12],
the wall-plate model contains tethers in the wall-normal direction but not the
streamwise direction, which leads to a linearly unstable mode where the wall
translates in the streamwise direction.

We nondimensionalize the resulting 2D/3C wall model, which is described
by the following system of equations:

σüx(z) +Dxu̇x(z) = fx + Tx

∂2ux

∂z
−Jxux, (20)

σüy(z) +Dyu̇y(z) = fy + Ty

∂2uy

∂z
−Jyuy −Ey

∂4uy

∂z4
, (21)

σüz(z) +Dxu̇z(z) = fz + Tz

∂2uz

∂z
−Jzuz. (22)

where Ji is the tethering spring constant and Ey is a bending energy density.
These terms are also derived in Appendix ??. A schematic diagram of the model
geometry is shown in figure ??.

The wall is being forced by the fluid, and possibly by disturbance body forces
(noise) not explicitly included in our model, which we denote as dwi. The fluid
forcing is determined by the components of fluid stress tensor τ

∗

fl evaluated at
the fluid-wall interface. Due to the wall-normal displacement uy, the interface
is no longer oriented parallel to the x-z plane. Taking this effect into account,
the body forces are:

f∗
x = (n̂x · τ∗

fl · n̂y)|y=−1 + d∗wx,

f∗
y = (n̂y · τ∗

fl · n̂y)|y=−1 + d∗wy,

f∗
z = (n̂z · τ∗

fl · n̂y)|y=−1 + d∗wz (23)

where the vectors ni that desribe the tangent plane are given to first order in
the perturbations by:

n̂x = x̂ + ∂∗xu
∗
y ŷ + 0 ẑ;

n̂y = −∂∗xu
∗
y x̂ + ŷ − ∂∗zu

∗
y ẑ;

n̂z = 0 x̂ + ∂∗zu
∗
y ŷ + ẑ. (24)
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3.4 Linearization of fluid/wall system about planar Cou-
ette flow

A particularly simple steady state for channel flow with rigid walls is Couette
flow – boundary driven flow with a velocity field that is purely streamwise with
a linear wall-normal profile. Convieniently, planar couette flow is also a steady
state solution for a fluid flow past the plate-spring model. Let the boundaries at
±L be driven at a velocity ±V0. The steady state solution to this flow, denoted
φ, is vx(y) = y, with all other velocities and displacements equal to zero. The
nominal pressure is also zero, because this is the only value for the pressure
consistent with ∂xp = ∂yp = partialzp = 0 and uy = 0.

Let φ = φ + φ̃, where φ̃ is a vector of perturbed state variables. We will
assume the perturbations are small, and linearize the system of equations by
ignoring terms which are second order in the perturbations. Conservation of
fluid mass and momentum, Eqs. (13), (14), (15), and (16) govern the fluid
velocities, while Eqs. (20), (21) and (22) govern the wall postions and velocities.
The two systems are coupled through the boundary conditions, Eq. (18), and
the fluid stresses, τ∗ij fl

, which we must express in terms of the other variables.

The total stress tensor for a Newtonian fluid in Couette flow is simply related
to the fluid velocity and pressure fields:

τ∗ij fl
= η∗

(
∂∗i v

∗
j + ∂∗j v

∗
i

)
− p∗δij (25)

We can expand this expression, keeping only first order terms in the perturbation
fields:

τfl =




−p∗ η
(
∂∗yv

∗
x + V ∗

0 /L
)

η∂∗zv
∗
x

η
(
∂∗yv

∗
x + V ∗

0 /L
)

−p∗ + 2η∂∗yv
∗
y η(∂∗zv

∗
y + ∂∗yv

∗
z )

η∂∗zv
∗
x η(∂∗zv

∗
y + ∂∗yv

∗
z) −p∗ + 2η∂∗yv

∗
y


 .

Note that the pressure p∗ is the perturbed pressure field, as the nominal pressure
field is zero. The spatial average of this field does not have to be zero. However,
the value of the pressure (as opposed to its derivatives) only enters the equations
of motions through Eq. 3.4. Note: for awhile we assumed that the perturbation

pressure had to have a zero average in the y-direction... this simply isn’t true,

and doesn’t give the correct answer for the MSV in the limit of a very rigid wall.

Substituting in to Eq. 23 we find:

f∗
x =

ηV ∗
0

L
+ η∂yvx + dwx; (26)

f∗
y = −p+ 2η∂yvy + dwy; (27)

f∗
z = η (∂zvy + ∂yvz) + dwz. (28)

Nondimensionalizing these equations and substituting into Eqs. (20), (21), (22),
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and (3.4) results in the following equations for the linearized wall dynamics.

σ∂tsx = −Dxsx + V0 + ∂yvx + dwx + Tx

∂2ux

∂z
−Jxux, (29)

σ∂tsy = −Dysy + −p+ 2∂yvy + dwy + Ty

∂2uy

∂z
−Jyuy −Ey

∂4uy

∂z4
,(30)

σ∂tsz(z) = −Dxu̇z(z) + (∂zvy + ∂yvz) + dwz + Tz

∂2uz

∂z
−Jzuz. (31)

The dynamics of the linearized system can be written in matrix form:

∂t




vx

vy

vz

ux

uy

uz

sx

sy

sz




=




∆/Re −V0 0 0 0 0 0 0 0
0 ∆/Re 0 0 0 0 0 0 0
0 0 ∆/Re 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

∂y/σ|y=−1 0 0 γx 0 0 −Dx/σ 0 0
0 2∂y/σ|y=−1 0 0 γy 0 0 −Dy/σ 0
0 ∂z/σ|y=−1 ∂y/σ|y=−1 0 0 γz 0 0 −Dz/σ







vx

vy

vz

ux

uy

uz

sx

sy

sz




−




0
∂y

∂z

0
0
0
0

1/σ|y=−1

0




p̃−




0
0
0
0
0
0
0

1/σ|y=−1

0




p+
1

ρ




dfx

dfy

dfz

0
0
0
0
0
0




(32)

0 =
[
0 ∂y ∂z 0 0 0 0 0 0

]




vx

vy

vz

ux

uy

uz

sx

sy

sz




(33)

+ Boundary Conditions.

where γi is defined as:

γi =
−Ji + Ti∂

2
z −Bi∂

4
z

σ
(34)

For notational simplicity, we define new matricies Ã,B̃,D̃, and Q̃, by com-

10



paring Eq. (32) to the following equation:

φ̇ = Ãφ+ Q̃p+ B̃d (35)

0 = D̃φ (36)

+ Boundary conditions (37)

where the matricies A, Q, and D are defined by Eq. (32).

3.5 Conversion to a homogenous boundary problem

Unlike a rigid-wall flow, the velocity fields in Eq. (35) do not have Dirichlet
boundary conditions because the fluid velocity is slaved to the wall velocity, as
in Eq. (??). However, we re-write our system of equations in terms of state
variables that DO have Dirichlet boundary conditions using a technique called
“Homogenization of Boundary Conditions” [5, ?]. We define new variables vh

i ,
which do have Dirichlet BCs, in the following way:

vi(y) ≡ vh
i (y) + f(y)si, (38)

where si is the wall velocity and f(y) = 1/2 (1−y) is the first degree polynomial
that satisfies the boundary conditions: f(+1) = 0, f(−1) = 1. We can write
this system of equations as a matrix equation: φ = Mφh and then re-write the
originial system of equations (Eq. 35) as:

φ̇h = M−1ÃMφh +M−1Q̃p+M−1B̃d; (39)

D̃Mφh = 0. (40)

We can then incorporate the divergence constraint by writing the system in de-
scriptor form. Descriptor notation is a way of expressing and solving differential-
algebraic systems of equations developed in the context of controls. In an earlier
paper [?], we showed that descriptor notation is well-suited to incompressible
fluid flows and eliminates the spurious eigenvalues that often arise in these sys-
tems.

[
I 0
0 0

][
φ̇h

ṗ

]
=

[
M−1AM M−1Q
DM 0

] [
φh

p

]
+M−1B̃d; (41)

φ = Mφh. (42)

3.6 Formulation as an input/output problem

We are now in a position to check the stability of the fluid-wall system as a
function of wall parameters. The full fluid/wall system, Eq. 41 can now be
written in input/output form:

E

[
φ̇h

ṗ

]
= A

[
φh

p

]
+Bd; (43)

output = C

[
φh

p

]
, (44)
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where the operators E,A, are defined by Eq. 41. We first check the linear
stability of the (A,E) pair. if A,E is linearly stable, we then study the transient
amplification of perturbations using input-output analysis.

We choose the input matrix B and the output matrix C in order to study the
response of a specific component of the system. For example, we could study
the response of the wall velocities to wall perturbations (i.e. flutter) by choosing
B and C appropriately. In this paper, we focus on transition to turbulence in
the fluid, and therefore investigate the response of the fluid velocities to fluid
perturbations.

We restrict ourselves to body forces that act only on the fluid, and therefore
the matrix B takes the following form:

Bij = 1, i = j ∈ {1, 2, 3}; (45)

= 0, otherwise. (46)

The kinetic energy density of a harmonic perturbation in the fluid, which
is the same energy norm used in [?], is the L2[−1, 1] inner prodcut of the
Fourier-transformed fluid velocity vector times the fluid mass density: ρv̂ =
ρ[v̂x v̂y v̂z]. The inner product is defined as

〈v̂1, v̂2〉 =
1

8

∫ 1

−1

v̂1

∗
v̂2 dy. (47)

Therefore we choose the output vector v̂ = [v̂x v̂y v̂z] and the output matrix
C is defined as:

v̂ =



vx

vy

vz


 =




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0



[
M
0

] [
ψh

p

]
(48)

≡ C

[
ψh

p

]
(49)

3.7 MATLAB implementation

Because we have used the 2D/3C model where we ignore changes in the x-
direction and taken a fourier transform in z, we now have a time-evolution
matrix, Ã, which is operates on y alone. To solve this system of equations
we can discretize all functions and write the differential and integral operators
as differentiation matricies and their inverses. We utilize a MATLAB package
written by Weideman and Reddy to generate differentiation matricies using
spectral collocation [?].

4 Wall Stability Analysis

Re-write:

12



Before studying the coupled fluid wall system, it is useful to investigate the
response of the wall by itself. In this case, we perform an input-output analysis
of Eqs. 20, 21, and 22, viewing the body force fi, i ∈ {x, y, z} as the input for
each equation and the wall velocities as the output vectors.

First, note that to first order in the perturbations, each component of the
wall velocity is decoupled from the other two, and therefore we can study each
component separately. Second, we assume that the material is translation in-
variant in the spanwise direction, and therefore we take a fourier transform in
that direction. The resulting equation for each component can be written in the
following form:

The properties of the compliant wall are determined by a rather large pa-
rameter space: the mass density of the wall σ, three damping parameters Di,
three tension parametersTi and three tethering spring constants Ji. We analyze
the stability properties of the wall alone as a function of these parameters to
gain intuition about how modes of the wall motion might interact with the fluid
motion. First, we write the system of equations for the undriven wall positions
(ux, uy, uz) and velocities (u̇x = sx, u̇y = sy, u̇z = sz) after taking a fourier
transform in the spanwise direction:

∂t




ux

uy

uz

sx

sy

sz




=




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−Jx+Txk2

σ
0 0 −Dx/σ 0 0

0 −Jy+Tyk2+Byk4

σ
0 0 −Dy/σ 0

0 0 −Jz+Tzk2

σ
0 0 −Dz/σ







ux

uy

uz

sx

sy

sz



≡ Awall




ux

uy

uz

sx

sy

sz




(50)
This system is neutrally stable if all of the Di = 0, and asymptotically stable
otherwise, because it is a damped system which is not being driven. Now we can
perform an input/output analysis of the system, where we imagine a body force
acting upon the wall. Because we have taken a fourier transform in the spanwise
direction, the transfer function H(iω) = (iωI − Awall)

−1B can be determined
analytically. Since body forces acting on the wall affect the time derivative of
the velocities, the input matrix B is just:

B =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




(51)

The H∞ norm is defined as the supω

√
λmax(H(iω) ∗H(iω)), where λmax(M)

is the maximum eigenvalue of the matrix M . It is the maximum amplification
of inputs to an output over all possible inputs over all times. In this analysis
we are permitting small, possibly time-varying perturbations to drive the com-
pliant wall and looking for large resonances, which will show up as large values
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of the H∞ norm. Because the non-driven system is stable, all inputs will even-
tually decay as t→ ∞, and therefore the H∞-norm remains finite. An analytic
expression for the eigenvalues of the matrix H(iω) ∗H(iω) is:




0
0
0

σ2(ω2+1)
Dx2ω2+(Txk2+σω2−Jx)2

σ2(ω2+1)
Dy2ω2+(Byk4−Tyk2−σω2+Jy)2

σ2(ω2+1)
Dz2ω2+(Tzk2+σω2−Jz)2




(52)

We note that different components of the wall displacement do not interact
with each other. Therefore the equation of motion for each component is de-
coupled from every other, and each non-zero eigenvalue of the H(iω) ∗ H(iω)
matrix corresponds to amplification of body forces oriented parallel to either
the x, y, or z planes. The larger of these three values is the λmax(ω) in the
definition for the H∞ norm, and corresponds to the maximum amplication of
any input with a specific frequency, ω. We do not wish to find supw λmax(ω) by
discretizing ω and taking a maximum. This is because the resonances become
increasingly sharp as the wave number k increases, and it becomes prohibitively
computationally intensive. Given that these resonances in ω are so sharp, is it

possible for the fluid to drive the wall at exactly the frequency at which the wall

resonates? A better solution is to realize that these eigenvalues have simple
asymptotic behavior in two separate regimes. To stress the similarity of the

three eigenvalues, let γi(k) ≡ −J+k2Ti−k4Ei

σ
, where Ex = Ez = 0. Then for

large k, each eigenvalue attains its maximum when ω2 = γ(k). For small k, the
eigenvalues attain their maxima when ω = 0. The crossover between the two
regimes occurs at

γi(k) =
−1 +

√
1 + 4

(
Di

σ

)2

2
(53)

then we can write a simple expression for the H∞-norm which is accurate except
in a small region of k-values around the crossover point, Eq. 53.

H∞(k) ' max

(√
1

γy(k)2
,

√
1

γz(k)2
,

√( m
Dn

)2 1 + γy(k)

γy(k)
,

√( m
Dt

)2 1 + γz(k)

γz(k)

)

(54)
We are now interested in the properties of this H∞ norm as a function of the
wall parameters. Presumably if the wall and the fluid are highly succeptible
to perturbations of similar wavenumber in z, then they have the potential to
interact in a non-trivial way, introducing feedback. It seems that when the values

for the terms in the wall-normal and tangential wall parameters are exactly

the same, the system goes unstable. Why is this? There is no evidence for

that behaviour in the H-infty norm of the wall alone. Perhaps something like

continuity couples the two wall equations together?
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5 Notes and Remaining issues

• Note Jy must be of the same order as σ for the numerics to be well-
behaved. This is because the wall velocity is only constrained by γ(y),
and this is zero if Jy � σ.

• Note that the equation for sx contains a constant term, V0. This is due to
the shear stress in the fluid due to the mean flow profile. If we switch into
a frame where the bottom wall is not moving, then we are switching into
a frame such that s̃x = sx − V0 and I think this problem goes away.need

to check

•

6 Appendix: Harmonic potential wall model

A starting point for our 2D/3C plate-membrane model is a 2D lattice of masses
connected by hookean springs in the limit that the lattice spacing goes to zero.
Consider the harmonic potential energy of such a sheet oriented parallel to the
x-z plane, where the lattice spacing is a, the spring constant in each direction is
Ti and the index of each lattice point is n. Let the displacement field in each di-
rection be ui, and let all of the fields be constant in x. Then the potential energy
to first order in the displacement fields is given by the following equation [1]:

Uharm(z) =
1

2
Ti

∑

n

[ui(na) − ui([n+ 1]a)] · [ui(na) − ui([n+ 1]a)] (55)

Then the equation of motion for each node can be found by taking the partial
derivative of the potential with respect to the displacement. For example, the
equation of motion for the diplacement in z is given by

Müz(na)+Bu̇z(na) = Fz−
∂Uharm

∂uz

= −Tz (−uz([n− 1]a) + 2uz(na) − uz([n+ 1]a)) .

(56)
where M is the mass of each node, B is a damping coefficient, and Fz is external
forcing. Similar equations hold for the displacements fields in the x and y
directions. We now divide both sides of the equation by a2 and take the limit
that the lattice spacing goes to zero.

lim
a→0

[
σüz(na) +Dzu̇z(na) = fz − Tz

(
−uz([n− 1]a) + 2uz(na) − uz([n+ 1]a)

a2

)]

(57)

σüz(z) +Dzu̇z(z) = fz + Tz

∂2uz(z)

∂z
(58)
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where σ is the areal mass density of the wall, Dz is a damping coefficient
density, and fz are external stresses in the z direction. We retain the intertial
term in our equation of motion because we are interested in high Reynolds
number flows. Similarly, we have equations for uy and ux:

σüx(z) +Dxu̇x(z) = fx + Tx

∂2ux(z)

∂z
, (59)

σüy(z) +Dyu̇y(z) = fy + Ty

∂2uy(z)

∂z
. (60)
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