
Solution for HW 7 Problem 2

C. Gwinn

Due 20 Nov 2009, 5 pm

1 HW7 Problem 2

This problem asks you to compare the expressions for the multipole expansion in Griffiths
and derived in class, given in the lecture notes on “Multipoles” on eres.
a) Consider a very thin shell, with outer radius R, very small thickness d << R, and
charge density within the shell of ρ = ρ0 cos2(θ). Here, ρ0 is a constant. Use the equation
on p. 7 of the “Multipole” lecture notes to find bm, for m = 0 and m = 2 Argue that the
other m’s vanish. Use these to find V (r, θ) outside the shell, at r > R.

Evaluate your expression along the x-axis, at r = x and θ = π/2. How does the
potential vary with x?

1.1 Part (a) Solution

From class, the potential outside an axisymmetric charge distribution ρ(r, θ) is given by

V (rQ, θQ) =
∞∑
`=0

b` r
−(`+1)
Q P`(cos θQ) (1)

(Note: “Axisymmetric” means that ρ does not depend on φ.) As in class, the subscript
“Q” on rQ and θQ indicate that these are the coordinates of the field point. The b` are
constants.

From the “Multipole” notes (available on eres as mentioned above), the b` are given
by:

b` =
1

4πε0

∫
d3r′(r′)`P`(cos θ′)ρ(r′, θ′). (2)

where the integral is over the volume of the charge distribution. Substituting, we find that
this is:

b` =
1

4πε0
ρ0

∫ 2π

0
dφ

∫ R

R−d
dr′(r′)2+`

∫ π

0
sin θ′dθ′P`(cos θ′) cos2(θ) (3)

=
1

4πε0
ρ0 · 2π ·R(`+2) d ·

∫ π

0
sin θ′dθ′P`(cos θ′) cos2(θ′) (4)
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To do the integral over θ′, we can look up the various P` and do the integrals (or do
them using Mathematica, which has a function that gives the P`; or see the “Note” at the
end of this solution for Part a). Here are the results of the integrals: For ` = 0, P0 = 1,
and the integral over θ′ yields:∫ π

0
sin θ′dθ′ · 1 · cos2(θ′) = −1

3
cos3(θ′)

∣∣∣π
0

=
2
3

(5)

For ` = 1, P1 = cos(θ′) and the integral over θ′ yields:∫ π

0
sin θ′dθ′ · cos(θ′) · cos2(θ′) = −1

4
cos4(θ′)

∣∣∣π
0

= 0 (6)

For ` = 2, P2 = 1
2(3 cos2(θ′)− 1) and the integral over θ′ yields:∫ π

0
sin θ′dθ′ · 1

2
(
3 cos2(θ′)− 1

)
· cos2(θ′) =

1
2

{
−3

5
cos5(θ′) +

1
3

cos3(θ′)
} ∣∣∣π

0
(7)

=
4
15

(8)

Combining the results of integration over θ′ in Eqs. 5-8, with the integrations over r′ and
φ′ as given by Eq. 4, we obtain b0 and b2:

b0 =
1

4πε0
ρ02πR2 d

2
3

=
1

4πε0
2π

2
3
ρ0dR

2 (9)

b2 =
1

4πε0
ρ02πR4 d

4
15

=
1

4πε0
2π

4
15
ρ0dR

4 (10)

Hmm, now we’re asked to show that all the other b`’s are zero. We can’t do that by
looking up all of the P` and doing the integrals, in a finite amount of time. But, we know
that the P` are complete, so that cos2(θ′) can be expressed as a sum over them, with
weights. In fact, if only b0 and b2 are nonzero, it must be expressed in terms of P0 and P2

only. That’s easy enough to show, now that we’ve looked up P0 and P2:

cos2(θ′) = (2/3)
{

1
2
(
3 cos2(θ′)− 1

)}
+ (1/3) · 1 (11)

= (2/3)P2(cos θ′) + (1/3)P0(cos θ′) (12)

So, our the angular dependence of our charge distribution can be represented in terms of
P0 and P2 alone, and none of the other P` are needed; in fact, they can’t contribute.

We can now finish up part a by finding the potential along the x-axis, using Eq. 1. We
have:

V (rQ, θQ) = b0r
−1
Q + b2r

−3
Q P2(cos θQ) (13)

2



On the x-axis, x = rQ and θQ = π/2. At θQ = π/2, P0 = 1 and P2 = −1/2. So,

V (x) = b0
1
x
· (1) + b2

1
x3
·
(
−1

2

)
(14)

=
1

4πε0

(
2π

2
3
ρ0dR

2 · 1
x
− 2π

2
15
ρ0dR

4 · 1
x3

)
(15)

Note: If you find it easier to figure out the constants that make P0 and P2 add up to
cos2 θ′ in Eqs. 11 and 12, than to do the integrals in Eqs. 5-8, then you can use that fact,
instead of doing the integrals in Eqs. 5-8. Just recall the orthogonality fact for Legendre
polynomials: ∫ 1

−1
du P`(u)Pm(u) =

{
2

2`+1 , ` = m
0, otherwise

(16)

where for us, u = cos θ′, du = + sin θ′ dθ′, and the limits of the integral are from 0 to π;
this leads to the more useful form that we use more often:∫ π

0
sin θ′ dθ′ P`(cos θ′)Pm(cos θ′) =

{
2

2`+1 , ` = m
0, otherwise

(17)

These facts are discussed further in the book, and were used in the “Multipole” notes on
eres.

So: choose m = 0 or 2, multiply both sides by Pm, and integrate over θ′. We find for
m = 0:∫ π

0
sin θ′P0(cos θ′) cos2 θ′ =

∫ π

0
sin θ′P0(cos θ′)

(
2
3
P2(cos θ′) +

1
3
P2(cos θ′)

)
(18)

=
2
3
· 0 +

1
3
· 2

2 · 0 + 1
= 2/3 (19)

and, for m = 2,∫ π

0
sin θ′P2(cos θ′) cos2 θ′ =

∫ π

0
sin θ′P2(cos θ′)

(
2
3
P2(cos θ′) +

1
3
P2(cos θ′)

)
(20)

=
2
3
· 2

2 · 2 + 1
+

1
3
· 0 = 4/15 (21)

These are easier than the integrals in Eqs 5-8!
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b) Now consider the same problem from the standpoint of Eq. 3.95. Find the potential
for the charge distribution at ~r = (x, 0, 0) using that equation. Note that θ′ here measures
the angle with respect to the x-axis.To keep things straight, I suggest the notation:

θZ ≡ arccos(z/r) φZ ≡ arctan(x/y) (22)
θX ≡ arccos(x/r) φX ≡ arctan(z/y) (23)

In this notation, the charge density is ρ(r′) = ρ0 cos2 θZ . Show that this approach gives
the same result.

1.2 Part (b) Solution

OK, here’s Eq 3.95 in Griffiths:

V (~rQ) =
1

4πε0

∞∑
n=0

1
r(n+1)

∫
(r′)nPn(cos θ′)ρ(~r′)dV ′ (24)

where I have added the subscript “Q” to denote the field point.
We can just substitute our expression for ρ into this and evaluate. The one problem

is that the stated ρ above depends on the angle with respect to the z-axis, θZ : ρ(~rQ) =
ρ0 cos2 θZ . To find the potential on the x-axis, as desired, we must integrate over the angle
with respect to the x-axis, θX . We can use the facts above, and express this in terms of
spherical coordinates (θX , φX) which use the x-axis as the reference. Then

cos(θz) =
(z
r

)
(25)

=
(z
s

)
·
(s
r

)
(26)

= cos(φX) sin(θX) (27)

Note that r =
√
x2 + y2 + z2. For convenience, I let s2 = z2 + y2; this is the distance from

the x-axis, analogous to
√
x2 + y2 in the more usual spherical coordinates where the z-axis

is the reference.
Thus,

ρ(~rQ) = ρ0 sin2(θX) cos2(φX) (28)

The integral in Eq. 3.95 then becomes:∫
dV ′(r′)nPn(cos θ′)ρ(~r′) =

∫ R

R−d
(r′)2dr′

∫ 2π

0
dφX

∫ π

0
sin θXdθX (29)

× (r′)nPn(cos θX)ρ0 sin2(θX) cos2(φX) (30)
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where I’ve used the fact that for us θ′ = θX . The integrals over r′ and φX are easy:∫ R

R−d
(r′)2dr′(r′)n = d R(n+2) for d << R (31)∫ 2π

0
dφX cos2(φX) =

1
2

2π = π (32)

For the integral over θX , we can again do a lot of integrals on Mathematica. However, note
that we’d really like to express ρ in terms of cosines of θX . So then,

sin2(θX) = 1− cos2(θX) (33)

so actually, the integrals are for a constant, 1, minus the integrals we did before for cos2 θ.
For n = 0 the integral over θ is:∫ π

0
sin θXdθXP0(cos θX)

{
1− cos2(θX)

}
=

∫ π

0
sin θXdθX

−
∫ π

0
sin θXdθX P0(cos θX) cos2(θX)

= 2− 2/3 = 4/3 (34)

where we’ve used the result of Eq. 5. For n = 2, the integral over θ is:∫ π

0
sin θXdθX P2(cos θX)

{
1− cos2(θX)

}
= −

∫ π

0
sin θXdθX P2(cos θX) cos2(θX)

= −4/15 (35)

where we’ve used the results of Eq. 8. For all other values of n, we again get zero, by the
same argument as in part a.

Putting together the integrals over r′, over φX , and over θX , and remembering to
include the constant ρ0, we have for Eq. 3.95:

V (~rQ) =
1

4πε0

{
1
rQ
· d R2 · π · ρ0(4/3) +

1
r3Q
· d R4 · π · ρ0(−4/15)

}
(36)

=
1

4πε0

{
4π
3
d R2ρ0

1
z
− 4π

15
d R4ρ0

1
z3

}
(37)

where we have used the fact that rQ = x along the x-axis. This is the same as Eq. 15, as
desired.
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c) Compare Eq. 3.95 in Griffiths with the corresponding expressions in the lecture notes:
the expression for V (r, θ) outside, at r > R, on p. 4 and the expression for bm at the top
of p. 7. The expressions look pretty similar. But, they are not identical.

Note that the expression in the notes includes θ twice: once as a variable of integration
in calculating bm (where it is the coordinate of the source point and probably should be
called θ′), and once as an argument in the general expression for V (r, θ) (where it is the
coordinate of the field point and might be called θQ). The expression in Griffiths includes
θ′ only, as a variable of integration: it is the coordinate of the source point.

Also, in class we assumed that the charge distribution ρ(r′, θ′) is axisymmetric: it may
depend on r′ and θ′, but is independent of φ′. Griffiths claims that Eq. 3.95 holds for an
arbitrary localized charge distribution (see the remarks just above Eq. 3.91). And, in Eqs.
3.92 through 3.94 he treats the charge distribution as a superposition of point sources,
and uses HW5 Problem 1 to expand this as a series of Legendre polynomials in θ′. What
determines the axis for measurement of θ′ here? Moreover, the argument of V in Eq. 3.95
is ~r: this suggests that Eq. 3.95 holds at any point in space.

How can Griffiths’ expression involve fewer variables, yet be more general? Explain in
a brief paragraph. (Hint: Try the preceding parts before you commit to paper.)

1.3 Part (c) Solution

The answer is straightforward after working through the preceding parts a and b. To
use Griffith’s expression, you need to do a different integral for each choice of field point,
~rQ (unless you can re-use the integrals done previously, as in this example; or if you
are comparing field points along one axis leading out from the origin). So, Griffith’s
expression need not involve θQ or φQ. It also doesn’t need for the charge distribution to
be axisymmetric; this is less mysterious than it seems, since the expression is good only
for one direction of field point.

For the expression derived in the notes, it is good for any field point outside the charge
distribution. So, the expression for the potential it must involve θQ as well as rQ. It does
require that the charge distribution be axisymmetric; that’s why the expression need not
involve φQ. Jackson gives the more general expression, which involves φQ and requires
spherical harmonics. Note that this expression requires doing the integrals only once, no
matter what the field point is.
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