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Chapter 5 Free Energy and Chemical Thermddynamics

by Dan’ely |y Schrvey,

We could solve this equation using the quadratic formula, but that’s a bit cumbersome.
Instead, recall from Problem 5.24 that without the quadratic term, the solution would
be P = 15.3 kbar. Plugging in this value of P, we can estimate the size of the quadratic
term as

1

§KTV;P2 ~ =(3 x 1072 kbar™')(0.531 kJ /kbar)(15.3 kbar)? = 0.186 kJ.

N

(I've expressed V; in kJ/kbar, as discussed in Problem 5.25.) With this estimate of
the correction term due to compression, we have for the transition pressure

1 3.086 kJ

P= 9 kI +0.186 kJ) = —oo0 &0
v, =, O K 0186 k) = S

= 16.3 kbar,

only about 7% higher than what we got neglecting compression. The small effect of
the correction, moreover, justifies the various approximations made in this solution.

Problem 5.28. (Calcite and aragonite.)

(2)

(b)

The table on page 404 gives the molar Gibbs free energies of formation of both calcite
and aragonite, with the value for calcite being lower by 1.0 kJ. This means that the
Gibbs free energy of a mole of calcite is less than that of a mole of aragonite by this
amount, under standard conditions. Calcite is therefore the more stable phase, at
room temperature and atmospheric pressure.

In analogy with the diamond-graphite system, we can imagine plotting G vs. P (at
fixed T) for both calcite and aragonite. The slopes of the two graphs are V, =
3.693 kJ/kbar and V, = 3.415 kJ/kbar, according to the data in the table and the
conversion factor derived in Problem 5.25. Since the volume of aragonite is less, it
should become stable at high pressure, that is, the two lines should intersect at some
P > 0. For convenience, I'll set G. =0 at P = 0; then G, = 1.0 kJ at P = 0. The
equations of the two lines are then

G.=V.P and G, =V,P+ (1.0 kJ).

Equating these two expressions and solving for P gives the transition pressure,

1.0 kJ 1.0 kJ

P=g .~ 0ozs kJ/kbar

= 3.6 kbar.

Problem 5.29. (The aluminosilicate system.)

(a) The A;G values on page 404 indicate that at room temperature and atmospheric

pressure, kyanite has the lowest Gibbs free energy of the three phases. Furthermore,
it also has the lowest molar volume of the three; this means that increasing the pressure
causes its G value to increase more slowly than those of the other two phases. Since
it starts out lowest and increases slowest, it will never intersect the G values of the
other phases (in contrast to the graphite-diamond case illustrated in Figure 5.15).
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(b) For either phase, (0G/8T)p = —S. Integrating this relation from T} to T} gives

G(Ty) - G(Ty) = — / " s(ryar.

T

. If we write this equation separately for two different phases and then subtract one
equation from the other, the G’s become AG’s and the S becomes AS, so we obtain

the desired result,
T

AG(Ty) = AG(Ty) — [ AS(T)dT.

T

(c) Taking AS to be independent of T, we can pull it outside the integral to obtain

If we take T, to be the temperature at which the phase transition occurs (the two
phases are in equilibrium), then AG(T5) = 0. Solving for T, then gives simply

AG(T})

T2=T1+ AS

Our thermodynamic data is at 298 K, so we’ll use this value for T}. For the kyanite-
andalusite transition, AG(T}) = 1.22 kJ (for one mole of material), while AS =
9.41 J/K. Therefore, the temperature at which andalusite becomes more stable than
kyanite should be approximately ‘

' 1.22 kJ
T, = 298 ———— =428 K.
2 K+ oark =428
Similarly, for the kyanite-sillimanite transition,
2.89 kJ
T2~298K+m——5331{.
And for the andalusite-sillimanite transition,
1.67 kJ
T, =298 K+ ———— =876 K.
2 togoyk -8 K

So at atmospheric pressure, kyanite should be stable up to (approximately) 428 K,
andalusite should be stable from 428 K up to 876 K, and sillimanite should be stable
above 876 K. '

(d) The change in entropy as the temperature is increased is given by equation 3.50,

- S(Ty) = 8(Ty) +/T2 %”dT.

T,
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If we write this equation for two different phases and then subtract, we obtain

dr'.

T
*AC
AS(T3) = AS(Th) + / &
K T T

Suppose, for the sake of a rough estimate, that ACp is independent of temperature.
Then

AS(T,) = AS(Ty) + ACp - In(Ty/Th).

For kyanite — andalusite, ACp = 1.01 J/K (at room temperature). Taking T) =
208 K and T, = 428 K, I find that the final term in this equation is 0.37 J/K,
compared to AS(T;) = 9.41 J/K. So over this range, AS is reasonably independent of
temperature. However, for andalusite — sillimanite, ACp = 1.80 J/K and we should
take T, = 876 K; with these numbers I get a correction term of 1.94 J /K, compared
to AS(Ty) = 2.89 J/K. With AS varying by nearly 70% over the temperature range
of interest, I conclude that the calculated temperature of the transition could be off
by as much as 100-200 K. To make a significantly improved calculation, however, we
would really need heat capacity data over the whole temperature range.

Problem 5.30. The slope of a graph of G vs. T' is —, so the slope of each graph should
be negative, and become more negative with increasing temperature. Furthermore, at
any given temperature, the stable phase should have the lowest value of G. For HO at
atmospheric pressure, the stable phase is ice below 0°C, water between 0°C and 100°C, and
steam above 100°C. The plot at left below shows these features qualitatively.

GA GA

Water

Steam
Steam

i
y

0°C 100°C 0°C  100°C _
As the pressure is reduced, the relation (0G/0P)r =V tells us that the Gibbs free energy
of each phase will decrease. However, that of the gas phase will decrease the fastest by far,
since its volume is so much greater. At pressures below the triple point (0.006 bar), there
is no temperature at which liquid water is stable. So at 0.001 bar, the graphs of Gvs. T
would look something like the plot above right.

fo.

T

Problem 5.31. The slope of a graph of G vs. P is V, so the slope of each graph should be
positive, with the ice graph slightly steeper than the water graph and the steam graph much
steeper than either. The steam graph, furthermore, should have a significant downward
curvature due to its compressibility. At any given temperature, the curve for the stable
phase should be the lowest of the three. At 0°C, the stable phase is steam up to 0.006 bar,
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ice from there up to 1 bar, and water above 1 bar. The graph at left below shows these
features qualitatively.

GA 0°C GA few °C

Water
Steam

> P

0.006 bar 1 atm 0.006 bar 1 atm F

As the temperature is raised, the relation (0G/0T) = —S tells us that the Gibbs free energy
of each phase will decrease. That of the gas phase will decrease the most, since it has the
most entropy, while that of the solid will decrease the least. Above 0.01°C, the intersection
of the solid and liquid G curves moves to the left of the gas curve, indicating that the solid
Is no longer stable at any temperature. At a few degrees Celsius, the graphs would look
something like the plot above right.

Problem 5.32. (The water-ice phase boundary.)

(a) Asice melts into water the change in entropy (or the latent heat) is positive, while the
change in volume is negative (since ice is less dense), so the slope of the phase boundary,
AS/AV, must be negative. In more fundamental terms, converting ice to water lets
the entropy of the environment increase (by making more volume available), and this
effect is more important at high pressure since P = T(8S/8V). So high pressures
tend to push the equilibrium in the direction of the phase that takes up less volume.

(b) Instead of considering a mole of ice/water, let’s just consider one gram. Then the
latent heat is 333 J, the volume of the ice is (917,000)"! m® = 1.091 x 10~ m?, and
the volume of the water is 1.000 x 107° m®. Therefore the slope of the phase boundary
is

P L 333 J
dI'  TAV ~ (273 K)(—.091 x 106 m?3)

= —1.35 x 10" Pa/K = —135 bar/K.

So if the temperature decreases by one degree (from 0 to —1°C), the pressure must
increase by 135 bars to remain on the phase boundary. In other words, ice will melt
at —1°C if the pressure is above 135 bars (or 133 atmospheres).

(c) Treating the glacier ice as a fluid, the increase in pressure at depth z is simply pgz,
where p is the density. (To derive this formula, consider a column of ice extending
down to depth z. The weight of the column per unit area is pgz, and this must be
balanced by the pressure from below.) In our case, to reach a pressure of 135 bars,

P 135 x 10° N/m?
?T g T (017 kg/m?) (98 NJkg) — 000 m

123
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That’s pretty deep, just to lower the melting temperature by one degree. Apparently
the flow of glaciers is not caused primarily by lowering of the melting point under
pressure. '

(d) The blade of an ice skate measures a few millimeters across by perhaps 25 cm long,
so the total area is perhaps 10 cm?®. Even if you're leaning on the “corner” of the
blade, the total area in contact with the ice is probably more than 1 cm? = 107* m?.
If your mass is 50 kg, then your weight is about 500 N so the pressure on the blade is
roughly (500 N)/(10~* m?) = 5 x 10® Pa = 50 bars. Under this pressure the melting
temperature drops by only 50/135 ~ .4°C. This mechanism of friction reduction would
work only if the ice temperature is already within less than half a degree of melting,
and even then, only when you’re minimizing the area of the blade in contact with the
ice. In practice, the ability to glide doesn’t depend so critically on the ice temperature
or on how the blade touches the ice, so I don’t think this mechanism can be very

important.

Problem 5.33. The flaw in the inventor’s reasoning is that the weight that 'can be lifted
by the water as it freezes into ice is limited, because too much weight would apply enough
pressure to lower the freezing point of the water below —1°C, and then the water wouldn’t
freeze at all. Let the water in the cylinder have height h, and cross-sectional area A.
When it freezes into ice, its height increases to h;. If the mass it lifts is m, then the work
performed upon freezing is mg(h; — h,,). If L is the heat needed to remelt the ice, then the
efficiency of the engine is '
W mg(h; — hy)

Qn L '
If the pressure on the system with the weight absent is atmospheric pressure, then there’s
really no need for the high-temperature reservoir to be hotter than T, = 0°C; higher T},
would just lead to wasted heat as the system is cooled back to 0°C. If T, is the temperature
of the cold reservoir, then according to the Clausius-Clapeyron relation, the maximum
pressure we can add to the system without shifting the freezing point below T is

_ L
B Th(Vl. - Vw)

e

dpP (Ty —T.),

where V; = h;A and V,, = h,A are the volumes of the two phases, and I've used T}, in
the denominator because L refers to the heat input from the hot reservoir. Setting this
quantity equal to the pressure exerted by the lifted mass gives

mg  L(T,-T.) mg(h; — hy) _ Th =T,

—_— ——————— or

A " ThA(hi— hy)’ L T,

In other words, the maximum efficiency of the engine is 1 — (T,/T3).

Problem 5.34. (Liquid-solid phase boundary of *He.)

(a) The denser phase is always the one that is stable at higher pressure, according to
(6G/O0P)r = V: Smaller volume implies a shallower slope to the G vs. P curve and
hence a lower value of G than the other phase at sufficiently high pressures. In our case,
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Problem 5.40. For the reaction albite — jadeite + quartz, the standard AG value, at
room temperature and atmospheric pressure, is

AG = —-2852.1 kJ — 856.6 kJ + 3711.5 kJ = 2.8 kJ,

‘according to the data on page 405. Because this number is positive, albite is more stable

than jadeite + quartz under these conditions. However, the jadeite-quartz combination
takes up considerably less volume than albite, so it should become stable at high pressure.
Solving for the transition pressure as in Problems 5.24 and 5.28, we obtain

_281J 2.8 kJ

P=="" = 10007 kJ/kbar — 6.040 kJ/kbar — 2.269 kJ/kbar

= 1.65 kbar.

The slope of the phase boundary, meanwhile, is given by the Clausius-Clapeyron relation:

dP AS 2074 J/K-133.5 J/K — 41.8 J/K
dT ~ AV 1.70 J/bar

=18.9 bar/K.

The diagram at right shows the regions of sta- A P (kbar)
bility of the two phases, assuming that AS 15|
and AV are independent of temperature and
pressure, hence that the phase boundary is a
straight line. AsT" — 0, however, the slope of
the phase boundary would have to be horizon-
tal, as in Figure 5.17, according to the third 4
law of thermodynamics.

~ Jadeite + quartz

Albite

400

Problem 5.41. (Effect of total pressure on vapor pressure.)

(a) We want to consider the change in the chemical potentials of the two phases under an
infinitesimal change in total pressure. For the gas, according to equation 5.40,

kg = constant + k7 In P,,

where P, is the partial pressure of the gas, assumed to be equal to the vapor pressure.
“Differentiating with respect to the total pressure P, we obtain

duy _ kT dP,
dP ~ P, dP’

('l write the derivatives as total derivatives, even though they’re really partial deriva-

tives, with temperature understood to be held fixed.) Meanwhile, for the liquid,
p = G/N (since it remains pure), so ‘

du 1dG

dP ~ N,dP _ N,
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For the two phases to remain in equilibrium as we change the total pressure, the
changes in their chemical potentials must be equal, so

kKT'dP, 'V, o apP, Vi P

— = — r = .

P, dP N, dP  NkT™°
This is the desired differential equation for the function P,(P).

(b) The solution to this equation is a simple exponential function,

P,(P) = (constant) - eZV/N T

where I've dropped the [ subscripts on the V and N in the exponent. Plugging in
P = P, (for the initial situation with no inert gas), this equation becomes

P,(P,) = (constant) - oPoV/NKT

Dividing the previous equation by this one cancels out the constant, leaving us with

P,(P) — (P=P)V/NkT
Py(P) ’
where again the quantity V/N in the exponent is for the liquid.

(c) For water at 25°C, the vapor pressure is only 0.03 bar, so the P, in the exponent is
negligible compared to P = 1 bar. It’s simplest to take N to be one mole, so Nk = R
and V = 18 cm?; the exponential factor is thus

(10° N/m?)(18 x 107°% m3)
( (8.31 J/K)(298 K)

implying that the vapor pressure is greater by 0.07% than its value in the absence of
the air. More generally, the quantity PV/NkT, where V/N refers to the liquid, will
always be much less than 1 as long as the molar volume of the liquid is much less than
that of the gas (for which PV/NkT = 1). Only near the critical point (which is at
fairly high pressures for most fluids) would this ratio be comparable to 1.

) = exp(0.00073) = 1.00073,

Problem 5.42. (Relative humidity and dew point.)
(a) The result of Problem 5.35 for the shape of the vapor pressure curve was
P = Py L/ET,
Using the data for T' = 25°C from Figure 5.11, we have

L _ 43,990 J/mol
R~ 8315 J/molK

solving for the constant P, therefore gives

= 5290 K;

Py = (0.0317 bar) exp (5290 K /298 K) = 1.626 x 10° bar.

I then plotted the vapor pressure curve using the Mathematica instruction
Plot [1626000*Exp [-56290/ (t+273)],{t,0,40} ,Frame->True]

which produced the graph on the following page.
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Problem 5.74. According to equations 5.69 and 5.70,

NgkT N
Napa+ Nppp = Na(po— —= ) + Ng( f + kTIn =2
Ny Ny

= NA,LLO - NB]CT + NBf + NBkTh’l(NB/NA),
which is the same as expression 5.68 for G. Therefore, G = Naus + Npug.

Problem 5.75. Expression 5.61 (for an ideal mixture) should apply to a dilute solution
when the ideal mixture is also dilute—that is, when Np <« N4. Expression 5.68 (for a
dilute solution) should apply to an ideal mixture when the solution is ideal—that is, when
the B molecules “behave” just like A molecules, in terms of their sizes and interactions.
To show the agreement between the two expressions under these circumstances, I'll start
with equation 5.61. Recall first that z = Ng/Niotal, 1—=2 = Na/Niotal, so (1—2)G4 =
NAGS/Niotas = Napd, and similarly, £G4 = Npp%. In the last term, since Niga is
assumed to be Avogadro’s number, we can write R = Ny, - k. Equation 5.61 is therefore
equivalent to

G = Nau + Npps, +kT[NB In +N4ln _ivf‘i——}

Np
NA+NB NA+NB

_ 0 o Ny Np
= Naps, + Nops — kT [NB 1n(7V—B- + 1) + N, 111(1 + Tv})}
Now assume that this ideal mixture is also dilute, so Ng < N,4. Then the 1 in the first

logarithm can be dropped, while the second logarithm can be approximated as simply
Ng/N,. With these approximations,

G~ Nap$ + Nppy — kT [NpIn(N4/Ng) + Ng],

up to correction terms that are small compared to the terms that are shown. But this
expression is the same as equation 5.68, if we identify

f(T, P) = u%(T, P) (ideal, dilute solution).

In other words, the mysterious function f(7T’, P), in the case of a dilute solution that is also
ideal, is just the chemical potential of a system of pure B molecules at the same temperature
and pressure.

Problem 5.76. (Osmotic pressure of seawater.)

(a) Let’s take as our system a kilogram of seawater at room temperature. Then the volume
is approximately one liter (10~3 m?®). The total mass of solute is 35 g, and the average -
atomic mass of sodium and chlorine is about 29.2 g/mol, so the number of moles of

solute is
35g

= -7 = 1. 1
29.2 g/mol 112 mo

np
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Therefore, by van’t Hoff’s formula, the osmotic pressure is
P_p — ngRT _ (1.12 mol)(8.315 J/mol-K)(300 K)

2 ! Vv 10-3 m?
If you apply an excess pressure just barely greater than the osmotic pressure to the
seawater, and force 1 liter of it through an osmotic membrane, the work performed is

P AV = (3.0 x 10° Pa)(10™* m®) = 3000 J.

This isn’t much work—less than 1/1000 of a kilowatt-hour. As usual, though, this
number represents the absolute minimum, and in practice the work required will be
greater. First, to get the water to go through the membrane at an acceptable rate,
you’ll need to apply more than the minimum pressure. Second, the membrane probably
won’t be perfect, so some salt will get through and you'll need to repeat the process
several times to reduce the salinity to an acceptable level.

= 3.0 x 10° Pa = 30 atm.
(b)

Problem 5.77. When the difference in fluid level between the two sides of the container
is Ah, the difference in pressure should be pg Ah, where p is the density of the solution
(close enough to the density of pure water). Plugging this in for the pressure difference in

van’t Hoff’s formula gives

_ ’I’LBRT
pg Ah = v

But the number of moles of solute, np, is equal to mass of the solute, m, divided by its
molecular weight, M, in grams per mole. Therefore,

mRT RT m/V

My N

T used this equation to calculate M for each of the five data points given (see the spreadsheet
below). The coefficient RT'/pg is

RT (8315 J/molK)(276 K) _ \
by (1000 kg/m®)(9.8 N/kg) ~ O-2o4 m"/mol.

pg Ah =

Conc. _|Delta-h M : ' ]
(kg/~3) | (m) {(kg/mol) -
56| 002 6552 & ©O°6T7 = |
16.6] 0.065] 59.76| 8 = 647 I
32.5| 0.128]59.4141 2 o2t |
43.4| 0.176|57.7023|] & < 60T . .
54| 0.226/55.9115]| 3 2 58+ . |
o2 ~ 56T - |
S 54 : + —
0 20 40 60 ||
Concentration (kg/m~*3)

From the graph you can see that the calculated value of M does depend somewhat on the
concentration, in violation of van’t Hoff’s formula. However, the trend indicates a value of
M = 66,000 g/mol in the limit of low concentration where the formula should be valid.
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Problem 5.81. For a solution of solute B in solvent A, in equilibrium with a solid of
pure A, the chemical potentials of A must be equal for the two phases:

Haliq = KA solid-
Using equation 5.69 to rewrite the left-hand side, this condition becomes

NgkT

A

Au'(Ta P) - = ,u‘solid(Ta P)

Now let Ty be the temperature at which the pure liquid would be in equilibrium with the
solid (at fixed pressure P). Expanding each chemical potential about 75, we have

6#0 NBkT . 6,u'solid
/io(Toyp) + (T - TO)W - ‘WA— = psolia (To, P) + (T - TO)_éjw—'

The first term on each side of this equation cancels by the assumpfio‘n that T; is the
temperature at which the pure liquid is in equilibrium with the solid. Each Op/0T is minus
the entropy per particle for that phase, so

S NgkT (S)
—(T-Ty)[2) - =—(T-T)(Z) .
( ' O) <N>“q NA ( 0) N solid

Now set the N under each S equal to N4, the number of molecules of solvent; the S’s then
apply to the same quantity, and our relation becomes

NgkT?

(T~ To)(Sia ~ Swoie) = ~NakT,  or T, =22,
where in the last step I've used L = AS/T, ~ AS/T, taking L to represent the latent
heat for transformation of N4 molecules of solid into liquid. The minus sign in this result
indicates that adding a solute lowers the freezing point of a liquid. This makes sense
because mixing is allowed in the liquid phase but not the solid phase, so we would expect

- the entropy of mixing to increase the stability of the liquid relative to that of the solid. We

saw the same result qualitatively in the last part of Section 5.4.

Problem 5.82. To compute the freezing point of seawater, we need to know that a kilogram
of seawater contains 1.2 moles of salt ions, as computed at the bottom of page 207. We
also need the latent heat of the ice-water transformation, which from page 33 is 333 J/g
or 333,000 J/kg. Plugging these numbers into the formula derived in the previous problem
ives
¢ AT = _ngRT? _ _ (1.2 mol)(8.31 J/mol-K)(273 K)?
L ‘ 333,000 J/kg

The freezing point of seawater should therefore be —2.2°C.

=-22K.

161
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Problem 5.83. For each reaction shown, the equilibrium condition is the same as the
reaction equation, with the name of the species replaced by its chemical potential and «»

" replaced by =:

(a) 2um = pm,

(b) 2uco + po, = 2puco,

(€) Lmethane + 210, = 2fwater + 2Uco,
(d) pm.so, = 2pm+ + psoz-

(€) 2up + 240 = e

Problem 5.84. I'll use the convention that all pressures are expressed in atmospheres, so
P° =1 and the total pressure is 400:

F’N2 + PH2 + PNH3 = 400.

The initial mixture consists of three parts hydrogen to one part nitrogen, and this propor-
tion is preserved as the reaction takes place, so Py, = 3Py, and hence

4Py, + Pyu, = 400. (1)
Meanwhile, the law of mass action tells us that

PN2 PI'SIQ .

But again, Py, = 3Py,, so

2
PN,Ha

mz— =K or PNN3 = Pl\212 -V2TK = Pl\zlz . 00432,

where I've plugged in the value K = 6.9 x 10~°. Plugging this relation into equation 1 then
gives the quadratic equation

(0.0432) P2, + 4Py, — 400 = 0,

whose solutions are

106.7¢ 60.9%
j— \/12 (g 3§g;432) (00) _ 463 +-06:8 — —L42-b-or489r
€o.79 ' ~153.09

The negative soluiign is obviously unphysical, so the partial pressure of Ny at equilibrium
must be roughly atm. That means the partial pressure of H, must be three times

(3 l’ 7matm, and the partial pressure of ammonia must make up the remaining
19 -268 atm to give 400 atm total. The ratio of nitrogen atoms in ammonia to nitrogen atoms

in N is then 20042~587=2/4, meaning that Q%S‘of all the nitrogen atoms are in ammonia.
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