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Interference of Light

INTRODUCTION

Like standing waves and beats, the phenomenon of interference depends on
the superposition of two or more individual waves under rather strict
conditions that will soon be clarified. When interest lies primarily in the effects
of enhancement or diminution of light waves, due precisely to their superposi-
tion, these effects are usually said to be due to the interference of light. When
conditions of enhancement, or constructive interference, and diminution, or
destructive interference, alternate in a spatial display, the interference is said to
produce a pattern of fringes, as in the double-slit interference pattern. The
same conditions may lead to the enhancement of one visible wavelength inter-
val or color at the expense of the others, in which case interference colors are
produced, as in oil slicks and soap films. The simplest explanation of these
phenomena can be undertaken successfully by treating light as a wave motion.
In this and following chapters, several such applications, considered under the
general heading of interference, are presented.

1 TWO-BEAM INTERFERENCE

We consider first the interference of two plane waves of the same frequency,
represented by E; and E,. We may express the two electric fields at a point P
where the fields are combined as

El = EOl COS(kS1 — ot + d)l) (1)
= Eoz COS(kS2 — wt + (;bz) (2)

=i
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Figure 1 Two-beam interference.

Interference of Light

Reference plane for beam 2

Reference plane for beam 1

S B

In these relations k = 27/A, and s; and s, can be taken to be the distances
traveled by each beam along its respective path from its source to the observa-
tion point P. (See Figure 1.) Then ¢; and ¢, represent the phases of these
waves at their respective sources at time ¢ = (. These waves combine to pro-
duce a disturbance at point P, whose electric field E p 1s given by the principle of
superposition,

EPZE1+E2

It should be noted that E; and E, are rapidly varying functions with optical fre-
quencies of order 10'* to 10" Hz for visible light. Thus both E, and E, average
to zero over very short time intervals. Measurement of the waves by their ef-
fect on the eye or some other light detector depends on the energy of the light
beam. The radiant power density, or irradiance, E, (W/m?), measures the time
average of the square of the wave amplitude. In practice, the time average is
carried out by a detector. The averaging time for the eye is on the order of 1/30
of a second; other detectors have averaging times as short as a nanosecond. In
general, the avera%ing time of physical detectors greatly exceeds an optical pe-
riod (1071 — 1075 s).

Unfortunately, the standard symbol for irradiance, except for the sub-
script, is the same as that for the electric field. To avoid confusion, we use here
the symbol [ for irradiance, so that

I = gyc(E-E) (3)
Thus, the resulting irradiance at P is given by
I = 806<E%> = soc(Ep-Ep>
= gc((E; + Ey) - (E; + Ey))
or

I = 80C<E1'E1 + Ez'Ez + 2E1'E2> (4)
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In Eq. (4), the first two terms correspond to the irradiances of the individual
waves, /1 and I,. The last term depends on an interaction of the waves and is
called the interference term, I,,. We may then write

1211+12+112 (5)

If light behaved without interference, like classical particles, we would
then expect I = I; + I,. The presence of the third term /, is indicative
of the wave nature of light, which can produce enhancement or diminu-
tion of the irradiance through interference. Notice that when E,; and E,
are orthogonal, so that their dot product vanishes, no interference results.
When the electric fields are parallel, on the other hand, the interference
term makes its maximum contribution. Two beams of unpolarized light
produce interference because each can be resolved into orthogonal com-
ponents of E that can then be paired off with similar components of the
other beam. Each component produces an interference term with E,E,
(E, parallel to E,).
Consider the interference term,

I, = 2g¢(E; * Ey) (6)
where E; and E, are given by Egs. (1) and (2). Their dot product,
E] 'Ez = Em ‘Eoz COS(kSl — ot + d)])COS(kSz — ot + ¢)2)

can be simplified in an instructive manner using a trigonometric identity. To
this end, let us define

a5k51+¢1 and BEkS2+¢2
so that

2E1 'Ez = 2E01 'EOZ COS(a - a)t)COS(B - wt)

The identity 2 cos(A)cos(B) = cos(A + B) + cos(B — A) helps us cast the
time average of 2E, - E, as

2(E; - E,) = Eg; - Ego[(cos(a + B — 2wt) + (cos(B — @))]

The first time average in this relation is taken over a rapidly oscillating cosine
function and so is zero. Thus,

= Ey 02(cos )
(7)
where we have defined the phase difference between E, and E; as
§=k(sy —s1) + b — 1 (8)

For purely monochromatic fields, § is time-independent, in which case
(cos &) =cos 8. However, as we will discuss, for real fields, which are not per-
fectly monochromatic, care must be taken in treating this time average. Com-
bining Egs. (6) and (7),

115 = &cEq; - Egy(cos 8) )
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The irradiance terms /; and I, of Eq. (5) can be shown to yield

I = eelBy By) = eocBh(cos’(a — wn) = SecEl (10)
and

I, = gc(Ey - Ey) = gcEqy{cos’(B — wt)) = %SOCEgz (11)

In Egs. (10) and (11) we used the fact that the time average of the square of a
rapidly oscillating sinusoidal function is 1/2. In Eq. (9) when Egy,|Eg,, their
dot product is identical with the product of their magnitudes Ey and E,.
These may be expressed in terms of /; and I, by the use of Egs. (10) and (11),
and when combined with Eq. (9) results in

112 =2V 1112<COS 8> (12)
so that we may write, finally,
I:II+12+2\/11[2<C058> (13)

Notice that once we have made the assumption that the E fields are parallel,
the treatment becomes much the same as the scalar theory.

Interference of Mutually Incoherent Fields

In practice, for electric fields E; and E, originating from different sources,
the time average in Eq. (13) is zero. This occurs because no source is
perfectly monochromatic. To model real sources, Egs. (1) and (2) must be
modified to account for departures from monochromaticity. One way to do
this is to allow the phases ¢; and ¢, to be functions of time. For laser
sources, these phases would typically be random functions of time that
vary on a time scale much longer than an optical period but still shorter
than typical detector averaging times. The interference term /y,, in this
case, takes the form,

2V Iy(cos(k(s, — 51) + ba(t) — (1))

As stated, for real detectors and for all but those laser sources with state-of-the-
art frequency stability, the time average in the preceding relation will be zero. In
such a case we say that the sources are mutually incoherent and the detected ir-
radiance will be

I1=1+1 Mutually incoherent beams

It is often said, therefore, that light beams from independent sources, even if
both sources are the same kind of laser, do not interfere with each other. In
fact, these fields do interfere but the interference term averages to zero over
the averaging times of most real detectors.

Interference of Mutually Coherent Beams

If light from the same laser source is split and then recombined at a detector,
the time average in Eq. (13) need not be zero. This occurs because the depar-
tures from monochromaticity of each beam, while still present, will be corre-
lated since both beams come from the same source. In this case, the phase
difference ¢,(t) — () will be strictly zero if the beams travel paths of equal
duration before being recombined at the detector. In such a case, d is a constant
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and the interference term takes the form,
2V IIx{cos(k(sy; = s1) + ¢1(t) — b1(2))) = 2V 1115 cos(k(sy — s1))
=2V 111, cos b

Even if the electric fields travel paths that differ in duration by a time é¢, the
phase difference resulting from the departure from monochromaticity,
¢1(t)— (¢t + 8t), will still be nearly zero so long as &t is less than the so-called
coherence time, 1, of the source. Qualitatively, the coherence time of the
source is the time interval over which departures from monochromaticity
are small. You will learn the coherence time of a source is inversely propor-
tional to the range of frequencies, Av, of the components that make up the
electric field. That is,

1
Av

Associated with the coherence time of a source is a coherence length, I, = ¢,
which is the distance that the electric field travels in a coherence time. For a white
light source the coherence length is about 1 um; laser sources have coherence
lengths that range from tens of centimeters to tens of kilometers. Throughout the
rest of this chapter, we will presume that the difference in the lengths of paths
traveled by beams originating from the same source is considerably less than the
coherence length of the source. In such a case, the electric fields are said to be
mutually coherent and the irradiance of the combined fields will have the form

To

I=1+1,+2VII,cosé Mutually coherent beams (14)

where 6 is the total phase difference at the point of recombination of the
beam. As we have noted, if the beams originate from the same source, this
phase difference accumulates as a result of a difference in path lengths trav-
eled by the respective beams. In many cases of interest, other factors can lead
to a phase difference between the beams as well. Important mechanisms of
this sort include differing phase shifts due to reflection from beam splitters
and differing indices of refraction in the separate paths taken by the two beams.
Depending on whether cos 8 > 0 or cos 8 < 0 in Eq. (14), the interference
term either augments or diminishes the sum of the individual irradiances /; and
1,, leading to constructive or destructive interference, respectively. Since the
relative distances traveled by the two beams will, in general, differ for differ-
ent observation points in the region of overlap, the phase difference § will
also differ for different observation points. Typically, cos 6 will take on alter-
nating maximum and minimum values, and interference fringes, spatially sep-
arated, will occur in the observation plane.

To be more specific, when cos § = +1, constructive interference yields
the maximum irradiance

Ioox =11 + I, + 2V 11, (15)

This condition occurs whenever the phase difference 6 = 2mar, where m is
any integer or zero. On the other hand, when cos 6 = —1, destructive inter-
ference yields the minimum, or background, irradiance

Imin211+12_2\/11[2 (16)

a condition that occurs whenever 6 = (2m + 1). A plot of irradiance / versus
phase &, in Figure 2a, exhibits periodic fringes. Destructive interference is
complete, that is, cancellation is complete, when I; = I, = [,. Then, Egs. (15)
and (16) give

Imax = 4[0 and Imin =0
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Figure 2 Irradiance of interference fringes
as a function of phase difference 6. Visibility
is enhanced in (b), where the background ir-
radiance /,;, = Owhen I; = [,.

Interference of Light
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Resulting fringes, shown in Figure 2b, now exhibit better contrast. A mea-
sure of fringe contrast, called visibility, with values between 0 and 1, is given
by the quantity

1 — Iy
VISIblllty = % (17)
max min

In the experimental utilization of fringe patterns, it is therefore usually desir-
able to ensure that the interfering beams have the same amplitudes.

Another useful form of Eq. (14), for the case of interfering beams of equal
amplitude so that I; = I, = [, is found by writing

I1=1y+1,+ 2\/7%0085 = 2Iy(1 + cos )

and then making use of the trigonometric identity
_ 2 &
1+ cosé = 2cos 5

The irradiance for two equal interfering beams is then
o 6
I = 4] cos 5 (18)

Notice that energy is not conserved at each point of the superposition, that
is, I # 21, but that over at least one spatial period of the fringe pattern
1,, = 21,. This situation is typical of interference and diffraction phenome-
na: If the power density falls below the average at some points, it rises above
the average at other points in such a way that the total pattern satisfies the
principle of energy conservation.

Example 1

Consider two interfering beams with parallel electric fields that are super-
posed. Take the electric fields of the individual beams to be

E| = 2cos(ks; — wt) (kV/m)
E, = 5cos(ks, — wt) (kV/m)
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Let us determine the irradiance contributed by each beam acting alone and
that due to their mutual interference at a point where their path difference
is such that k(s, — s;) = 7/12. We have

I, = JeicEd; = 1£0c(2000)? = 5309 W/m?

I, = LeicE3, = 1e0c(5000)? = 33,180 W/m?

I, = 2V 1,1, cos 8 = 2\V/(5309 x 33180) cos(w/12) = 25,640 W/m?
To find the visibility near this point of recombination, we must calculate

Imax = I + I, + 2\V/1,1, = 5309 + 33180 + 2V/(5309 % 33180)

= 65,034 W/m?
Iw = I + I, — 2\/I11, = 5309 + 33180 — 2/(5309 x 33180)
= 11,945 W/m?

The visibility is then given by Eq. (17), or

65,034 — 11,945
. . .1- — b b — .
visibility 65.034 + 11.945 0.690
If the amplitudes of the two waves were equal, then I, = 4/, Inin = O,
and the visibility would be 1.

In the analysis leading to the irradiance that results from the superposi-
tion of two mutually coherent beams, Eq. (14), we assumed that the individ-
ual beams were plane waves described by Egs. (1) and (2). In fact, the analysis
holds for any sort of harmonic wave (e.g., spherical, cylindrical, or Gaussian).
However, for these types of waves, the amplitudes Ey and E(, (and so the
irradiances /; and I,) depend on the distance from the source to the observa-
tion point.

2 YOUNG’S DOUBLE-SLIT EXPERIMENT

The decisive experiment performed by Thomas Young in 1802 is shown
schematically in Figure 3. Monochromatic light is first allowed to pass through
a single small hole in order to approximate a single point source S. The light
spreads out in spherical waves from the source S according to Huygens’ princi-
ple and is allowed to fall on a plane with two closely spaced holes, S; and S,. In
a modern version of this experiment, a laser is typically used to illuminate the
two holes. In either case, the holes become two coherent sources of light, whose
interference can be observed on a screen some distance away. If the two holes
are equal in size, light waves emanating from the holes have comparable ampli-
tudes, and the irradiance at any point of superposition is given by Eq. (18).
Referring to Figure 3, we will now develop an expression for the irradiance at
observation points such as P on a screen that is a distance L from the plane
containing the two holes S; and S,. The phase difference é between the two
waves arriving at the observation point P must be determined to calculate the
resultant irradiance there. Clearly, if S,P — S1P = s, — s; = mA, the waves
will arrive in phase, and maximum irradiance or brightness results. If
s —s1= (m+ %))\, the requisite condition for destructive interference or
darkness is met. Practically speaking, the hole separation a is much smaller
than the screen distance L, allowing a simple expression for the path distance,
s, — s1. Using P as a center, let an arc §;Q be drawn of radius sy so that it in-
tersects the line S,P at Q. Then s, — s; is equal to the segment A, as shown.
The first approximation is to regard arc $;Q as a straight-line segment that



170 Chapter7

Interference of Light

Y

L

Figure 3 Schematic for Young’s double-slit experiment. The holes S$; and S, are
usually slits, with the long dimensions extending into the page. The hole at S is not
necessary if the source is a spatially coherent laser.

forms one leg of the right triangle §15,0. If 0 is the angle between the line
segments S5, and S0, then A = a sin 6. The second approximation identi-
fies the angle 6 with the angle between the optical axis OX and the line drawn
from the midpoint O between holes to the point P at the screen. Observe that
the corresponding sides of the two angles 6 are related such that OX L S.5,,
and OP is almost exactly perpendicular to $;0.

The condition for constructive interference at a point P on the screen is,
then, to a very good approximation

S, — 81 = A =mA=asinb (19)
whereas for destructive interference,

A=(m+3i)r=asino (20)
where m is zero or of integral value. Typically, at observation points of inter-
est, the electric field amplitudes of the beams originating from the two slits
are nearly the same so that the irradiance on the screen, at a point deter-

mined by the angle 0, is found using Eq. (18) and the relationship between
path difference A and phase difference o,

2
o = k(S2 _Sl) ZT”TA

The result is
A in 6
1 =41, 0052<WA > =41, cosz(ml im )

For points P near the optical axis, where y << L, we may approximate fur-
ther:sin @ = tan § = y/L, so that

I =4I, cosz(i\a;> (21)
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By allowing the cosine function in Eq. (21) to become alternately +1 and 0,
the conditions expressed by Egs. (19) and (20) for constructive and
destructive interference are reproduced.

Arguing now from Eq. (19) and the small angle relation
sin § = tan § = y/L, we find the bright fringe positions to be given by

AL
ym=ma . m=0,+1,42,... 22)

Consequently, there is a constant separation between irradiance maxima, cor-
responding to successive values of m, given by

AL

Ay = Ym+1 = VYm = 7 (23)
with minima situated midway between the maxima. Thus, fringe separation is
proportional both to wavelength and screen distance and inversely proportion-
al to the hole spacing. Reducing the hole spacing expands the fringe pattern
formed by each color. Measurement of the fringe separation provides a means
of determining the wavelength of the light. The single hole, used to secure a de-
gree of spatial coherence, may be eliminated if laser light, both highly mono-
chromatic and spatially coherent, is used to illuminate the double slit. In the
observational arrangement just described, fringes are observed on a screen
placed perpendicular to the optical axis at some distance from the aperture, as
indicated in Figure 4. Fringe maxima coincide with integral orders of m, and
fringe minima fall halfway between adjacent maxima.

- m=+3
mT 5T
1 m=+2
L L_3
mT ST
- m=+1
mT 5T
[ m=0,y=0
1 _ 1
)
4 m=-1
1 __ 3
e )
m=-2
o1 __ 5
m-—5 =77
4 m=-3
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Figure 4 Irradiance versus distance from
the optical axis for a double-slit fringe pat-
tern. The order of the interference pattern is
indicated by m, with integral values of m de-
termining positions of fringe maxima.
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Example 2

Laser light passes through two identical and parallel slits, 0.2 mm apart. In-
terference fringes are seen on a screen 1 m away. Interference maxima are
separated by 3.29 mm. What is the wavelength of the light? How does the ir-
radiance at the screen vary, if the contribution of one slit alone is 7,?

Solution

From Eq. (23),

A =alAy/L = (0.0002m)(3.29 X 10 m)/(1 m)

=6.58 X 10" m = 658 nm
According to Eq. (21), I = 41, cos’[may/AL]. In this case,

I = 41, cos’[7(0.0002)y/(658 X 107°)(1m)] = 41, cos’[(955/m)y]

An alternative way to view the formation of bright (B) positions of con-
structive interference and dark (D) positions of destructive interference is
shown in Figure 5. The crests and valleys of spherical waves from §; and S,
are shown approaching the screen. Along directions marked B, wave crests
(or wave valleys) from both slits coincide, producing maximum irradiance.
Along directions marked D, on the other hand, the waves are seen to be out
of step by half a wavelength, and destructive interference results.

Obviously, fringes should be present in all the space surrounding the
holes, where light from the holes is allowed to interfere, though the irradiance
is greatest in the forward direction. If we imagine two coherent point sources of
light radiating in all directions, then the condition given by Eq. (19) for bright
fringes,

§; — §; = mA (24)

defines a family of bright fringe surfaces in the space surrounding the holes. To
visualize this set of surfaces, we may take advantage of the inherent symmetry in
the arrangement. In Figure 6, the intersection of several bright fringe surfaces
with a plane that includes the two sources is shown, each surface corresponding

Figure 5 Alternating bright and dark interference fringes are produced by light
from two coherent sources. Along directions where crests (solid circles) from S in-
tersect crests from §,, brightness (B) results. Along directions where crests meet
valleys (dashed circles), darkness (D) results.
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to an integral value of order m. The surfaces are hyperbolic, since Eq. (24) is
precisely the condition for a family of hyperbolic curves with parameter m.
Inasmuch as the y-axis is an axis of symmetry, the corresponding bright fringe
surfaces are generated by rotating the entire pattern about the y-axis. One
should then be able to visualize the intercept of these surfaces with the plane
of an observational screen placed anywhere in the vicinity. In particular, a
screen placed perpendicular to the OX axis, as in Figure 3, intercepts hyper-
bolic arcs that appear as straight-line fringes near the axis, whereas a screen
placed perpendicular to the OY axis shows concentric circular fringes cen-
tered on the axis. Because the fringe system extends throughout the space sur-
rounding the two sources, the fringes are said to be nonlocalized.

The holes S, Sy, and S, of Figure 3 are usually replaced by parallel, nar-
row slits (oriented with their long sides perpendicular to the page in Figure 3)
to illuminate more fully the interference pattern. The effect of the array of
point sources along the slits, each set producing its own fringe system as just
described, is simply to elongate the pattern parallel to the fringes, without
changing their geometrical relationships. This is true even when two points
along a source slit are not mutually coherent.

3 DOUBLE-SLIT INTERFERENCE
WITH VIRTUAL SOURCES

Interference fringes may sometimes appear in arrangements when only one
light source is present. It is possible, through reflection or refraction, to pro-
duce virtual images that, acting together or with the actual source, behave
as two coherent sources that can produce an interference pattern. Figures 7
to 9 illustrate three such examples. These examples are not only of some
historic importance; they also serve to impress us with the variety of ways un-
expected fringe patterns may appear in optical experiments, especially when
the extremely coherent light of a laser is being used.

Lloyd’s Mirror

In Figure 7, interference fringes are produced due to the superposition of
light at the screen that originates at the actual source S and, by reflection, also
originates effectively from its virtual source S’ below the surface of the plane
mirror M M'. Where the direct and reflected beams strike the screen, fringes
will appear. The position of bright fringes is given by Eq. (22), where a is

173

Figure 6 Bright fringe surfaces for two
coherent point sources. The distances from
S and S, to any point P on a bright fringe
surface differ by an integral number of
wavelengths. The surfaces are generated by
rotating the pattern about the y-axis.

Screen

Figure 7 Interference with Lloyd’s mirror.
Coherent sources are the point source S
and its virtual image, S’.
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PROBLEMS

1 Two mutually coherent beams having parallel electric fields 7 In a Young’s experiment, narrow double slits 0.2 mm apart

are described by

E, =3 cos(ksl - wt + %)

E, = 4cos(ks2 — wt + %)

diffract monochromatic light onto a screen 1.5 m away. The
distance between the fifth minima on either side of the
zeroth-order maximum is measured to be 34.73 mm. Deter-
mine the wavelength of the light.

= Sth min.
with amplitudes in kV/m. The beams interfere at a point P é 1151 g
where the phase difference due to path is 7/3 (the first Q 1_ g 3473 mm
beam having the longer path). At the point of superposi- S é X
tion, calculate (a) the irradiances I; and I, of the individual S=ism Sth min.

beams; (b) the irradiance I, due to their interference;
(c) the net irradiance; (d) the fringe visibility.

Figure 23 Problem 1.

Two harmonic light waves with amplitudes of 1.6 and 2.8
interfere at some point P on a screen. What visibility re-
sults there if (a) their electric field vectors are parallel
and (b) if they are perpendicular?

The ratio of the amplitudes of two beams forming an inter-

ference fringe pattern is 2/1. What is the visibility? What
ratio of amplitudes produces a visibility of 0.5?

a. Show that if one beam of a two-beam interference setup
has an irradiance of N times that of the other beam, the
fringe visibility is given by

szx/ﬁ

N +1

b. Determine the beam irradiance ratios for visibilities of
0.96,0.9,0.8,and 0.5.

A mercury source of light is positioned behind a glass filter,
which allows transmission of the 546.1-nm green light from
the source. The light is allowed to pass through a narrow,
horizontal slit positioned 1 mm above a flat mirror surface.
Describe both qualitatively and quantitatively what appears
on a screen 1 m away from the slit.

10

11

Figure 25 Problem 7.

A quasi-monochromatic beam of light illuminates Young’s
double-slit setup, generating a fringe pattern having a 5.6-mm
separation between consecutive dark bands. The distance be-
tween the plane containing the apertures and the plane of
observation is 7 m, and the two slits are separated by 1.0 mm.
Sketch the experimental arrangement. Why is an initial single
slit necessary? What is the wavelength of the light?

In an interference experiment of the Young type, the dis-
tance between slits is 0.5 mm, and the wavelength of the
light is 600 nm.

a. If it is desired to have a fringe spacing of 1 mm at the
screen, what is the proper screen distance?

b. If a thin plate of glass (n = 1.50) of thickness 100 mi-
crons is placed over one of the slits, what is the lateral
fringe displacement at the screen?

c¢. What path difference corresponds to a shift in the fringe
pattern from a peak maximum to the (same) peak half-
maximum?

White light (400 to 700 nm) is used to illuminate a double
slit with a spacing of 1.25 mm. An interference pattern falls
on a screen 1.5 m away. A pinhole in the screen allows some
light to enter a spectrograph of high resolution. If the pin-
hole in the screen is 3 mm from the central white fringe,
where would one expect dark lines to show up in the spec-
trum of the pinhole source?

Sodium light (589.3 nm) from a narrow slit illuminates a
Fresnel biprism made of glass of index 1.50. The biprism is
twice as far from a screen on which fringes are observed as
it is from the slit. The fringes are observed to be separated
by 0.03 cm. What is the biprism angle «?

Hg lamp S
/ [¢
. Slit r A=589.3 nm
{F| %1 : 5
j1mm n g
| Mirror | S
Filter <~~~ >

Figure 24 Problem 5.

Two slits are illuminated by light that consists of two
wavelengths. One wavelength is known to be 436 nm. On
a screen, the fourth minimum of the 436-nm light coin-
cides with the third maximum of the other light. What is
the wavelength of the other light?

Figure 26 Problem 11.

The small angle 6 between two plane, adjacent reflecting sur-
faces is determined by examining the interference fringes
produced in a Fresnel mirror experiment. A source slit is
parallel to the intersection between the mirrors and 50 cm
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INTRODUCTION

The term coherence is used to describe the correlation between phases of
monochromatic radiations. Beams with random phase relationships are, gen-
erally speaking, incoherent beams, whereas beams with a constant phase
relationship are coherent beams. The requirement of coherence between in-
terfering beams of light, if they are to produce observable fringe patterns,
should be familiar to you, as should the relationship between coherence and
the net irradiance of interfering beams. In the superposition of in-phase
coherent beams, individual amplitudes add together, whereas in the superpo-
sition of incoherent beams, individual irradiances add together. In this chap-
ter, we examine the property of coherence in greater detail, distinguishing
between longitudinal coherence, which is related to the spectral purity of the
source, and lateral or spatial coherence, which is related to the size of the
source. We also describe a quantitative measure of partial coherence, the con-
dition under which most experimental measurements of interference take
place. We begin our treatment with a brief description of Fourier analysis,
which we will need in this chapter.

1 FOURIER ANALYSIS

When a number of harmonic waves of the same frequency are added together,
even though they differ in amplitude and phase, the result is again a harmonic
wave of the given frequency. If the superposed waves differ in frequency as
well, the result is periodic but anharmonic and may assume an arbitrary
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5 SPATIAL COHERENCE

In speaking of temporal coherence, we have been considering the correla-
tion in phase between temporally distinct points of the radiation field of a
source along its line of propagation. For this reason, temporal coherence
is also called longitudinal coherence. The degree of coherence can be ob-
served by examining the interference fringe contrast in an amplitude-split-
ting instrument, such as the Michelson interferometer. As we have seen,
temporal coherence is a measure of the average length of the constituent
harmonic waves, which depends on the radiation properties of the source.
In contrast, we now turn our attention to what is referred to as spatial, or
lateral, coherence, the correlation in phase between spatially distinct points
of the radiation field. This type of coherence is important when using a
wavefront-splitting device, such as the double slit. The quality of the inter-
ference pattern in the double-slit experiment depends on the degree of co-
herence between distinct regions of the wavefield at the two slits.

To sharpen our understanding of the coherence of a wavefield radiating
from a source, consider the situation depicted in Figure 11. Light from a
source S passes through a double slit and is also sampled by a Michelson inter-
ferometer located nearby. Spatial coherence between wavefront points A and
B at the slits is insured as long as the source S is a true point source. In that
case, all rays emanating from § are associated with a single set of spherical
waves that have the same phase on any given wavefront. Are clear distin-
guishable fringes then formed on a screen near point P,? The answer, of
course, depends on whether the light from S, traveling along the two distinct
paths SAP, and SBP, is temporally as well as spatially coherent. The matter
of temporal coherence requires a comparison between the path difference
A = SAP{ — SBP; and the coherence length of the radiation. This is equiva-
lent to a comparison of coherence along any radial direction of light propaga-
tion from the source at two wavefronts separated by the same path
difference. It is this property of temporal coherence that is measured by the
Michelson interferometer. If the path difference A is much less than the co-
herence length (A << /,), clean interference fringes are formed at Py; if the
path difference is equal to or greater than the coherence length (A =/,), in-
terference fringes are poorly defined or absent altogether. In practice, of
course, S is always an extended source, so that rays reach A and B from many
points of the source. In ordinary (nonlaser) sources, light emitted by differ-
ent points of a source, well over a wavelength in separation, is not correlat-
ed in phase and so lacks coherence. Thus, the spatial coherence of light at

\Double slit
A

Michelson
interferometer
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Figure 11 Wavefront and amplitude divi-
sion of radiation from source S, illustrating
the practical requirements of spatial and
temporal coherence.
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Figure 12 Lateral region of coherence /g,
due to two independent point sources.

Figure 13 Light from each of two point
sources A and B reach points P; and P, in
the radiation field and are allowed to inter-
fere at the screen. In practice, s << ¢ and
angles 6 are approximately equal.

Coherence

the slits A and B depends on how closely the source S resembles a point
source of light, either in extension or in its actual coherence properties.

We show in the next section that if two source points S; and 5,, as in
Figure 12, are separated by a distance s and if light of wavelength A from
these sources is observed at a distance r away, there will be a region of high
spatial coherence of dimension /;, given by

A

I, < 2 (35)
where 6 is the angle subtended by the point sources at the observation point P.
Accepting this result for the moment and combining it with the temporal or
longitudinal coherence length /,, we conclude that there exists at any point in
the radiation field of a real light source a region of space in which the light is
coherent. This region has lateral dimensions of /; and longitudinal dimensions
of [, relative to the source and thus occupies a volume of roughly /2/, around
the point P. It is from this volume that any interferometer must accept radia-
tion if it is to produce observable interference fringes.

6 SPATIAL COHERENCE WIDTH

Consider now the spatial coherence at points P; and P, in the radiation field
of a quasi-monochromatic extended source, simply represented by two mutual-
ly incoherent emitting points A and B at the edges of the source (Figure 13).
We may think of P; and P, as two slits that propagate light to a screen, where
interference fringes may be viewed. Each point source, acting alone, then
produces a set of double-slit interference fringes on the screen. When both
sources act together, however, the fringe systems overlap. If the fringe sys-
tems overlap with their maxima and minima falling together, the resulting
fringe pattern is highly visible, and the radiation from the two incoherent
sources is considered highly coherent! When the fringe systems are relatively
displaced, however, so that the maxima of one fall on the minima of the other,
the composite pattern is not visible and the radiation is considered incoher-
ent. Suppose that source B is at the position of source A, or that the distance
s in Figure 13 is zero. The fringe systems at the screen then coincide and cor-
respond to the fringes of a single point source. A maximum in the interfer-
ence pattern occurs at P if P lies on the perpendicular bisector of the two slits.
In this condition,

BP, — BP, = AP, — AP, =0

If source B is moved below A, the fringe systems separate until, at a certain
distance s, where

A
BP,~ BP; = A =7

Screen
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the maximum in the fringe system at P due to source B is replaced by a mini-
mum, and the composite fringe pattern disappears.

If the angle 6 represents the angular separation of the sources from
the plane of the slits, then from the diagram, A = €6, where € is the dis-
tance between slits, and 6 = s/r, where r is the distance to the sources. It
follows that

A
A_E_T or §=_— (36)

When the distance AB is considered instead to be a continuous array of point
sources, the individual fringe systems do not give complete cancellation until
the spatial extent AB of the source reaches twice the value of s in Eq. (36).
If extreme points are separated by an amount s < rA/¢, then fringe defini-
tion is assured. Regarding this result as describing instead the maximum slit
separation ¢, given a source dimension s, we have for the spatial coherence
width €,

rA A
£, < i 5 (37)

As €, is restricted to smaller fractions of this value, the fringe contrast is cor-
respondingly improved.

According to this argument, moving the source B even farther should
bring the fringe system into coincidence again, so that the degree of coher-
ence |y| between P; and P, is a periodic function. In a more complete math-
ematical argument, the extended source is represented by a continuous array
of elemental emitting areas rather than by two point sources. Results show
that outside the coherence width given by Eq. (37), the fringe visibility,
while oscillatory, is negligible. According to a general theorem, known as
the Van Cittert-Zernike theorem', a plot of the degree of coherence versus
spatial separation ¢ of points P, and P, is the same as a plot of the diffrac-
tion pattern due to an aperture of the same size and shape as the extended
source.

The significance of Eq. (37) is apparent in the case of Young’s double-
slit experiment, where an extended source is used together with a single slit to
render the light striking the double slit reasonably coherent, as in Figure 14.
We may now use Eq. (37) to determine how small the single slit must be to
ensure coherence and the production of fringes at the screen. The two slits .S,
and S, must fall within the lateral coherence width /; due to the primary slit
of width s.

+

a

0 T
T

L

R

S
S

Screen

"Born, M. and E. Wolf. Principals of Optics, 5 ed., (New York: Pergamon Press, 1975.)
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Figure 14 Young’s double-slit setup. Slits
S, and S, must fall within the lateral coher-
ence width / due to the single-slit source.
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Figure 15 Michelson stellar interferometer
(a) used to determine a stellar diameter (b).

Coherence

Example 2

Let the source-to-slit distance be 20 cm, the slit separation 0.1 mm, and the
wavelength 546 nm. Determine the maximum width of the primary or single slit.

Solution
Using Eq. (37),
A (0.2)(546 X 107%)

< — = =1.1
= 1% 10 fm

Now suppose that the source slit in the example is made exactly 1.1 mm
in width and that the separation between slits S; and S, is adjustable. When
the slits are very close together (a << ), they fall within a high coherence
region and the fringes in the interference pattern appear sharply defined. As
the slits are moved farther apart, the degree of coherence |y| decreases and
the fringe contrast begins to degrade. When the slit separation a reaches a
value of 0.1 mm, |y| = 0 and the fringes disappear. Evidently an experimen-
tal determination of this slit separation could be used to deduce the size s of
the extended source. This technique was employed by Michelson to measure
the angular diameter of stars. Stars are so distant that imaging techniques are
unable to resolve their diameters. If a star is regarded as an extended, inco-
herent source with light emanating from a continuous array of points ex-
tending across a diameter s of the star (see Figure 15b), then the spatial
coherent width / in Eq. (38) becomes

1.22)
< [

I
0

(38)
Here the factor 1.22 arises from the circular shape of the source, as it does in
the Fraunhofer diffraction of a circular aperture. Since the angular diameter 6
of a star is extremely small, /; will be correspondingly large. The movable slits
were therefore arranged as in Figure 15a, using mirrors that direct widely sep-
arated portions of the radiation wavefront into a double-slit-telescope instru-
ment. The spacing of the interference fringes depends on the double-slit
separation a, whereas their visibility depends on the separation /. As [ is
increased, the fringes disappear when equality in Eq. (38) is satisfied.

le——>
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Example 3

When Michelson used this technique on the star Betelgeuse in the constel-
lation Orion, he found a first minimum in the fringes at /; = 308 cm. Using
an average wavelength of 570 nm, what is the angular diameter of the star?

Solution
Taking Eq. (38) as an equality,
_122x 1.22(570 X 1077)

=226 x 1077
L 303 226 X 107’ rad

Since Orion is known to be about 1 X 10> mi away, the stellar diameter is
s = rf = 2.26 X 10% mi, or about 260 solar diameters.

PROBLEMS
1 Determine the Fourier series for the function of spatial peri- 1)
od L given by A
—L t
-1, BN <x<0 T Ty
= 2
f(x) L
+1, 0<x<— .
2 Figure 17 Problem 4.

A half-wave rectifier removes the negative half-cycles of a si-
nusoidal waveform, given by E = E cos wt. Find the Fouri-
er series of the resulting wave.

E
l I\ E = Ejcos ot
E, /’\ / t
T | \\ "l \\ "l

—7—>
Figure 16 Problem 2.

Find the Fourier transform of the Gaussian function
given by

F(1) = he P

Two light filters are used to transmit yellow light centered
around a wavelength of 590 nm. One filter has a “broad”
transmission width of 100 nm, whereas the other has a “nar-
row” pass band of 10 nm. Which filter would be better to
use for an interference experiment? Compare the coher-
ence lengths of the light from each.

A continuous He-Ne laser beam (632.8 nm) is “chopped,”
using a spinning aperture, into 1-us pulses. Compute the
resultant line width AA, bandwidth Av, and coherence
length.

The angular diameter of the sun viewed from the earth is
approximately 0.5 degree. Determine the spatial coherence
length for “good” coherence, neglecting any variations in
brightness across the surface. Let us consider, somewhat ar-
bitrarily, that “good” coherence will exist over an area that
is 10% of the maximum area of coherence.

8 Michelson found that the cadmium red line (643.8 nm)
where & is the height and ¢ the “width.” (Hint: Remember was one of the most ideal monochromatic sources avail-
how to complete a square? You will also need the definite able, allowing fringes to be discerned up to a path differ-
integral ence of 30 cm in a beam-splitting interference experiment,

such as with a Michelson interferometer. Calculate (a) the
reo wavelength spread of the line and (b) the coherence time
/Oo edx = Vmw of the source.

9 A narrow band-pass filter transmits wavelengths in the
in your calculations.) Does the transform, interpreted as the range 5000 + 0.5 A.If this filter is placed in front of a source
frequency spectrum, show the proper relationship to the of white light, what is the coherence length of the transmitted
original “pulse” width? light?

Using the Fourier transform, determine the power spec- 10 Let a collimated beam of white light fall on one refracting face

trum of a single square pulse of amplitude A and duration
To. Sketch the power spectrum, locating its zeros, and
show that the frequency bandwidth for the pulse is in-
versely proportional to its duration.

of a prism and let the light emerging from the second face be
focused by a lens onto a screen. Suppose that the linear dis-
persion at the screen is 20 A/mm. By introducing a narrow
“exit slit” in the screen, one has a type of monochromator that
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provides a nearly monochromatic beam of light. Sketch the
setup. For an exit slit of 0.02 cm, what is the coherence time
and coherence length of the light of mean wavelength 5000 A?

A pinhole of diameter 0.5 mm is used in front of a sodium
lamp (5890 A) as a source in a Young interference experi-
ment. The distance from pinhole to slits is 1 m. What is the
maximum slit space insuring interference fringes that are
just visible?

Determine the linewidth in angstroms and hertz for laser
light whose coherence length is 10 km. The mean wavelength
is 6328 A.

a. A monochromator is used to obtain quasi-monochromatic
light from a tungsten lamp. The linear dispersion of the in-
strument is 20 A/mm and an exit slit of 200 um is used.
What is the coherence time and length of the light from the
monochromator when set to give light of mean wavelength
500 nm?

b. This light is used to form fringes in an interference exper-
iment in which the light is first amplitude-split into two
equal parts and then brought together again. If the optical
path difference between the two paths is 0.400 mm, calcu-
late the magnitude of the normalized correlation function
and the visibility of the resulting fringes.

c¢. If the maximum irradiance produced by the fringes is 100
on an arbitrary scale, what is the difference between maxi-
mum irradiance and background irradiance on this scale?

Determine the length and base area of the cylindrical volume
within which light received from the sun is coherent. For this

Filter Slits

Lamp

D?
e T
=

Coherence

purpose, let us assume “good” spatial coherence occurs within
a length that is 25% of the maximum value given by Eq. (38).
The sun subtends an angle of 0.5° at the earth’s surface. The
mean value of the visible spectrum may be taken at 550 nm.
Express the coherence volume also in terms of number of
wavelengths across cylindrical length and diameter.

15 a. Show that the fringe visibility may be expressed by

2V Lbly(7)l
(I + I)
b. What irradiance ratio of the interfering beams reduces

the fringe visibility by 10% of that for equal-amplitude
beams?

16 Show that the visibility of double-slit fringes in the mith

order is given by

V=1—(mM)
A

where A is the average wavelength of the light and AA is its
linewidth.

17 A filtered mercury lamp produces green light at 546.1 nm

with a linewidth of 0.05 nm. The light illuminates a double slit
of spacing 0.1 mm. Determine the visibility of the fringes on a
screen 1 m away, in the vicinity of the fringe of order m = 20.
(See problem 16.) If the discharge lamp is replaced with a
white light source and a filter of bandwidth 10 nm at 546 nm,
how does the visibility change?

Screen

1m

Figure 18 Problem 17.

A Michelson interferometer forms fringes with cadmium
red light of 643.847 nm and linewidth of 0.0013 nm. What is
the visibility of the fringes when one mirror is moved 1 cm
from the position of zero path difference between arms?
How does this change when the distance moved is 5 cm? At
what distance does the visibility go to zero?

19 a. Repeat problem 18 when the light is the green mercury

line of 546.1 nm with a linewidth of 0.025 nm.
b. How far can the mirror be moved from zero path differ-
ence so that fringe visibility is at least 0.85?



1 1 Fraunhofer Diffraction

INTRODUCTION

The wave character of light has been invoked to explain a number of phe-
nomena, classified as “interference effects”. In each case, two or more indi-
vidual coherent beams of light, originating from a single source and
separated by amplitude or wavefront division, were brought together again
to interfere. Fundamentally, the same effect is involved in the diffraction of
light. In its simplest description, diffraction is any deviation from geometrical
optics that results from the obstruction of a wavefront of light. For example,
an opaque screen with a round hole represents such an obstruction. On a
viewing screen placed beyond the hole, the circle of light may show complex
edge effects. This type of obstruction is typical in many optical instruments
that utilize only the portion of a wavefront passing through a round lens. Any
obstruction, however, shows detailed structure in its own shadow that is quite
unexpected on the basis of geometrical optics.

Diffraction effects are a consequence of the wave character of light. Even
if the obstacle is not opaque but causes local variations in the amplitude or
phase of the wavefront of the transmitted light, such effects are observed. Tiny
bubbles or imperfections in a glass lens, for example, produce undesirable
diffraction patterns when transmitting laser light. Because the edges of optical
images are blurred by diffraction, the phenomenon leads to a fundamental lim-
itation in instrument resolution. More often, though, the sharpness of optical
images is more seriously degraded by optical aberrations due to the imaging
components themselves. Diffraction-limited optics is good optics indeed.

The double slit studied previously constitutes an obstruction to a wave-
front in which light is blocked everywhere except at the two apertures. Recall
that the irradiance of the resulting fringe pattern was calculated by treating

267



268 Chapter 11

Fraunhofer Diffraction

the two openings as point sources, or long slits whose widths could be treated
as points. A more complete analysis of this experiment must take into ac-
count the finite size of the slits. When this is done, the problem is treated as a
diffraction problem. The results show that the interference pattern deter-
mined earlier is modified in a way that accounts for the actual details of the
observed fringes.

Adequate agreement with experimental observations is possible through
an application of the Huygens-Fresnel principle. According to Huygens, every
point of a given wavefront of light can be considered a source of secondary
spherical wavelets. To this, Fresnel added the assumption that the actual field
at any point beyond the wavefront is a superposition of all these wavelets, tak-
ing into account both their amplitudes and phases. Thus, in calculating the dif-
fraction pattern of the double slit at some point on a screen, one considers
every point of the wavefront emerging from each slit as a source of wavelets
whose superposition produces the resultant field. This procedure then takes
into account a continuous array of sources across both slits, rather than two
isolated point sources, as in the interference calculation. Diffraction is often
distinguished from interference on this basis: In diffraction phenomena, the
interfering beams originate from a continuous distribution of sources; in inter-
ference phenomena, the interfering beams originate from a discrete number
of sources. This is not, however, a fundamental physical distinction.

A further classification of diffraction effects arises from the mathemati-
cal approximations possible when calculating the resultant fields. If both the
source of light and observation screen are effectively far enough from the dif-
fraction aperture so that wavefronts arriving at the aperture and observation
screen may be considered plane, we speak of Fraunhofer, or far-field, diffrac-
tion, the type treated in this chapter. When this is not the case and the curva-
ture of the wavefront must be taken into account, we speak of Fresnel, or
near-field, diffraction. In the far-field approximation, as the viewing screen is
moved relative to the aperture, the size of the diffraction pattern scales uni-
formly, but the shape of the diffraction pattern does not change. In the near-
field approximation, the situation is more complicated. Both the shape and
size of the diffraction pattern depend on the distance between the aperture
and the screen. As the screen is moved away from the aperture, the image of
the aperture passes through the forms predicted in turn by geometrical op-
tics, near-field diffraction, and far-field diffraction.

It should be stated at the outset that the Huygens-Fresnel principle we
shall employ to calculate diffraction patterns is itself an approximation. When
no light penetrates an opaque screen, it means that the interaction of the inci-
dent radiation with the electronic oscillators, set into motion within the screen,
is such as to produce zero net field beyond the screen. This balance is not
maintained at the edge of an aperture in the screen, where the distribution of
oscillators is interrupted. The Huygens-Fresnel principle does not include the
contribution to the diffraction field of the electronic oscillators in the screen
material at the edge of the aperture. Such edge effects are important, however,
only when the observation point is very near the aperture itself.

1 DIFFRACTION FROM
A SINGLE SLIT

We first calculate the Fraunhofer diffraction pattern from a single slit, a rec-
tangular aperture characterized by a length much larger than its width. For
Fraunhofer diffraction, the wavefronts of light reaching the slit must be es-
sentially plane. In practice, this is easily accomplished by placing a source in
the focal plane of a positive lens or by simply using a laser beam with a small
divergence angle as the source. Similarly, we consider the observation screen
to be effectively at infinity by using a lens on the exit side of the slit, as shown
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in Figure 1. Then the light reaching any point such as P on the screen is due to
parallel rays of light from different portions of the wavefront at the slit
(dashed line). According to the Huygens-Fresnel principle, we can consider
spherical wavelets to be emanating from each point of the wavefront as it
reaches the plane of the slit and then calculate the resultant field at P by
adding the waves according to the principle of superposition. As shown in
Figure 1, the waves do not arrive at P in phase. A ray from the center of the
slit, for example, has an optical-path length that is an amount A shorter than
one leaving from a point a vertical distance s above the optical axis.

The plane portion of the wavefront in the slit opening represents a con-
tinuous array of Huygens’ wavelet sources. We consider each interval of
length ds as a source and calculate the result of all such sources by integrating
over the entire slit width b. Each interval contributes a spherical wavelet at P
whose magnitude is directly proportional to the infinitesimal length ds. Thus,

E; ds)\ .
dEp :< L s)ez(krwt) (1)

r

where r is the optical-path length from the interval ds to the point P. The am-
plitude (E; ds/r) has a 1/r dependence because spherical waves decrease in
irradiance with distance, in accordance with the inverse square law. That is,
for spherical waves the irradiance (which is proportional to the square of the
electric field amplitude) is proportional to 1/7% and so the electric field am-
plitude of a spherical wave is proportional to 1/r. The proportionality con-
stant £; , here taken to be constant, determines the strength of the electric
field contribution coming from each slit interval ds. Let us set r = r, for the
wave from the center of the slit (at s = 0). Then, for any other wave originat-
ing at height s, taking the difference in phase into account, the differential
field at P is

dEp _ ( E; ds >ei[k(r0+A)a)t] _ ( E, ds )ei(krowt)eikA (2)
1y + A N0 + A

Note that the quantity ry + A appears both in the amplitude factor and in the
phase factor. The path difference A is much smaller than ry and so (to lowest
order) can be ignored in the amplitude factor. However, this path difference
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Figure 1 Construction for determining ir-
radiance on a screen due to Fraunhofer dif-
fraction by a single slit.
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A cannot be ignored in the phase factor. To understand why this is so, note
that kA = (27/A) A. So as A varies by one wavelength, the phase kA varies
over an entire cycle of range 2. Figure 1 shows that A = s sin 6. With these
modifications, Eq. 2 can be rewritten as

dEp = (E’l:ds>ei(kr0—a)t)eiks sin 6 (3)
0

The total electric field at the point P is found by integrating over the width of
the slit. That is,

E | LI
EP _ /dEp — rLet(kert)/ elkS sin 6 ds (4)
slit ’ e

Integration gives

iks sin b,
Ep = ELei(kro—w’)<e ) 0) /2 (5)
ry ik sin 6 —b/2

Inserting the limits of integration into Eq. (5),

(ikbsin0)/2 __ e—(ikb sin 0)/2

EL . e
E, = £ i(krg—wt)
P Ty ¢ ik sin 0

(6)

The phases of the exponential terms suggest we make a convenient substitution,

B = 3kbsin 6 )
Then,
Ep = ﬂeiu«rw)u - Qeakw)M ®)
"o 2iB 0 2iB

where we have applied Euler’s equation to obtain the last equality. Simplify-
ing, we find

_Ebsing
n B

Thus, the amplitude of the resultant field at P, given by Eq. (9), includes the
sinc function (sin B)/B, where B varies with 6 and thus with the observation
point P on the screen. We may give physical significance to 8 by interpreting
it as a phase difference. Since a phase difference is given in general by kA,
Eq. (7) indicates a path difference associated with B of A = (b/2) sin 6,
shown in Figure 1. Thus |B| represents the magnitude of the phase difference,
at point P, between waves from the center and either endpoint of the slit,
where |s| = b/2. In the analysis leading to Eq. (9), we assumed that the field
strength E; associated with each slit interval ds was a constant. If the field
strength is not uniform across the slit, then the Fraunhofer diffraction pattern
is the Fourier transform of the function that describes the field strength at var-
ious points within the aperture.

The irradiance [ at P is proportional to the square of the resultant field
amplitude there. The amplitude of the electric field given in Eq. (9) is

EP ei(kro—wt) (9)

_Eibsing
N B

Ey
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Thus, we find the irradiance I to be

I = (806) E} = 800<ELb>zsin223
2 2\ 1 B

or

)
I = 10<Smﬁz> = I, sinc(B) (10)

where [ includes all constant factors. Equations (9) and (10) now permit us
to plot the variation of irradiance with vertical displacement y from the sym-
metry axis at the screen. The sinc function has the property that it approach-
es 1 as its argument approaches 0:

.. .. (sinp _
élglosmc(ﬁ) —1131210< F > 1 (11)

Otherwise, the zeros of sinc() occur when sin 8 = 0, that is, when

B =1kbsing) =mm m=+1,42,...
Equation (11) shows that the value m = 0 should not be included in this con-
dition. The irradiance is plotted as a function of 8 in Figure 2. Setting
k = 2m/A, the condition for zeros of the sinc function (and so of the irradi-
ance) is

mA = bsin 6 m=+1,£2,... (12)
Referring to Figure 1, note that the distance y from the center of the screen to
a point on the screen P located by the angle 6 is given approximately by
y = fsinf, where we have made the small angle approximation
sin # = tan 6. On the screen, therefore, in accordance with Egs. (11) and (12),
the irradiance is a maximum at § = 0 (y = 0) and drops to zero at values y,,
such that

mAf

Y = (13)

The irradiance pattern is symmetrical about y = 0.
The secondary maxima of the single-slit diffraction pattern do not quite
fall at the midpoints between zeros, even though this condition is more nearly

sinc 3
——— I/l,=sinc?B

B:@sine
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Figure 2 Sinc function (solid line) plotted
as a function of 8. The normalized irradiance
function 7/I, (dashed line) for single-slit
Fraunhofer diffraction is the square of

sinc(B).
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Figure 3 Intersections of the curves
y = B and y = tan B determine the angles
B at which the sinc function is a maximum.

Fraunhofer Diffraction

B=2467

y =tanf3

B=143x

/‘r /277 /377 P
approached as B increases. The maxima coincide with maxima of the sinc
function, which occur at points satisfying

d(sinﬁ)zﬂcosﬁ—sinﬁ _
dB\ B B’

or B = tan B. An angle equals its tangent at intersections of the curves
y = B and y = tan 3, both plotted in Figure 3. Intersections, excluding
B = 0, occur at 1.437 (rather than 1.57), 2.467r (rather than 2.57), 3.477
(rather than 3.577), and so on. The plot clearly shows that intersection points
approach the vertical lines defining midpoints more closely as 8 increases.
Thus, in the irradiance plot of Figure 2, secondary maxima are skewed slight-
ly away from the midpoints toward the central peak. Most of the energy of
the diffraction pattern falls under the central maximum, which is much larger
than the adjoining maximum on either side.

0

Example 1

What is the ratio of irradiances at the central peak maximum to the first of
the secondary maxima?

Solution

The ratio to be calculated is

Ig—g (sin® B/B*)p=0 1

Ig—1434 - (sin® B/B?)p-1.437 - (sin® B/B*)p=143x

2

20.18

:<.Bz ) =" =212
sim B 1.437 0.952

Thus the maximum irradiance of the nearest secondary peak is only 4.7%
that of the central peak.
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The central maximum represents essentially the image of the slit on a
distant screen. We observe that the edges of the image are not sharp but re-
veal a series of maxima and minima that tail off into the shadow surrounding
the image. These effects are typical of the blurring of images due to diffrac-
tion and will be seen again in other cases of diffraction to be considered. The
angular width of the central maximum is defined as the angle Af between the
first minima on either side. Using Eq. (12) with m = +1 and approximating
sin 6 by 0, we get

AG =2 (14)

From Eq. (14), it follows that the central maximum will spread as the slit
width is narrowed. Since the length of the slit is very large compared to its
width, the diffraction pattern due to points of the wavefront along the length
of the slit has a very small angular width and is not prominent on the screen.
Of course, the dimensions of the diffraction pattern also depend on the wave-
length, as indicated in Eq. (14).

2 BEAM SPREADING

According to Eq. (14), the angular spread A# of the central maximum in the
far field is independent of distance between aperture and screen. The linear
dimensions of the diffraction pattern thus increase uniformly with distance L,
as shown in Figure 4, such that the width W of the central maximum is given by

2LA
W= LAg="" (15)

We may describe the content of Eq. (15) as a linear spread of a beam of light,
originally constricted to a width b. Indeed, the means by which the beam is
originally narrowed is not relevant to the nature of the diffraction pattern
that occurs. If one dispenses with the slit in Figure 4 and merely assumes an
original beam of constant irradiance across a finite width b, all our results fol-
low in the same way. After collimation, a “parallel” beam of light spreads just
as if it emerged from a single opening.
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Figure 4 Spread of the central maximum
in the far-field diffraction pattern of a sin-
gle slit.
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Example 2

Imagine a parallel beam of 546-nm light of width » = 0.5 mm propagating
a distance of 10 m across the laboratory. Estimate the final width W of the
beam due to diffraction spreading.

Solution

Using Eq. (15),

2LA  2(10m)(546 X 10°m
W = = ( I - ) =0.0218 m = 21.8 mm
b 0.5 X107 m

Even highly collimated laser beams are subject to beam spreading as
they propagate, due to diffraction. It is a fundamental consequence of the
wave nature of light that beams of finite transverse extent must spread as
they propagate.

The beam spreading described by Eq. (14) is valid for a rectangular
aperture of width much less than its length. As we show in the next section,
the spreading due to diffraction from a circular aperture follows a form simi-
lar to Eq. (14) but with the replacement of the width b of the slit by the di-
ameter D of the circular aperture and with the replacement of the
wavelength A by the factor 1.22A. Furthermore, one must keep in mind that
this treatment assumes a plane wavefront of uniform irradiance.! The spread-
ing described by Eq. (15) has been deduced on the basis of Fraunhofer, or far-
field, diffraction, which means here that L must remain reasonably large. If L
is taken small enough, for example, the equation predicts a beam width less
than b, contrary to assumption. Evidently L must be larger than some mini-
mum value, L,;,, which gives a beam width W = b, that is,

b2
Lmin = a
We may conclude that we are in the far field when

2
s
A

A more general approach leads to the commonly stated criterion for far-field
diffraction in the form?

area of aperture
Ls> )\p (16)

3 RECTANGULAR AND
CIRCULAR APERTURES

We have been describing diffraction from a slit having a width » much
smaller than its length a, as illustrated in Figure 5a. When both dimensions of

A laser beam usually does not have constant irradiance across its diameter. In its funda-
mental mode, the transverse profile is a Gaussian function. Still, its spread formula is essentially that of
Eq. (14) with the beam diameter replacing b and the constant factor of 2 replaced by 4/7 = 1.27. In
comparing formulas for divergence angles, care must be taken to distinguish between the full angu-
lar spread illustrated in Figure 4 and the half-angle spread.

2Many practitioners in the field of high-energy lasers use the far-field criterion, L. > 100 (area
of aperture)/A.
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“LH—;:-/ }\Bff:‘;
) e———
\ P
Slit aperture Screen Rectangular
aperture
(a)

(©)

(b)

(d)

Figure 5 (a) Single-slit diffraction. Only the small dimension b of a long, narrow
slit causes appreciable spreading of the light along the x-direction on the screen.
(b) Rectangular aperture diffraction. Both dimensions of the rectangular aperture
are small and a two-dimensional diffraction pattern is discernible on the screen.
(c) Photograph of the diffraction image of a rectangular aperture with b < a, as in
the representation of Figure 5a. (d) Photograph of the diffraction image of a rectan-
gular aperture with b = q, as in the representation of Figure 5b. (Both photos are
from M. Cagnet, M. Francon, and J. C. Thrierr, Atlas of Optical Phenomenon,

Plate 17, Berlin: Springer-Verlag, 1962.)

the slit are comparable and small, each produces appreciable spreading, as il-
lustrated in Figure 5b. For the aperture dimension a, we write analogously, for
the irradiance, as in Eq. (10),

: 2
I = 10<8H;a> where a = (g)g sin 6 (17)

The two-dimensional pattern now gives zero irradiance for points x, y satis-
fied by either

mAf

nAf
Ym = b or x,=——

a

where both m and n represent nonzero integral values. The irradiance over
the screen turns out to be just a product of the irradiance functions in each di-
mension, or

I = Iy(sinc® B)(sinc? ) (18)
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Figure 6 Geometry used in the integration
over a circular aperture.
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In calculating this result, the single integration over one dimension of the slit is
replaced by a double integration over both dimensions of the aperture. Pho-
tographs of single-aperture diffraction patterns for rectangular and square
apertures are shown in Figure 5c and d.

When the aperture is circular, the integration is over the entire area of
the aperture since both vertical and horizontal dimensions of the aperture
are comparable. Equation (4), which describes the total electric field at point
P of Figure 1 due to single-slit diffraction, can be modified to describe dif-
fraction from a circular aperture. The required modification involves the
replacement of the incremental electric field amplitude E; ds/ryby E, dA/ry
and the conversion of the integral over the slit width to an integral over the
aperture area. Here, E 4 is a constant factor (with “units” of electric field per
unit length) that determines the strength of the electric field in the aperture
and dA is the elemental area of the aperture. The electric field at P (as in
Figure 1) due to diffraction through a circular aperture can then be written as

Ep — Qei(krn—mt) // eisk sin 6 dA
"o

Area

We take a rectangular strip of area dA = x ds as the elemental area of inte-
gration, shown in Figure 6. Using the equation of a circle, we calculate the
length x at height s to be given by

x=2VR>—§?

where R is the aperture radius. The preceding integral can then be rewritten,
leading to

R
Ep = 2E 4 ei(krowt)/ olsk sin 64 /Rz — 2ds

o R

The integral takes the form of a standard definite integral upon making the
substitutions v = s/R andy = kR sin 6:

2E,R* o
Ep = 7: el(kro_wt)/ e V1 — v dv
0 -1
The integral has the value
+1
. wJ
-1

where Ji(y) is the first-order Bessel function of the first kind, expressible by
the infinite series

2)3 2)3
h(v) = % - (ZZ/; i 1?-/22)-3

As can be verified from this series expansion, the ratio J;(y)/y has the limit %
as y — 0. Thus, the circular aperture requires, instead of the sine function for
the single slit, the Bessel function J;, which oscillates somewhat like the sine
function, as shown in the plot of Figure 7. One important difference is that
the amplitude of the oscillation of the Bessel function decreases as its argu-
ment departs from zero.
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-]1 )

Figure 7 A plot of the Bessel function
Ji(y) vs. y. The first few zeroes of the
Bessel function occur at y = 0,y = 3.832,
y = 7.016, y = 10.173, and y = 13.324.

The irradiance for a circular aperture of diameter D can now be written as

27 2
I = 10< 1)5”) , Wherey = %kD sin 0 (19)

where [ is the irradiance at y — 0 or at # = 0. The equations should be com-
pared with those of Eq. (17) to appreciate the analogous role played by the
Bessel function. Like (sin x)/x, the function J;(x)/x approaches a maximum
as x approaches zero, so that the irradiance is greatest at the center of the pat-
tern (6 = 0). (In fact, J;(x)/x tends to /5 as x tends to zero, so the irradiance
tends to I, as y tends to zero.) The pattern is symmetrical about the optical
axis through the center of the circular aperture and has its first zero when
v = 3.832, as indicated in Figure 8a and b. Thus, the irradiance first falls to
zero when

k
v = <2>D sinf = 3.832 or when Dsin6 = 1.22A (20)

The irradiance pattern of Eq. (19) is plotted in Figure 8a. The first few ze-
roes, and maxima of the normalized irradiance I/, = (2J,(y)/y)?* are list-
ed in Figure 8b. The pattern is similar to that of Figure 2 for a slit, except
that the pattern for a circular aperture has rotational symmetry about the
optical axis. A photograph is shown in Figure 8c. The central maximum is a
circle of light, the diffracted “image” of the circular aperture, and is called
the Airy disc. Equation (20) should be compared with the analogous equa-
tion for the narrow rectangular slit, mA = b sin §. We see that m = 1 for
the first minimum in the slit pattern is replaced by the number 1.22 in the
case of the circular aperture. Successive minima are determined in a simi-
lar way from other zeros of the Bessel function, as indicated in the table in
Figure 8b.

Note that the far-field angular radius (i.e., the angular half-width) of the
Airy disc, according to Eq. (20), is very nearly

1.22A

A01/2 = D

(21)

In Example 3, the beam spread from a circular aperture is compared with
that from a single slit.
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_k 5
Y= D sin 0
[ | [
-5 5
(a)
Y Iy = Q2J; (V)
18! Maximum 0 1
18 Zero 3.832 0
2™ Maximum 5.136 0.0175
2nd Zero 7.016 0
3" Maximum 8.417 0.00416
31 Zero 10.173 0
4™ Maximum 11.620 0.00160
4t Zero 13.324 0

(b)

Figure 8 Circular aperture diffraction pattern. (a) Irradiance I = I,(2J,(y)/v)?* of
the diffraction pattern of a circular aperture. By far the largest amount of light ener-
gy is diffracted into the central maximum. (b) The first few zeroes and maxima of
the normalized irradiance 1/I, = (2J;(y)/y)%. (c) Diffraction image of a circular
aperture. The circle of light at the center corresponds to the zeroth order of diffrac-
tion and is known as the Airy disc. (From M. Cagnet, M. Francon, and J. C. Thrierr,
Atlas of Optical Phenomenon, Plate 16, Berlin: Springer-Verlag, 1962.)

Example 3

Find the diameter of the Airy disc at the center of the diffraction pattern
formed on a wall at a distance L = 10 m from a uniformly illuminated cir-
cular aperture of diameter D = 0.5 mm. Assume that the illuminating light
has wavelength of A = 546 nm. Compare the beam spread to that from the
slit of width b = 0.5 mm of Example 2.

Solution

The angular radius of the Airy disc is found using Eq. 21,

1220 1.22(546 X 10~ m)

=1.33 X 10 rad
D 5% 10%m ra

A01/2 =

The radius r, of the Airy disc is then found using an argument similar to
that used in Figure 4 for single-slit diffraction,

ra = L A6, = (10m)(1.33 X 107) = 0.013m = 13 mm
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The diameter Dy of the Airy disc is, then,
D, = 2r; = 26 mm

The beam spread is comparable to, but slightly more than, that from the sin-
gle slit of Example 2, where W was found to be near 22 mm.

4 RESOLUTION

In forming the Fraunhofer diffraction pattern of a single slit, as in Figure 1,
we notice that the distance between slit and lens is not crucial to the details of
the pattern. The lens merely intercepts a larger solid angle of light when the
distance is small. If this distance is allowed to go to zero, aperture and lens co-
incide, as in the objective of a telescope. Thus, the image formed by a tele-
scope with a round objective is subject to the diffraction effects described by
Eq. (19) for a circular aperture. The sharpness of the image of a distant point
object—a star, for example—is, then, limited by diffraction. The image occu-
pies essentially the region of the Airy disc. An eyepiece viewing the primary
image and providing further magnification merely enlarges the details of the
diffraction pattern formed by the lens. The limit of resolution is already set in
the primary image. The inevitable blur that diffraction produces in the image
restricts the resolution of the instrument, that is, its ability to provide distinct
images for distinct object points, either physically close together (as in a
microscope) or separated by a small angle at the lens (as in a telescope).
Figure 9a illustrates the diffraction of two point objects S; and S, formed
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Figure 9 (a) Diffraction-limited images of
two point objects formed by a lens. As long as
the Airy discs are well separated, the images are
well resolved. (b) Separated images of two inco-
herent point sources. In this diffraction pattern,
the two images are well resolved. (c) Image of a
pair of incoherent point sources at the limit of
resolution. (Reproduced by permission from
“Atlas of Optical Phenomena”, 1962, Michael
Cagnet, Maurice Franco and Jean Claude Thri-
err; Plate 12. Copyright © Springer-Verlag
GmbH & Co KG. With Kind Permission of
Springer Science and Business Media.)
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Figure 10 Rayleigh’s criterion for just-re-
solvable diffraction patterns. The dashed
curve is the observed sum of independent
diffraction peaks.

Fraunhofer Diffraction

by a single lens. The point objects and the centers of their Airy discs are both
separated by the angle 6. If the angle is large enough, two distinct images will
be clearly seen, as shown in the photograph of Figure 9b. Imagine now that
the objects Sy and S, are brought closer together. When their image patterns
begin to overlap substantially, it becomes more difficult to discern the
patterns as distinct, that is, to resolve them as belonging to distinct object
points. A photograph of the two images at the limit of resolution is shown in
Figure 9c.

Rayleigh’s criterion for just-resolvable images—a somewhat arbitrary
but useful criterion—requires that the angular separation of the centers of
the image patterns be no less than the angular radius of the Airy disc, as in
Figure 10. In this condition, the maximum of one pattern falls directly over
the first minimum of the other. Thus, for the limit of resolution, we have, using
Eq. (21),

1.22A
Ag).. = = 22
( 0)1’1111’1 D ( )

where D is now the diameter of the lens. In accordance with this result, the
minimum resolvable angular separation of two object points may be reduced
(the resolution improved) by increasing the lens diameter and decreasing the
wavelength.

We consider several applications of Eq. (22), beginning with the follow-
ing example.

Example 4

Suppose that each lens on a pair of binoculars has a diameter of 35 mm. How
far apart must two stars be before they are theoretically resolvable by either
of the lenses in the binoculars?

Solution
According to Eq. (22),
1.22(550 x 107%)

(A0)min = —— = 1.92 X 10 rad
35 x 10

or about 4" of arc, using an average wavelength for visible light. If the stars
are near the center of our galaxy, a distance, d, of around 30,000 light-years,
then their actual separation s is approximately

s = d A = (30,000)(1.92 X 1075) = 0.58 light-years

To get some appreciation for this distance, consider that the planet Pluto at
the edge of our solar system is only about 5.5 light-hours distant. If the
stars are being detected by their long-wavelength radio waves—the lenses
being replaced by dish antennas—the resolution must, by Eq. (22), be
much less.

If the lens is the objective of a microscope, as indicated in Figure 11, the
problem of resolving nearby objects is basically the same. Making only
rough estimates, we shall ignore the fact that the wavefronts striking the
lens from nearby object points A and B are not plane, as required in far-field
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Radius of
X . AD .
mn min Airy disk

Figure 11 Minimum angular resolution of
a microscope.

diffraction equations. The minimum separation, x,,,, of two just-resolved
objects near the focal plane of the lens of diameter D is then given by

1.22/\)

. = AO . =
xmm f min f( D

The ratio D/f is the numerical aperture, with a typical value of 1.2 for a
good oil-immersion objective. Thus,

Xmin = A

The resolution of a microscope is roughly equal to the wavelength of light
used, a fact that explains the advantage of ultraviolet, X-ray, and electron mi-
croscopes in high-resolution applications. Know that some techniques used in
near-field microscopy allow one to surpass the diffraction-limited resolution
just discussed.

The limits of resolution due to diffraction also affect the human eye, Retina
which may be approximated by a circular aperture (pupil), a lens, and a
screen (retina), as in Figure 12. Night vision, which takes place with large, Figure 12 Diffraction by the eye with
adapted pupils of around 8 mm, is capable of higher resolution than daylight pupil as aperture limits the resolution of
vision. Unfortunately, there is not enough light to take advantage of the situ- objects subtending angle Afi-

ation! On a bright day the pupil diameter may be 2 mm. Under these condi-
tions, Eq. (22) gives (Af)yin = 33.6 X 107 rad, for an average wavelength of
550 nm. Experimentally, one finds that a separation of 1 mm at a distance of
about 2 m is just barely resolvable, giving (A) i = 50 X 1075 rad, about 1.5
times the theoretical limit. One’s own resolution (visual acuity) can easily be
tested by viewing two lines drawn 1 mm apart at increasing distances until
they can no longer be seen as distinct. It is interesting to note that the theoret-
ical resolution just determined for a 2-mm-diameter pupil is consistent with
the value of 1 of arc (29 X 107 rad) used by Snellen to characterize normal . __ L

visual acuity. R ——
Y a;b{a—b{ f 1’

5 DOUBLE-SLIT DIFFRACTION

The diffraction pattern of a plane wavefront that is obstructed everywhere -—7-
except at two narrow slits is calculated in the same manner as for the single f
slit. The mathematical argument departs from that for the single slit with Eq.

(4). Here, the limits of integration covering the apertures of the two slits be- Figure 13 Specification of slit width and
come those indicated in Figure 13. separation for double-slit diffraction.
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We find
E —(12)(a=b) E (12)(atb)
EP — Lei(kro—wl)/ eisk sinf 7o 4 Lei(kro—wt)/ eisk sinf 7
"o ~(1/2)(a+b) "o (1/2)(a=b)
(23)
Integration and substitution of the limits leads to
Ep = ﬂei(krofwt) 1 [e(l/Z)ik(faer) sin O_e(l/Z)ik(fafb) sin 0
s Ty ik sin 0
+e(1/2)ik(a+b) sin 0_6(1/2)ik(a—b) sin 0]
Reintroducing the substitution of Eq. (7), involving the slit width b,
B = 3kbsin (24)
and a similar one involving the slit separation a,
a = 3kasing (25)
our equation is written more compactly as
Ep = T()Lel(kro_wl)ﬁ [eza(ezﬁ_e—zﬂ) +e—za(ezB_e—zB)]
Employing Euler’s equation,
E; . b
Ep = r—;‘e‘(krﬂ’“”)ﬁ(% sin 8)(2 cos «)
Finally,
E; . 2b sin
Ep = fLel(k’Of‘*’[)iﬁ cos a (26)
o
The amplitude of this electric field is
E; 2bsin B
0= ————Cos«
o B
so that the irradiance at point P in the double-slit diffraction pattern is
- (- () (52 o
2 2 o ﬁ
or
: 2
sin
I= 410< P ) cos® a (27)
B
where

<8()C><ELb>2
L= (2=
2 )
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as defined in Eq. (10) for the single slit. Since the maximum value of
Eq. (27) is 41, we see that the double slit provides four times the maxi-
mum irradiance in the pattern center as compared with the single slit. This
is exactly what should be expected where the two beams are in phase and
amplitudes add.

On closer inspection of Eq. (27), we find that the irradiance is just a
product of the irradiances found for double-slit interference and single-slit
diffraction. The factor [(sin 8)/B]* is that of Eq. (10) for single-slit diffrac-
tion. The cos® a factor, when « is written out as in Eq. (25), is

5 2[ka(sin 0)] _ Cosz{ﬂ-a(sin 6)}

COs” a = COS
2 A

The sinc and cosine factors of Eq. (27) are plotted in Figure 14a for the case
a = 6b or @ = 6. Because a > b, the cos® a factor varies more rapidly than
the (sin? B)/B? factor. The product of the sine and cosine factors may be con-
sidered a modulation of the interference fringe pattern by a single-slit diffrac-
tion envelope, as shown in Figure 14b. The diffraction envelope has a minimum

-——- 41,
ia2
cos? a .S p
2
j B
N1
\}
| | AL L L A A HA [PLRLV] I
0 27 47 6w 87 107w 127 « 0 67 127
™ 27 B
(a) (b)

|

(© (d)

Figure 14 (a) Interference (solid line) and diffraction (dashed line) functions plot-
ted for double-slit Fraunhofer diffraction when the slit separation is six times the slit
width (a = 6b). (b) Irradiance for the double slit of (a). The curve represents the
product of the interference and diffraction factors. (c) Diffraction pattern due to a
single slit. (d) Diffraction pattern due to a double-slit aperture, with each slit of
width b like the one that produced (c), but with a/b unspecified. (Both photos are
from M. Cagnet, M. Francon, and J. C. Thrierr, Atlas of Optical Phenomenon, Plate
18, Berlin: Springer-Verlag, 1962.)
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when B8 = mr, withm = 1, £2,..., as shown. In terms of the spatial angle 6,
this condition is

diffraction minima: mA = b sin 0 (28)

as in Eq. (12). When these minima happen to coincide with interference
fringe maxima, the fringe is missing from the pattern. Interference maxima
occur for @« = pmr, with p = 0, £1, £2,..., or when

interference maxima: pA = a sin 6 (29)

When the conditions expressed by Egs. (28) and (29) are satisfied at the same
point in the pattern (same 6), dividing one equation by the other gives the
condition for missing orders.

condition for missing orders: a = <5l>b (30)

or

4
o= (n)

Thus, when the slit separation is an integral multiple of the slit width, the con-
dition for missing order is met exactly. For example, when a = 2b, then
p =2m = £2, +4, £6,... gives the missing orders of interference. For the
case plotted in Figure 14a and b, a = 6b, and the missing orders are those for
which p = +6, £12, and so on. Figure 14c and d contains photographs of a
single-slit pattern and a double-slit pattern with the same slit width. (What is
the ratio of a/b in this case? Would a ratio of a/b = 9 fit the pattern shown?)
Evidently, when a = Nb and N is large, the first missing order at p = £N is
far from the center of the pattern. To produce a simple Young’s interference
pattern for two slits, one accordingly makes a > b so that N is large. A large
number of fringes then fall under the central maximum of the diffraction
envelope. As a trivial but satisfying case, observe that when a = b, Eq. (30)
requires that all orders (except p = 0) are missing. These dimensions cannot
be satisfied, however, unless the two slits have merged into one and are un-
able to produce interference fringes. When a = b, the resulting pattern is, of
course, that of a single slit.

6 DIFFRACTION FROM MANY SLITS

For an aperture of multiple slits (a grating), the integrals of Eq. (23), together
with Figure 13, are extended by integrating over N slits. The individual slits are
identified by the index j in the following expression for the resultant amplitude:

E N2 (¢ plE@i—1a+b)2 [(2j—1)a+b]/2
EP _ 7Lei(kr07wt) 2 { / eisk sin 6 ds + / eisk sin 6 ds}
"o =1 UJ[=@2j-1)a—b]2 [(2j—1)a—b]/2

(1)

As j increases, pairs of slits symmetrically placed below (first integral) and
above (second integral) the origin are included in the integration. When
j = 1, for example, Eq. (31) reduces to the double-slit case, Eq. (23). When
j =2, the next two slits are included, whose edges are located at



Fraunhofer Diffraction

%(—361 — b) and %(—351 + b) below the origin and %(351 — b) and %(341 + b)
above the origin.> When j = N/2, all slits are accounted for.

Let us first concentrate on the integrals contained within the curly
brackets, which we shall refer to as K, temporarily. After integration and sub-
stitution of limits, we get

1 B -
= — {e—zk sin 0[(2j—1)a—b]/2 — e iksin 9[(21—1)a+b]/2}
ik sin 0

4 1 {eik sin 0[(2j—1)a+b]/2 _eik sin 0[(2j71)a7b]/2}
ik sin 0
Using Egs. (24) and (25) again for « and S,

= zl.jlg[e—i(Zj—l)a(eiﬁ _e—iﬁ) + ei(Zj—l)a(eiﬁ _e—iﬁ)]
l

With the help of Euler’s equation, this can be written as

K

K = 2?3(21’ sin B){2 cos[(2j — 1)a]}

or
sin B
B

where we have expressed the cosine as the real part of the corresponding
exponential. Returning to Eq. (31), we need next the sum S:

K =2b Re [¢/@71)9]

s = 2pS0P

B i(2j-1)
Re » e''77«
Expanding the sum, we find

sin 3
B

S =2b Re [eia +ei3a +ei5a + ... +ei(N_1)a]

The series in brackets is a geometric series whose first term a and ratio r can
be used to find its sum, given by

a<rn _ 1) _ eia|:(62ia?N/2 _ 1] _ e'iNa _ 1

r—1 eZta -1 eta _ e*wz

Using Euler’s equation, this can be recast into the form

(cos Na — 1) + isin Na  i(cos Na — 1) — sin Na
2isina - —2sin o

whose real part is (sin Na)/(2 sin «). Then,

sin B sin N«
B sina

S=b

3This expression is adapted to N even. For N large, one need not be concerned about the pat-
ity of N. For N small, however, N odd can be handled by taking the origin at the center of the central
slit. This approach is left to the problems.

285
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and

Ep = ELei(k’o—wf){bSinBSinNa}
"o B sin «

As before, the irradiance is proportional to the square of the field amplitude,

I <sin,6’>2 (sinNoz)2
-0 B sin «

diffraction interference

(32)

where [ includes all the constants, the first set of brackets encloses the dif-
fraction factor, and the second set of brackets encloses the interference
factor.

Although derived here for an even number N of slits, the result ex-
pressed by Eq. (32) is valid also for N odd (see problem 21). When N = 1 and
N =2, Eq. (32) reduces to the results obtained previously for single- and
double-slit diffraction, respectively. By now we are familiar with the factor in
B representing the diffraction envelope of the resultant irradiance. Let us
examine the factor (sin Na/sin a)?, which evidently describes interference
between slits. When a = 0 or some multiple of 7, the expression reduces to
an indeterminate form. We can show, in fact, that for such values, the expres-
sion is a maximum. Employing I’Hopital’s rule for any m = 0, +1, +2,...,

lim sin N« ~ lim N cos Na LN

a—mm SIN o a—>mm COS «

Thus, the interference factor in Eq. (32) describes a series of sharp irradi-
ance peaks (principal maxima). The irradiance at a principal maximum is
proportional to N2 and the principal maxima are centered at values for
which o = 0, £7, £27, £37, and so on. For the case N = 8, four such
peaks, at « = 0, 7, 27, and 37 are shown in Figure 15a. In between suc-
cessive peaks there are shown N — 2 = 6 secondary peaks. The diffraction
factor in Eq. (32) is plotted as the dotted line in Figure 15a, and the full ir-
radiance which is proportional to the product of the diffraction and inter-
ference factors is plotted in Figure 15b. Note that the resulting irradiance
in Figure 15b reflects the presence of the limiting diffraction envelope.
Let us now develop a more explicit understanding of the formation of
the secondary peaks. The interference factor (sin(Na)/sin a)? goes to zero
when the function in its numerator (sin(/Na)) goes to zero but the function in
its denominator (sin «) does not. The numerator is identically zero under the
condition « = pw/N, where p takes on integer values. For the 8-slit case
(N = 8) and p from 0 to N = &, the numerator goes to zero for the sequence
of values a = 0, w/8, 27/8, 37/8, 41/8, 57/8, 67r/8, 7m/8, and 8=/8. Note
that « = 0 when p = 0 and @« = m when p = N = 8. These values, @ = 0
and o = m, correspond to the first two principal maxima in Figure 15. For
N = 8, the function sin( Ne) in the numerator of the interference factor goes
to zero for each of the seven intermediate terms in the sequence (¢ = /8 to
a = 7m/8), but the function in the denominator sin a does not go to zero for
the these seven intermediate values. Thus, for the case at hand, there are
N — 1 =7 zeroes, and as a consequence N — 2 = 6 secondary maxima,
between the principal maxima. For the case of arbitrary N, there will be
N — 1 zeroes and N — 2 secondary peaks between principal maxima. We
have looked in detail at the behavior as p ranges from 0 to N. This pattern
simply repeats for p from N to 2N and so on, thereby accounting for all of the
principal and secondary peaks. The situation described by Eq. (32) and
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presented graphically in Figure 15 is precisely described by the following set
of equations and conditions:

fora = %ﬁ, p=0+1,42,. +N.. . +2N...
principal maxima occur for p = 0, £ N, £2N, ... (33)

secondary minima occur for p = all other integer values

A practical device that makes use of multiple-slit diffraction is the diffraction
grating. For large N, its principal maxima are bright, distinct, and spatially
well separated. According to Eq. (33) the principal maxima occur for
p/N = m =0, £1, £2,.... Thus the condition for the principal maxima is
simply

a = mm m=0,+1,+£2...

Recall from Eq. (25) that @ = (1/2)ka sin § = a sin /A, so that the condi-
tion for the existence of a principal maximum can be recast as

mA = asin 6 (34)

287

Figure 15 (a) Interference  factor
sin?( Ne)/sin?(a) (solid line) and diffraction
factor sin®> B/B? (dashed line) plotted for
multiple-slit Fraunhofer diffraction when
N = 8 and a = 3b. The interference factor
peaks at N2 = 82 = 64. The diffraction fac-
tor has a maximum value of 1 for g = 0.
sin® B sin’(Na)
B> sina
for the multiple slit of (a). The irradiance at
the peak of the central principal maximum
(at @ = 0) is I = N?I,. Subsequent princi-
pal maxima are less bright since they are lim-
ited by the diffraction envelope, sin? /8>
(dashed line).

(b) Irradiance function I = I,
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Figure 16 Representative grating slits illu-
minated by collimated monochromatic
light. Formation of the first-order diffrac-
tion maximum is shown.

Fraunhofer Diffraction

Equation (34) is sometimes called the diffraction grating equation and m is
identified as the order of the diffraction.

Now as the number N of slits increases, the brightness of the princi-
pal maxima increase as N°. This increase in irradiance at the peaks of the
principal maxima must be accompanied by an overall decrease in irradi-
ance between the peaks of the principal maxima. Thus gratings with more
slits direct a greater fraction of the energy emerging from the slits towards
the positions of the peaks of the principal maxima than do gratings with
fewer slits. Gratings with more slits produce brighter and narrower princi-
pal maxima.

Returning to Eq. (34), some insight is gained by examining Figure 16, which
shows representative slits of a grating illuminated by plane wavefronts of
monochromatic light. Wavelets emerging from each slit arrive in phase at
angular deviation 0 from the axis if every path difference like AB (= a sin 0)
equals an integral number m of wavelengths. When AB = mA, the grating
Eq. (34) follows immediately. When all waves arrive in phase, the resulting
phasor diagram is formed by adding N phasors all in the same “direction,”
giving a maximum resultant. At such points, the principal maxima of Figure
15 are produced. Secondary maxima result because a uniform phase differ-
ence between waves from adjoining slits causes the phase diagram to curl up,
with a smaller resultant. At each of the minima, the phasor diagram forms a
closed figure, so that cancellation is complete. The phase difference between
waves from adjoining slits and in the direction of 6 can be found from Figure
15a by recalling that the angle a represents half the phase difference
between successive slits. Thus, the first principal maximum from the center,
at « = m, occurs when the phase difference between successive waves is pre-
cisely 2.

Photographs of diffraction fringes produced by 2, 3, 4, and 5 slits are
shown in Figure 17. An examination of the four photographs shows that the
principal maxima become narrower and secondary maxima begin to appear
as the number of slits increases. For example, notice that the N — 2 = 3 sec-
ondary maxima appear between the principal maxima for the case N = 5.
The diffraction grating—for N very large—is discussed further in some detail
in the next chapter.
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(A)N=5

PROBLEMS

Figure 17 Diffraction fringes produced in
turn by two, three, four, and five slits. (From
M. Cagnet, M. Francon, and J. C. Thrierr,
Atlas of Optical Phenomenon, Plate 19,
Berlin: Springer-Verlag, 1962.)

1 A collimated beam of mercury green light at 546.1 nm is nor-
mally incident on a slit 0.015 cm wide. A lens of focal length
60 cm is placed behind the slit. A diffraction pattern is
formed on a screen placed in the focal plane of the lens. De-
termine the distance between (a) the central maximum and
first minimum and (b) the first and second minima.

Collimated
beam gyt 1 ens

gty
/ ﬂ-‘%f 60 cm

0.015 cm

Soo~own

Figure 18 Problem 1.

2 Call the irradiance at the center of the central Fraunhofer

diffraction maximum of a single slit /; and the irradiance at
some other point in the pattern /. Obtain the ratio /], for a
point on the screen that is 3/4 of a wavelength farther from
one edge of the slit than the other.

The width of a rectangular slit is measured in the laboratory
by means of its diffraction pattern at a distance of 2 m from
the slit. When illuminated normally with a parallel beam of
laser light (632.8 nm), the distance between the third mini-
ma on either side of the principal maximum is measured.
An average of several tries gives 5.625 cm.

a. Assuming Fraunhofer diffraction, what is the slit width?
b. Is the assumption of far-field diffraction justified in this
case? What is the ratio L/L;,?
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Collimated
beam gy

L/ ﬁ
- LA 5625cm
-L—Zm

Figure 19 Problem 3.

In viewing the far-field diffraction pattern of a single slit il-
luminated by a discrete-spectrum source with the help of
absorption filters, one finds that the fifth minimum of one
wavelength component coincides exactly with the fourth
minimum of the pattern due to a wavelength of 620 nm.
What is the other wavelength?

Calculate the rectangular slit width that will produce a cen-
tral maximum in its far-field diffraction pattern having an
angular breadth of 30°, 45°, 90°, and 180°. Assume a wave-
length of 550 nm.

Consider the far-field diffraction pattern of a single slit of
width 2.125 um when illuminated normally by a collimated
beam of 550-nm light. Determine (a) the angular radius of
its central peak and (b) the ratio 7/, at points making an
angle of # = 5°,10°,15°, and 22.5° with the axis.

a. Find the values of B for which the fourth and fifth sec-
ondary maxima of the single-slit diffraction pattern occur.
(See the discussion surrounding Figure 3.)

b. Find the ratio of the irradiance of the maxima of part (a)
to the irradiance at the central maximum of the single-
slit diffraction pattern.

Compare the relative irradiances of the first two secondary
maxima of a circular diffraction pattern to those of a single-
slit diffraction pattern.

The Lick Observatory has one of the largest refracting
telescopes, with an aperture diameter of 36 in. and a focal
length of 56 ft. Determine the radii of the first and sec-
ond bright rings surrounding the Airy disc in the diffrac-
tion pattern formed by a star on the focal plane of the
objective. See Figure 8b.

A telescope objective is 12 cm in diameter and has a focal
length of 150 cm. Light of mean wavelength 550 nm from a
distant star enters the scope as a nearly collimated beam.
Compute the radius of the central disk of light forming the
image of the star on the focal plane of the lens.

Objective
lens

Star
light

1

12

13

14

15

16

17

Fraunhofer Diffraction

Suppose that a CO, gas laser emits a diffraction-limited
beam at wavelength 10.6 um, power 2 kW, and diameter 1
mm. Assume that, by multimoding, the laser beam has an es-
sentially uniform irradiance over its cross section. Approxi-
mately how large a spot would be produced on the surface
of the moon, a distance of 376,000 km away from such a de-
vice, neglecting any scattering by the earth’s atmosphere?
What will be the irradiance at the lunar surface?

Assume that a 2-mm-diameter laser beam (632.8 nm) is dif-
fraction limited and has a constant irradiance over its cross
section. On the basis of spreading due to diffraction alone,
how far must it travel to double its diameter?

Two headlights on an automobile are 45 in. apart. How far
away will the lights appear to be if they are just resolvable
to a person whose nocturnal pupils are just 5 mm in diame-
ter? Assume an average wavelength of 550 nm.

Assume that the pupil diameter of a normal eye typically can
vary from 2 to 7 mm in response to ambient light variations.

a. What is the corresponding range of distances over which
such an eye can detect the separation of objects 1 mm
apart?

b. Experiment to find the range of distances over which
you can detect the separation of lines placed 1 mm.
apart. Use the results of your experiment to estimate the
diameter range of your own pupils.

A double-slit diffraction pattern is formed using mercury
green light at 546.1 nm. Each slit has a width of 0.100 mm.
The pattern reveals that the fourth-order interference max-
ima are missing from the pattern.

a. What is the slit separation?
b. What is the irradiance of the first three orders of inter-
ference fringes, relative to the zeroth-order maximum?

a. Show that the number of bright fringes seen under the
central diffraction peak in a Fraunhofer double-slit pat-
tern is given by 2(a/b) — 1, where a/b is the ratio of slit
separation to slit width.

b. If 13 bright fringes are seen in the central diffraction
peak when the slit width is 0.30 mm, determine the slit
separation.

a. Show that in a double-slit Fraunhofer diffraction pat-
tern, the ratio of widths of the central diffraction peak to
the central interference fringe is 2(a/b), where a/b is the
ratio of slit separation to slit width. Notice that the result
is independent of wavelength.

b. Determine the peak-to-fringe ratio, in particular when
a = 10b.

Focal
plane

Diffraction
pattern

56 ft

Figure 20 Problem 9.
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Calculate by integration the irradiance of the diffraction
pattern produced by a three-slit aperture, where the slit
separation a is three times the slit width b. Make a careful
sketch of I versus sin § and describe properties of the pat-
tern. Also show that your results are consistent with the
general result for N slits, given by Eq. (32).

Make a rough sketch for the irradiance pattern from seven
equally spaced slits having a separation-to-width ratio of 4.
Label points on the x-axis with corresponding values of «
and B.

A 10-slit aperture, with slit spacing five times the slit width
of 1 X 107 cm, is used to produce a Fraunhofer diffraction
pattern with light of 435.8 nm. Determine the irradiance of
the principal interference maxima of orders 1,2,3,4,and 5
relative to the central fringe of zeroth order.

Show that one can arrive at Eq. (32) by taking the origin of
coordinates at the midpoint of the central slit in an array
where N is odd.

A rectangular aperture of dimensions 0.100 mm along
the x-axis and 0.200 mm along the y-axis is illuminated by
coherent light of wavelength 546 nm. A 1-m focal length
lens intercepts the light diffracted by the aperture and pro-
jects the diffraction pattern on a screen in its focal plane.
See Figure 21.

a. What is the distribution of irradiance on the screen near
the pattern center as a function of x and y (in mm) and
Iy, the irradiance at the pattern center?

b. How far from the pattern center are the first minima
along the x and y directions?

¢. What fraction of the [ irradiance occurs at 1 mm from
the pattern center along the x- and y-directions?

d. What is the irradiance at the point (x = 2, y = 3) mm?

What is the angular half-width (from central maximum to
first minimum) of a diffracted beam for a slit width of (a) A;
(b) 5A; (c) 10A?

Ay

Aiaerture

A = 546 nm

Collimated
beam

_ >

24

25

26

27

28
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A property of the Bessel function J;(x) is that, for large x, a
closed form exists, given by

sin x — cos x
Varx

Find the angular separation of diffraction minima far from
the axis of a circular aperture.

Ji(x) =

We have shown that the secondary maxima in a single-slit
diffraction pattern do not fall exactly halfway between min-
ima, but are quite close. Assuming they are halfway:

a. Show that the irradiance of the mth secondary peak is
given approximately by

[(m +3)m ]

b. Calculate the percent error involved in this approxima-
tion for the first three secondary maxima.

Im = [0

Three antennas broadcast in phase at a wavelength of 1 km.
The antennas are separated by a distance of %km and each
antenna radiates equally in all horizontal directions. Be-
cause of interference, a broadcast “beam” is limited by in-
terference minima. How many well-defined beams are
broadcast and what are their angular half-widths?

A collimated light beam is incident normally on three very
narrow, identical slits. At the center of the pattern projected
on a screen, the irradiance is 7,,y.

a. If the irradiance Ip at some point P on the screen is zero,
what is the phase difference between light arriving at P
from neighboring slits?

b. If the phase difference between light waves arriving at P
from neighboring slits is 7, determine the ratio Ip/I .

c¢. Whatis Ip/1 ., at the first principal maximum?

d. If the average irradiance on the entire screen is /,,, what
is the ratio Ip/1,, at the central maximum?

Draw phasor diagrams illustrating the principal maxima and
zero irradiance points for a four-slit aperture.

Screen
Lens
f=1m
I B, I
1m \

Figure 21 Problem 22.
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INTRODUCTION

In this chapter we give a formal treatment of diffraction due to a large num-
ber of slits or apertures. The diffraction grating equation is first generalized to
handle light beams incident on the grating at an arbitrary angle. Performance
parameters of practical interest are then developed in discussions of the spec-
tral range, dispersion, resolution, and blaze of a grating. A brief discussion of
interference gratings and several conventional types of grating spectrographs
ends the chapter.

1 THE GRATING EQUATION

A periodic, multiple-slit device designed to take advantage of the sensitivity
of its diffraction pattern to the wavelength of the incident light is called a
diffraction grating. A grating equation may be generalized for the case when
the incident plane wavefronts of light make an angle 6; with the plane of the
grating, as in Figure 1. The net path difference for waves from successive slits
is then

A=A1+A2=asin95+asin0m (1)

The two sine terms in the path difference may add or subtract, depending on
the direction 0,,, of the diffracted light. To make Eq. (1) correct for all angles
of diffraction, we need to adopt a sign convention for the angles. When the
incident and diffracted rays are on the same side of the grating normal, as
they are in Figure 1, 6,, is considered positive. When the diffracted rays are on
the side of the grating normal opposite to that of the incident rays, 6,, is
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considered negative. In the latter case, the net path difference for waves from
successive slits is the difference A; — A,, as would be evident in a modified
sketch of Figure 1. In either case, when A = mA, all diffracted waves are in
phase and the grating equation becomes

a(sin §; + sin 6,,) = mA, m=0,+1,£2, ... (2)

When it is not necessary to distinguish between angles, the subscript on the angle
of diffraction, 6,,, is often dropped. For each value of m, monochromatic radia-
tion of wavelength A is enhanced by the diffractive properties of the grating. By
Eq. (2), the zeroth order of interference, m = 0, occurs at §,, = —6;, the direc-
tion of the incident light, for all A. Thus, light of all wavelengths appears in the
central or zeroth-order peak of the diffraction pattern. Higher orders—both
plus and minus—produce spectral /ines appearing on either side of the zeroth
order. For a fixed direction of incidence given by 6;, the direction 6,, of each
principal maximum varies with wavelength. For orders m # 0, therefore, the
grating separates different wavelengths of light present in the incident beam, a
feature that accounts for its usefulness in wavelength measurement and spectral
analysis. As a dispersing element, the grating is superior to a prism in several
ways. Figure 2a illustrates the formation of the spectral orders of diffraction for
monochromatic light. Figure 2b shows the angular spread of the continuous
spectrum of visible light for a particular grating. Note that second and third
orders in this case partially overlap. Before wavelengths of spectral lines appear-
ing in a region of overlap can be assigned, the actual order of the line must first
be ascertained so that the appropriate value of m can be used in Eq. (2). Unlike
the prism, a grating produces greater deviation from the zeroth-order point for
longer wavelengths. Thus, when the spectrum is not a simple one, the overlap
ambiguity is often resolved experimentally by using a filter that removes, say, the
shorter wavelengths from the incident light. In this way, the spectral range of the
incident light is limited by filtering until overlap is removed and each line can be
correctly identified. At other times it may be advisable to limit the wavelength
range accepted by the grating by first using an instrument of lower dispersion.

2 FREE SPECTRAL RANGE
OF A GRATING

For diffraction gratings, the nonoverlapping wavelength range in a particular
order is called the free spectral range, .. Overlapping occurs because in the
grating equation, the product a sin § may be equal to several possible combina-
tions of mA for the light actually incident and processed by the optical system.

293

Figure 1 Neighboring grating slits illumi-
nated by light incident at angle 6; with the
grating normal. For light diffracted in the di-
rection 6,,, the net path difference from the
two slitsis A; + A,.
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Mirror

Grating /

space occupied by this spectrograph can be quite large. The first three orders
of diffraction are most commonly used. Typical angles of incidence may vary
within the range 30° to 45°, and angles of diffraction may vary between 25° on
the opposite side of the grating normal to 85° on the same side of the normal
as the slit. Thus, much of the Rowland circle is useful for recording various
portions of the spectrum. In Figure 11, the first-order spectrum spread (200 to
1200 nm) around the Rowland circle is shown for §; = 38° and a grating of
1200 grooves/mm. Spectral lines formed in this way may suffer rather severely
from astigmatism. The Wadsworth spectrograph (Figure 12) uses a concave
mirror, a concave grating, and a plate holder. The plate is mounted normal to
the grating. The primary mirror collimates the light incident on the grating.
This arrangement eliminates astigmatism and spherical aberration and dis-
penses with the need for the Rowland circle. Spectra are observed over a
range making small angles to the grating normal, perhaps 10° to either side.
To record different regions of the spectrum, the grating can be rotated and
higher orders can be used. This version of a grating spectrograph allows more
compact construction than does the Paschen-Runge design.

The ability of diffraction gratings to direct light of different wavelengths
in different directions finds use in several other applications. For example, a
Littrow grating can be used as a wavelength-selective mirror to ensure that
only one of several laser lines experiences low loss in a laser cavity. Diffrac-
tion gratings are also sometimes used in wavelength-division multiplexing
and demultiplexing systems in order to combine different-wavelength signals
prior to launching them into an optical fiber and then to separate these sig-
nals once they have exited the fiber.

PROBLEMS

305

Figure 12 Wadsworth mount for a concave
grating.

1 What is the angular separation in second order between 6cm

light of wavelengths 400 nm and 600 nm when diffracted by

e
a grating of 5000 grooves/cm?

I
Lens |
: )\blue

B
2 a. Describe the dispersion in the red wavelength region -
around 650 nm (both in °/nm and in nm/mm) for a trans-
mission grating 6 cm wide, containing 3500 grooves/cm,
when it is focused in the third-order spectrum on a screen

by a lens of focal length 150 cm.

b. Find the resolving power of the grating under these

Grating M

N = 650 nm
m=23
|

Figure 13 Problem 2.

conditions. grating having a groove separation of 10 cm and illumi-
3 a. What is the angular separation between the second- nated by light of 600 nm?
order principal maximum and the neighboring minimum b. What slightly longer (or slightly shorter) wavelength

on either side for the Fraunhofer pattern of a 24-groove would have its second-order maximum on top of the



612 Answers to Selected Problems

13.

15.
16.
17.
18.
19.
20.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
34.

()M, = 10* W/m?, 1,0 =0)=796 W/sr, L, =
3180 W/m?-sr (b) 1.56 x 10~* W (c) 35.9 W/m?
5.7 cm

f=533cm, 13.33 cm, 1.86 cm

5.31t07.0ft

1.3 x 10° W/em?

(a)0.90cm  (b)5.45cm, 3 X

(a)27.8 mm (b) f/3.1, f/5.4, f/9.4

(¢) 16.0,9.26, 5.35 mm (d) 0.03,0.09, 0.27 s
(a) 2.8 cm (b) 10 x

(a) 320 x () 0.516 cm

(a) 46.7 x (b) 8.68 cm

5cm

14.9 cm

(@) 7x (b)2cm (¢) 5 mm (d) 2.3 cm (e) 337 ft
(b) 7.50 x; 8.70 x

1.05 cm

(a)8cm,3x (b)7.38 cm, 2.6 X

1.25 cm farther from the objective

(a) 12.5%x (b) 15 x (c) 0.13 cm, 3 mm, (d) 3.8°
—2.5ft, —180 %

Chapter 4

10.
11.

15.
16.
17.

18.

21.
22.

y=a o~ bx+100?
3
@ Y= s
(a) (1) and (2) qualify because they satisfy the wave
equation; more simply, if w = z + vt, they are
functions of w: y = Asin?(4zw) and y = Aw?’.
(b) (1) v = 1 m/s in —z-direction; (ii) v = 1 m/s in
+x-direction
10 m/s in +x-direction
(a) y = 2sin[272(z/5 m + t/3 s)]
(b) w = 2sin(2x/5)(z/m + 3t/s)
() w =2exp[(2zi(z/5 m +1/3 s)]
(a) y = (5 m) sin(zx/25 m)
(b) y = (5 m) sin[(z/25)(x/m + 8)]
(a) 0.01 cm (b) 1000 Hz (¢) 628.3 cm™ (d) 6283 s7!
(e) 1 ms (f) 10 cm/s (g) 10 cm
(a) +1 in y-direction (b) —C/B in x-direction
(¢) Cin z-direction
y = 15sin(kx + #/3)
(b) n/2,7/3,0,—7x/2,0.67 (c) Subtract z/2 from each.

(a) Asin(2r/A)(z — vt) (b) A sin(27r//l)(\/5x =+ ut)
(©) Asin27/A) [<\/§/3)(x ty+o)E Ut]

E =870 V/m, B=290x107°T

(@)5x 1077 T (b) 19.88 W/m?

(a) 1.01 x 10* V/m, 3.37x 10T

(b) 4.76 x 102! /m?-s

(c) E = 1010sin 27(1.43 x 10% + 4.28 x 10'),
rinm,fins

(a) 8.75 x 107> W/m2, 2.57 V/m (b) 2 x 10"> W/m?,
1.23x 108 V/m, 0.410 T

v =0.168c
v=-0917c

23. 2A4=0.12A

Chapter 5

1. (a) The waves move in opposite directions along the x-
axis, E; to the right, E, to the left, with equal speeds
of £ m/s. (b)yr=3s ©)x=1m

2. (b) Egp =8.53c0s(0.207 — wt)

3.  Eg =6.08cos(0.36x — 2xt/s)

4.  y=11.6sin(wt + 0.4027x)

5. E =0.695c0s(0.349 — xt/s)

6. (a)2V/m (v)0.2 V/m

7. w(t) = (2.48 cm)cos(2.51 — (20/s)t)

8. (3 Uy = Up[l — (w/n)(dnldw)] (b) U, <V,

9. ¢/1.56

10. vp=c/1.5;ug =c/1.73

12. U, = A = constant

14. 2(v/c)y,

15. 14 cm; 1.57 cm; 0.785 cm; 0 cm/s; T seconds

16. (a) 1.5 cm; 25 Hz; 20 cm; 5 m/s; opposite directions
(b) 10 cm (c) =3 cm; 0 cm/s; 7.40 X 10* cn/s?

18. 40

Chapter 6

1. (a) 122 nm, 103 nm, 97.3 nm; ultraviolet
(b) 656 nm, 486 nm, 434 nm; visible.

2. (a)no (b) less than 91.2 nm (c) less than 365 nm

3. (0)24x1072'1=0.015eV (c) 0.55

4. (@)8.6x1070J=054eV (b)5x 10710

6. 0

10. (a) 0.4830 pm (b) 0.0756 W

11. 6266 K; 462.5 nm

12. 6105 K

15. 0.45 nm

16. 107 s; 3000 m (b)5x1071%s; 15¢cm

17. 6

18. (a) half angle spread: 0.4 mrad (b) 80 cm.

19. 3.6 mm

20. (a) 0.81 pm; 0.75 pm; 0.585 pm; 0.525 pm
(b) 76%; 70%; 55%; 49%

21. (a)315W  (b) 1.26%

Chapter 7

1. (a) 11,950 and 21,240 W/m? (b) 12,960 W/m?
(c) 33,200 W/m? (d) 0.95

2. 0.86,0

3. 0.8;3.73/1

4. (b) 1.78,2.55,4.00,13.9

5. Lloyd’s mirror interference fringes are produced,
aligned parallel to the slit, and separated by 0.273 mm.
The irradiance of the pattern is given by
1 =4I, sin?(115y), with y measured in cm from the
mirror surface.

6. 509 nm

7. 514.5nm

8. To acquire coherent beams; 800 nm



10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.
21.
23.
25.
26.
27.

(a) 833 cm  (b) 83.3 fringes
556 nm, 455 nm

20.3'

6/5//

35'40”

9.09 x 1073 cm; orders 4 and 3, respectively

498 nm

1.33; 103 nm

(a) 2.78% (b) 89.3 nm () 1%

Soap film becomes wedge-shaped under gravity; the
angle of the wedge is 1'14”

15

1.16 X 107 cm

1.09 mm; 184

3m

603.5 nm; 2.39 mm; 2.87 X 10~* cm

928 nm

(2) 980 V/m (b) 30° (¢) r' = 0.28;1t' = 0.9216

(d) 274, 253, 19.8 V/m; 7.8%, 6.7%, 0.041%

(e) 903, 70.8 V/m; 85%, 0.52% (f) 258 nm

(c) 150 nm

Chapter 8

1.

e Al

11.
12.
13.
14.

15.

16.
17.

18.
20.

21.
22.

436 nm
One mirror makes a wedge angle of 0.0172° with the
image of the other, reflected through the beam splitter.
Fizeau fringes result.
23.75 ym

() 80,000;  (b)79,994
(a)n=1+ NA2L

(a) 11.2° (b) 45.9°
79.1 nm or A/8

(a) 48,260 (b) 0.01013 cm

(a) 3.996 x 10° (b)3.16 x 10°
(c) 0.318 mm (d) 6.29 A (e) 0.002 A
(2) 329,670 (b) 361 (c) 9.8 x 10°
2.18 cm

0.161 mm

(a) 360°
1;0.47
(@ R=

16
For lossless mirrors with R ; = |r1’2 ,

1-R)(1-R

B (1—\/T;2)2ﬁ\/TZR)2sin25/2;R =1-T
(a) 70 (b) 1.5 GHz (c) 21 MHz (d) 2.2 x 107 (e) 8 ns
9.99 x 10°;1570;3.14 x 10%;8.4 x 107%; 3.14 x 108;
1.6x 107 nm; 250 nm; 0.16 nm; 3 GHz; 1.91 MHz
(@) 0.5um (b)2x10~8 pm (c) —2.48 x 107% um
(a) 10.6 GHz (b) 0.83 GHz; 0.62 GHz

(b) 153

(b)180° (c)2

42 sin® /2
(1=r2)*+4r2sin2 5/2

2

Chapter 9

1.
2.

3.

f(x) = (4/n)(sin kx + 1sin3kx + 1sin Skx + - )
_ Ly Fo 26y _25
f@ = —+ Sfcoswf + = cos 2wt 15”cos4a)t+
=i (—o’za)z)/Z
g(®) Wi

v o

® =N

9.

10.
11.
12.
13.
14.
15.
17.
18.
19.

613

If the width of the first is &, the width of the second is
1/6. Thus the spectrum broadens as the original
Gaussian narrows, and vice versa.

|lg(@)|?* = (A%zy/4n?) (sinulu)?, where u = wr)/2
The narrow-band filter has a coherence length better
by one order of magnitude: 3.48 X 107> m

1.3 fm; 10° Hz; 300 m
0.0243 mm

(a) 0.00138 nm

2.5 mm

0.0625 cm; 2.08 x 10712 5

0.144 cm

4x1077 A;3 x 10* Hz

(2) 2.08 x 10712 5, 0.0625 cm (b) 0.36, 0.36 (c) 53
1.01 x 10™* cm, 2.90 x 107® cm?; 1.8, 35

(b) 2.55

0.998, 0.63

0.937, 0.686, 15.95 cm
(a) 0,0, 0.596 cm

(b) 1 ns

(b) 0.895 mm

Chapter 10

P NN B LN

[NO 2N NS RN NS T S I N I NS i S S N e e e e e ")

. (a) 1.0069 km; 1 km
. 431 ns; 2.32 MHz

672

(a) 32 million (b) 0.67 million

(b) 1284

(a) 68.1° (b) 0.567 (c)34.5°

(a) 0.64 (b)79.5° (c) 6624, 3281

(c) 432 pm; 429 pm; 10.07 m

159

10.2 ym

12 and 120, counting both polarizations
—70 db/km

. 0.080 mW

3.33 km; 10 km

. 0.136 db/km

(b) —1.25 db, —6.02 db, —10 db, —20 db
(b) 4.900 ps; 4.867 us

77.2 ns
14.6 ns/km

. 457 ps; 1/146
. 25MHz

. (a)4ns

. 489 ns

. (b) 3.9 ps/km; 4.3 ps/km

. (a) 50.5 ns; 1.075 ns; 0.075 ns
. (a) 100 GHz
. (a) No AL satisfies Egs. (21) and (22) with exactly

(b) 0.4 ns

(b) 50.5 ns
(b) 4 THz

integer m, but many approximate solutions exist. One
such solution is nAL = 950.014; = 950.5004,
(b) Ouput 2. (c) 0.94

Chapter 11

1

2
3.
4

(a) 0.218 cm (b) 0.218 cm
0.090

(a) 0.135 mm (b) 139

496 nm



614 Answers to Selected Problems

® N

10.
11.
12.
13.
14.
15.
16.
17.
20.

22.

23.
24. A =
25.
26.

27.

2.125, 1.44,0.778, and 0.55 um

(a) 15° (b) 0.678, 0.166, 0, 0.0461
(a)4.4777;5.482n (b) 1/199; 1/298

Single slit: 0.047, 0.017; Circular Aperture: 0.018,
0.0042
1.68 x 10~
8.4x107*
9725 km in diameter; 2.69 x 10! W/m?
5.2 m

5.3 miles

3t010.4

(a) 0.400 mm (b) 0.8106, 0.4053, 0.09006
(b) 2.10 mm

(b) 20

0.875,0.573, 0.255, 0.0547, 0

2 L2
_ sin“(1.151y) sin“(0.575x)
@1I=1I 0.438x2)2

(b) 5.46 mm along x; 2.73 mm along y

(c) 0.895 along x; 0.629 alongy  (d) 0.005

(a) 90° (b) 11.5° (c)5.7°
(AM/D)(1/cos 0)

(b) 4.7%, 1.8%, 0.84% for m = 1, 2, 3, respectively
m=0; 6,,=230°

() 120° (b) I, = (g)lmax ©1,=1

max

3em; 2.75%x 1073

) I, =3I,

Chapter 12

S

N

10.
11.
12.
13.
14.
15.
16.
17.

13°18’

(a) 0.0823°/nm; 0.464 nm/mm (b) 63,000

(a) 8.66' (b) 612.5 nm (or 587.5 nm) (c) 48; 48
987; 494

(a) 700 nm, 360 nm (b) 57.1°, 25.6° (¢) 350 nm and
175 nm for crown glass; 180 nm and 90 nm for quartz
120,000; 0.069 A

(a) third order (b) any width smaller than light beam
(a) 21.8 cm, in each case (b) 9, in each case
(c) 21.8 cm, 4.37 cm, and 0.0029 cm, respectively

(a) 8750 grooves/cm (b) 18.89°

(c) 37.77° (d) 7.88 nm/deg

(a) 7000 (b) 0.018 mm

(a) =5.7°to +11.5° (b) 100,000 (c) 10 A/mm (d) 1 m
about 5000 grooves/cm

(a) 1.16 um (b) 18.4 A/mm

(a) 11.5° (b) 11.8°

3550 grooves/mm; reduces it

(a) 3647 (b) 1200 grooves/mm (c) 3.04 mm

(a) 557 to 318 (b) 960 (c) 388,800; 0.014 A

(d) 0.41°/nm (e)55A

Chapter 13

o =

Nosw

near, near, far

maxima: 409, 136, 81.8 cm;

minima: 204.5, 102, 68 cm

(a) 1.88 and 3.26 mm  (b) 2.66 and 3.76 mm
(a) 0.0346 cm (b) 833 (¢) 20 cm, 6.67 cm, 4 cm
() 0.02cm (b)) 2500

(a) 4 x (b) very nearly zero (©)5;6

8. 0.0012%

9. (a) 17100 (b) 50.31 cm

10. 1.05,1.48, 1.82 mm

12. 1.97 mm radius; zero

13. 14.8 cm

14. (a) 0.8291, (b)0.2131,

15. (2)0.01191, (b)1.231,

16. (a) 0.0181, (b)0.2231,

17. 1.191,;0.8611,

18. 0.551,

19. 21%

20. (b) 0.145 mm (c) 0.6551,

21. 19 ym

Chapter 14

L 1 <11 . —_ o
2. (a) 7 [_1]. linearly polarized at —45
Rt : °
(b) 7 [1] linearly polarized at +45
(c) \}_ [%( 1— ,)] right-elliptically polarized at +45°
1 afr

(d) 7 [z] left-circularly polarized

3. (a) linearly polarized along x-direction, traveling in
+z-direction with amplitude of 2E,,
(b) linearly polarized at 53.1° relative to the x-axis,
traveling in the +z-direction with amplitude of SE,
(c) right-circularly polarized, traveling in —z-direction
with amplitude of 5E,

4. 75°

5. right-circularly polarized light

6. @E = Ey( 3§ +2)eln
(b) E = Ey(22 — ig)e'®v—"
() E = 2E, exp {i[(x + k2 - a)t] }

7. (@ C=0,mn (b) B=0, (m+3)x
(©) B=0,A=xC, (m+3)x

9. (a) linearly polarized, @ = 18.4°, A = 4/10 (b) right-
circularly polarized, A = 1 (c) right-elliptically
polarized; semimajor axis = 5 along y-axis, semiminor
axis = 4 along x-axis (d) linearly polarized, horizontal,
A =5 (e) left-circularly polarized, A = 2 (f) linearly
polarized, @ = 56.3°, A = /13 (g) left-elliptically
polarized, € = 53.1°, @ = =7°, Ey, =2, E, = 10

10. right-elliptically polarized, symmetrical with x- and y-
axes, Eg,/Ey, = \/5

13. right-circularly polarized light

14. no light emerges

15. (a) right-elliptically polarized, major axis along x-axis
(b) vertically linearly polarized

16. (a) linearly polarized at +45° (b) elliptically polarized

1 —i
o [}
20. (a) Elliptical polarization with inclination angle @ =

—25.097°: i3v3 ] (b) Elliptical polarization

il



