
ACOUSTIC WAVES IN A RESONANT CAVITY

In this experiment you have the opportunity to study the properties of
standing acoustic waves in a cavity or resonator.  By measuring the resonance
frequencies ƒp of standing waves, you can determine the velocity of sound v in

the medium contained in the cavity.  From v you can determine the molecular

mass of the medium if you know the temperature and the gas constant.
Alternatively you can use the device as a thermometer and determine the

temperature if you know what kind of gas it contains.  If the resonator contains a
mixture of two known kinds of gases at a known temperature you can even
determine the composition.  Finally, if you know the temperature and the nature

of the gas, you can determine the value of the gas constant.  Thus, aside from
being of interest for their own sake, resonant cavities have numerous useful
applications.

Although the resonances usually occur at well defined frequencies, when
you look closely you will see that they do have some width.  The width gives
information on the rate at which energy is lost from the standing wave of sound.

There are several loss mechanisms.  For the experiment which you will carry out,
the loss at the sidewalls due to the viscosity of the gas dominates.  So you can
learn something about the viscosity of the gas from studying the resonance widths

and, if you look carefully enough, you can also separate out the intrinsic losses of
the sound wave traveling through the gas.  

Stop! In your lab book, list the parameters of interest, defining their symbols,
and the relationships between them (e.g., w = ƒ(x,y,z)).
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BACKGROUND:
PRINCIPLE OF OPERATION AND THEORY

Consider a cylindrical cavity with an electrostatic transducer at each end.
Each transducer is a capacitor consisting of two parallel plates, one of which can
move relative to the other.  The moveable "plate" is actually a thin aluminum film

evaporated onto the side of a mylar membrane that faces into the cavity.  It is
electrically grounded to the cavity body.  The fixed plate is a metal piece mounted
on top of the insulating mylar at the end of the cavity and, therefore, electrically

isolated from the cavity body.

Stop! In your lab book, draw a picture of a transducer and its relationship to the
cavity based on this description.  Name the picture and label all the parts.

Applying a voltage across a transducer creates an attractive force between
the plates which translates the aluminum film and compresses the mylar.  For
small displacements, the mylar acts like a spring.  That is, its displacement is

proportional to the applied voltage.  If an alternating voltage of frequency ƒ is
applied, this motion will generate acoustic waves of frequency 2ƒ in the gaseous
medium in the cavity.

Stop! Do you understand why the acoustic wave frequency is twice the
voltage frequency?  Derive the relationship between force and
voltage for a pair of charged plates and write the explanation in your

lab book.

In principle, this transducer is the same as a loudspeaker, except that the
plates are much smaller.  Similarly, the other transducer is just like a microphone.
When the acoustic waves arrive at the other end of the cavity, they displace the

moveable plate of the other transducer.  If a fixed charge is superimposed on the
receiving transducer, its motion generates a small alternating voltage of the same
frequency as the acoustic wave (twice the driving voltage frequency).

Think! How could you impose a fixed charge on the receiving transducer?  Write
your  thoughts in your lab book.
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The acoustic waves are reflected from the cavity ends.  In general, they

will destructively interfere with new waves emanating from the driven transducer.
However, when an integer number p of half wavelengths is just equal to the cavity
length, the interference will be constructive.  At those resonant frequencies ƒp, a

large sound ampitude will build up in the cavity 1.

Stop! Superscripts  cite references listed  at the end of this Manual.  Go read the
citation.  Later on you will be prompted to read the actual reference.

The resonant frequency depends on the dimensions of the cavity and on
the properties of the medium it contains.  The magnitude of the displacement of
the mylar is very small, so the volume of the cavity may be accurately treated as

constant.

Think! How accurately?  Estimate the percent change in cavity volume due
to the displacement of the mylar.  Write your calculations in your

lab book.  Use common sense numbers.  If you have no idea what
numbers to use, guess!

The ability to make reasonable estimates on common sense alone is
absolutely the single most useful skill you will ever have.  Take every
opportunity to hone this skill as a student and you will have a tremendous
edge over the competition in whatever profession you choose.

If the length of the cavity is much greater than its diameter, the lowest

resonant frequency ƒ1 corresponds to sound propagation in the axial direction,

and occurs when the frequency is such that a single half-wavelength fits into the
cavity.  It is given by ƒ1 = v/(2 ), where v is the velocity of sound in the medium

and l is the length of the cavity.  Additional resonances occur when an integral

number p of half wavelengths fits into the cavity, yielding

ƒp = pv/(2 )  . ( 1 )

A more complete analysis must include all three dimensions.  Solving the

wave equation with cylindrical boundary conditions 2, one finds that there are

additional resonances due to modes which have pressure variations in the radial
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and azimuthal directions r and .  These modes are described by Bessel functions

of the first kind 3, and their frequencies are given by 2
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where p, m and n are the mode numbers in the axial, azimuthal and radial

directions respectively, r is the cavity radius and B(m,n) are collected 2 in Table
1, below. From Eqs. 1 and 2 it is clear that one can determine the velocity of
sound from the resonant frequency spectrum if the cavity dimensions are known.

0 1 2

0 0.0000 1.2197 2.2331

1 0.5861 1.6970 2.7140

2 0.9722 2.1346 3.1734

Table 1. Values of B(m,n) for m, n = 0, 1, 2.

Stop! By now you should have glanced at the reference list to see what
superscripts 2 and 3 cite.  There are probably a number of statements
you're taking on faith at this point.  You may be asking yourself,

where did Eq. 1 come from? Why is there a resonance at every
integer number of half-wavelengths?  How does one solve the wave
equation with cylindrical boundary conditions?  What do these

modes look like?

Throughout the manual, exercises will prompt you to stop reading and
check into issues like these.  As always, write your work in your lab book. Feel
free to use the references but, if you copy something, credit the source.
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Exercise 1: Derive Eq. 1.

Exercise 2: Draw the nodes in the r-φ plane of (p,0,1), (p,1,0), (p,1,1),

(p,2,1), (p,1,2).

Think! Do you have lingering questions about what you've read or done so far?
Write them in your lab book.  This really does help keep confusion at bay.
Try it!

The velocity of sound v, which enters into the resonance formula given by

Eq. 1, is determined by the thermodynamic properties of the medium in the

cavity.  One can show that 3,3

v2 = (∂P/∂ρ)S  . ( 3 )

The right hand side of Eq. 3 is related to the adiabatic compressibility 4

κS:

( P/∂ )S = 1/  S . ( 4 )

For an ideal gas, v can be expressed in terms of the specific heat ratio

=CP/Cv, the molar mass M, and the absolute temperature T.  One has 4

V = ( RT /M)1/2  . ( 5 )

Exercise 3: For an ideal gas, CP – Cv = R.  Derive this relation from the

equation of state of an ideal gas.

Exercise 4: Derive Eq. 5 from Eqs. 3 and 4 and the equation of state of an
ideal gas.

Think! A simple sort of non-ideal gas is one made of diatomic molecules. Since
the value of Cv depends upon the number of degrees of freedom of the
molecule,  in the monatomic case Cv = (3/2)R, but for diatomic molecules
Cv = (5/2)R.  Why is this true?  What are the consequences for Eq. 5?
Write your thoughts in your lab book.

The approximation of an ideal gas gets better as the pressure is reduced.  If
the approximation is valid, the resonance frequencies will be indpendent of
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pressure.  If the resonance frequencies depend on the pressure, a version of Eq. 5

derived using the Virial equation of state must be used.

Exercise 5: Rederive Eq. 5 from Eqs. 3 and 4 and the Virial equation of state.

Whether or not the gas is ideal, frictional losses will dampen the acoustic
standing waves, dissipating their energy.  A system that is very lossy is highly
damped and is said to have a low quality factor Q.  For an oscillator driven at

frequency ƒ, the Q is defined as 5

Q  ƒ
average energy stored in a cycle

average power dissipated in a cycle
 = 

ƒ
∆ ƒ

( 6 )

where ƒ is the resonant frequency and ∆ƒ is the width of the peak at an amplitude

that is 1/  2 (down by 3dB) of the peak amplitude (i.e., at a power that is half of
the peak power).  Thus, a high-Q resonator is one that has very low losses at the
frequency of interest and produces a very narrow resonance line.  It follows that a

high-Q resonator can transmit a signal at its resonant frequency with very little
attenuation.  The attenuation, , is defined as the fraction of the power lost (i.e.,

1/Q) per unit length of sound propagation, and thus is equal to

α = ƒ/vQ = ∆ƒ/v ( 7 )

Stop! Take a little time to list your questions in your lab book.  How does the
right hand side of Eq. 6 follow from the definition?  Do the definitions of
Q and α make sense?  How about Eq. 7?

A sharp resonance (i.e. one with a width much less than its frequency) due
to the (p, m, n) mode of oscillation can be reasonably approximated by the

Lorentzian line shape

Apmn(ƒ) =
a

[(∆ƒ 2)2 + (ƒ − ƒpmn )2]1/2
( 8 )

where A is the amplitude of the oscillation, ƒ is the driving frequency, ƒpmn

is the resonant frequency and a is an amplitude scale factor.  The exact expression

for the line-shape is slightly more complicated; you may read about it in Ref. 6 6.
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Think! How would you extract the parameters of interest from the line shape?
How would you quantify the error with your method?  Draw a sketch in
your lab book.

In this experiment, there is the possibility of a background signal due to
electronic noise.  This background will have a phase which may differ from that
of the resonance, and thus may beat against the signal of interest.  This effect can

be represented by adding a complex constant to the formula

A(ƒ) = Apmn (ƒ)+ B0 +iB1 . ( 9)

The voltmeter on the receiving transducer will pick up a signal equal to the

modulus of A, i.e.

Exercise 6: Derive a formula for V(ƒ) in terms of a, ƒpmn, ∆ƒ, B0, and B1.  Show

that ∆ƒ is the width of the peak at an amplitude of ƒpmn 2 .

If two or more resonances overlap, their contributions can be represented
by several additive terms like the one in Eq. 8; but, since they, too, can be out of

phase, the coefficients a would have to be complex, i.e., a = a0 + ia1.  Fitting

measured line shapes to formulas which account for overlapping resonances, is
sometimes necessary to extract valuable information from complicated situations.

For an example of where this was done, see Ref. 7 7.

Think! How close is too close?  Given two resonances with Q1 and Q2,, write a
criterion for no overlap in your lab book and explain your reasoning.

Measurements of ƒpmn give the sound velotciy v from Eqs. 1 or 2.  Eq. 5 (or

its Virial analog) relates v to properties of the gas.  Measurements of ∆ƒ give the

attenuation α from Eq. 7.  Relating  to thermodynamic properties of the gas is

more difficult because there can be many different microscopic mechanisms at
work.  Consider

 = r + w + b

where r, w and b are due to the losses from reflection at the cavity ends, losses

from friction at the sidewalls, and losses from intrinsic dissipation in the gas,
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respectively.  In the acoustic resonator you will use, reflection losses are very

close to zero and may be neglected.
Sidewall losses are caused by the fact that while the gas moves back and

forth in the interior of the resonator, it does not move at all next to the sidewalls

because of friction.  The "boundary layer" in which the velocity of the gas is
diminished due to the presence of the walls has  thickness

t = /  . ( 11 )

here  is the shear viscosity,  the density and  = 2 ƒ the angular frequency of

the sound.  The resulting attenuation of the signal  is

w = t /2rv = (1/2rv) /  . ( 12 )

Exercise 7: The cgs unit of viscosity is called the Poise. What is it in terms of

cm, g, and s?  What are the units of w?  Calculate t and w for

ƒ = 1, 10 and 50 kHz.  Assume the resonator contains air at 1 atm
and 20°C with  = 1.8×10-4 Poise.

Attenuation of signal due to dissipation in bulk b is given by

b =
2

2v3 D
( 13 )

where D is the damping coefficient and is independent of .

Exercise 8: What are the units of D in cgs?

Exercise 9: If these are the only two significant contributions to , and

therefore to ∆ƒ, then, since w is proportional to 1/2 and b is

proportional to 2, a plot of / 1/2 vs.  should yield a straight

line.  Write down a formula for the intercept and slope of this line

in terms of D, v, r,  and .

Stop! Write your questions down in your lab book, if you haven't already.  Put a
star next to the ones you consider most important.
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INSTRUCTIONS:
EXPERIMENTAL PROTOCOL AND DESIGN

THE RESONATOR

Go! First, read all the way through the step by step instructions below.  Then,
take apart and re-assemble the resonant cavity.  Note important features
and dimensions in your lab book as you go along.

Figure 1. Schematic drawing of the resonator, not to scale.  The two ends are
identical, except for the gas inlet capillary.

To take apart and re-assemble the resonant cavity (Fig. 1), the following tools and
materials are needed:  9/64" allen wrench, 1/2" allen wrench, razor blade knife,
scissors, scribe (or some other sharp pointed instrument), screw driver, 2 O-rings,
2 3"×3"×0.00025" aluminized mylar sheets, stretch assembly (Fig. 2), micrometer

caliper.
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1. Take the resonator apart by removing the allen screws from one of the brass

end pieces.  Take care not to bend the gas inlet capillary.

2. Next, remove the screws from the transducer element.  The mylar disk
beneath each transducer may be thrown away.  You will replace it with a new

one when you re-assemble the resonator (step 5).

3. Repeat for the other end of the cavity.

4. IMPORTANT!  While the cavity is apart, accurately measure the inside

dimensions of the cavity.  Write your measurements and the limits of your
accuracy in your lab book.

Figure 2. Schematic drawing of the stretcher assembly. Aluminized side of mylar
faces the thicker ring.

5. Place a mylar sheet with the aluminized side down between the two rings of
the stretcher assembly.  (The thinner ring goes on top.)  Use the scribe to poke
holes in the mylar to accommodate the screws.  (Aligning the first one is the

hardest.)  Four scres are sufficient to keep the sheet from slipping.  The sheet
does not need to be tightly stretched after the screws are in place, but it must
not have any wrinkles in it.

6. Stand the cavity body on end.  Be sure the end facing up is clean.  Center the
prepared mylar (in the stretcher assembly) on top, aluminized side down.  The
mylar should now be stretched over the end of the cavity.
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7. Place the transducer on top of the mylar with the smooth side down as shown.

Again, use the scribe to put a pinhole through the mylar to accommodate the
allen screws.  Insert the first screw but don't tighten all the way.  Insert the
next screw in the hole opposite the first.  Tighten them down evenly.  Insert

the rest of the screws similarly.

8. After all the screws are in place and tightened, guide the razor blade knife
around the edge of the transducer, cutting away the excess foil.  If you were

successful, a view from the other end will reveal a smooth sheet at the bottom.
(It's okay if the sheet is slightly wrinkled.)

9. Position one of the O-rings on the top, so that it skirts the transducer edge.

10. Re-attach the brass end piece without the gas inlet capillary with the 9/64"
screws.

11. Repeat the same steps for the other end of the cavity.  When mounting the

bottom brass end piece, it is best to orient it so that the electrical connectors
point in the same radial direction.  Note that, except for the gas inlet capillary,
each transducer is identical.  The end with the capillary will be referred to as

the DRIVER and the other end as the RECEIVER.  The choice is arbitrary,
but it is necessary to maintain the distinction so that a residual charge will not
be left on the mylar sheet of the driver.

Stop! Look at your lab book.  Does it document what you have done? Don't go
on until it does.  Remember, the idea isn't to copy what's above.  It's to log
your progress and help you remember anything unusual.  If something
goes wrong later, your log should save you hours of painstaking
troubleshooting.
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THE CIRCUIT

The heart of the electrical circuit is a wave analyzer (see Fig. 3, below).  It
does two things.  It puts out a sine wave of frequency ƒ (from the connector
labeled "f out") with which to drive one transducer and it also takes in a signal of

the same frequency ("f in") (e.g., from the other transducer) and puts out a dc

current proportional to its amplitude ("Sig. Out").  It is important to understand
that the waveanalyzer only responds to an input signal of a frequency equal to that

of the signal it generates.  It is not sensitive to signals with frequencies outside of
a very narrow band near ƒ.

This presents a problem.  If you use the frequency output of the

waveanalyzer to drive one transducer, it will oscillate at twice that frequency.  So
the signal from the receiving transducer will oscillate at 2ƒ, and be undetectable to
the waveanalyzer.  To overcome this problem, we have an ƒ/2-circuit.  This

divides the wave analyzer output frequency in half so that the signal generated at
the microphone will once again be equal to ƒ and therefore detectable to the wave
analyzer.

Think! Why do you suppose we don't just use two wave analyzers?  (No, it's
not the cost.)  Write your thoughts in your lab book.

Unfortunately it is not so easy to generate a sine wave of half the
frequency of another sine wave.  But it is easy to generate such a square wave.  So

the ƒ/2-circuit puts out a square wave of ƒ/2.  Now there are oscillators which can
lock onto one of the Fourier components of a square wave and then put out a
waveshape of your choice (e.g., a sine wave) at the frequency of that Fourier

component.  Usually, this phase-locked oscillator will lock onto the strongest
Fourier component, which is the fundamental one of frequency ƒ/2; but
sometimes it gets lost and locks onto a different component.  One of the tricky

parts of this experiment is to make sure that the oscillator is locked onto the right
frequency.  Thus it is important to monitor both the frequency ƒ coming from the
wave analyzer and the frequency ƒ/2 coming from the oscillator on the

oscilloscope during the experiment.
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Stop! If you don't know what a Fourier component is, now is the time to

look it up 3.

The receiving transducer has a dc bias voltage applied to it.  There are
large capacitors in the bias box, which lead to a time constant for any changes of
the transducer voltage that is large compared to a typical period of the sound

wave, so that the charge on the transducer is held constant.  The motion of the
aluminum film due to the varying sound pressure will induce an ac voltage across
the transducer.  This voltage is quite small and has to be amplified by a pre-

amplifier before it is sent back to the wave analyzer.

Think! Why it is necessary to place a bias voltage on the transducer?  Why
does the motion of the film induce an ac voltage across the

transducer?  Write your thoughts in your lab book

Think! Estimate the time constant of the bias circuit.  Estimate the typical
period of a sound wave.  Estimate the amplitude of the ac voltage

induced.  Write your calculations, algebra and all, in your lab book.
Write your calculations, algebra and all, in your lab book.

The current put out by the wave analyzer (which is proportional to the
amplitude of the pressure oscillation at the receiving transducer) is sent to a

digital multimeter and converted to a voltage.  The frequency output of the wave
analyzer is sent also to a frequency counter and converted into a voltage. Finally,
the voltages put out by the multimeter and the frequency counter can be interfaced

to a computer or aq chart recorder for data acquisition.
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Figure 3. Diagram of  the electrical circuit.

Go! It's time to connect the electronic components with co-axial cables.
What follows are some tips on setting up the equipment for

measurement. Don't forget to note any difficulties or surprises in
your lab book as you go along.

To be sure that everything is working as expected, it is essential to use the

oscilliscope to look at the signal at various locations in the circuit while making
connections.  Table 2 below provides initial settings for the different electrical
components.  Some (highlighted in grey) need to be varied in order to take data.

The rest can be varied out of curiosity.

When connecting the bias supply to the cavity, be sure to connect it to the
RECEIVER end (the one without the capillary) so that a residual charge will not

be left on the mylar sheet of the driver.  A bias of 90V usually works well.

Set up the experiment so that the frequency is displayed by the counter
and that the oscilloscope shows both the fundamental frequency from the wave

analyzer and the fundamental sine-wave component of the f/2 signal which should
come from the phase-locked oscillator.  Go through a resonance by hand, turning
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the frequency wheel of the wave analyzer and watching the DMM display, to

confirm that there is a signal to record.

Stop! Did you see a signal?  Describe what you saw in your lab book.  Write
down any questions you may have that you can't resolve immediately, then
go on.
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Table 2.   Initial settings for electrical components.  Shading denotes main experimental variables.

Phase-Locked Oscillator Wave Analyzer

Power: X1 Meter Speed: Medium

Frequency: 1 kHz Reading: Absolute

Cal: Clockwise Mode: tracking generator output

Mode: Phaselock Level: full clockwise

Trigger: 1.0 degrees Frequency: near resonant frequency

Attenuation: Fully clockwise Delta F: 0 Hz

Waveform: Sine Meter FS: 1 mV

Input Gain: 20 dB

Frequency Counter Setting (~Hz/sec)

Range: 1.0 sec 10 12.5

Function: FREQ A 9 6.2

Mode: Continuous 8 4.2

Slope + 5 1.67

AC 3 0.625

Atten x1

Sweep rate:

1 0.333

Channel A:

COM

Pre-Amplifier

LP rolloff: 1

Gain: 2k (cal position)

HP rolloff: 100K

Channel A: AC coupled
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Exercise 10: From the resonance you just observed, estimate the value in Volts
of the receiver signal at a typical resonance frequency (i.e.,
before the pre-amp). Use this to estimate the transducer
displacement.  From the noise level of your data, estimate the
smallest transducer displacement you can resolve.

DATA ACQUISITION AND PROCESSING

The data consist of measurements of acoustic wave amplitude as a

function of driving frequency.  The measurements can be recorded by hand, off of
the displays of the DMM and the frequency counter, or by a machine (such as a
chart recorder or a computer), from the voltage outputs of both devices.

The interpretation of the data requires extracting the resonant frequencies
and the widths of the resonances from the data.  For greatest accuracy, it is
necessary to fit the resonances to Lorentzian line-shapes.  Taking the data directly

into the computer requires investing some time to master the associated data
acquisition routines, but eliminates the tedium and time lost in manual data entry,
leading to more and better measurements in the long run.

EXPERIMENT AND ANALYSIS

There should be a thermometer in the insulator which houses the cavity.

Temperature is needed in the caluclation of results, so don't forget to record it in
your lab book.  The resonator should be connected to the 1/8" copper tube leading
to the bottom of the manifold on the rack at the point labelled CAVITY.  The

mechanical pump hose should be connected to VACUUM PUMP.

Prepare to use air at ambient pressure for a test run.

Exercise 11: Using Eq. 5, estimate v for air.  Assume that air is composed of x

= 20% O2 and 1-x = 80% N2.  Use a value of M = xMO2
 +
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(1-x)MN2
.

Exercise 12: Calculate the expected resonant frequencies of your air-filled
cavity for the (p,m,n) modes with m, n = 0, 1, 2 and for p equal to
all integers which yield a frequency less than 25 kHz.

To be sure there is air in the resonator (and not some gas left over from a
previous run), pump out the cavity and let air into it a few times.  In the end, leave

it vented to atmosphere.

Go! Acquire data with air in the resonator.  Describe the raw data in your lab
book.  The resonances at low ƒ should be "clean" and well separated from
each other.  For p > 4 you may notice "sidebands", i.e. other resonances
close to the (p,0,0) modes.  Analyze the (p,0,0) modes by fitting the data
near each peak to Eq. 10.  Explain the small peak just above the (5,0,0)
mode.  For p ≥ 5, be careful not to include data which are influenced by
such peaks.  From each (p,0,0) frequnecy, calculate v.

Stop! Is all your data and analysis clearly documented in your lab book?
Remember to include units in your table headings, to label the axes on
your graphs, and to emphasize the most important parts (with boxes,
arrows, stars, or the like.)

Think! v should be independent of frequency.  Is it?

Exercise 13: Make a plot of ∆ƒ/ƒ1/2 vs. ƒ3/2.  Determine the best-fit straight line

through the lower-frequency points.  Use the slope and intercept to
calculate D and .  Explain why the high frequency data deviate

from the straight line.

Prepare to repeat the measurement using Helium gas.

Exercise 14: Using Eq. 5, estimate v for Helium.

Exercise 15: Calculate the expected resonant frequencies.

Flush the cell a few times and then fill it with Helium from the tank
labeled C.
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Go! Acquire data and analyze as you did for air.

Exercise 16: Determine the gas constant.  Estimate the accuracy of the
measurement.

Think! What are your main sources of error?

Think! At the National Institute of Standards and Technology (NIST) they use
acoustic resonance measurements to measure the gas constant with a
resolution of about 1 ppm.  How do you suppose they do that?

Prepare to repeat the measurement on an Unknown gas.

Flush the cell a few times and then fill it with gas from the tank labeled C.

Go! Scan as many (p,0,0) resonances as possible.  Analyze as before.
Determine v from each resonance frequency.  From v, determine what gas
you are dealing with. From the line widths, determine  and D.

Exercise 17: Find values in the literature for comparison.

Go! For one or more of the (p,0,0) modes, measure the dependence of ∆ƒ on

pressure.

Think! Explain your observations.
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