
BRAGG SCATTERING FROM COLLOIDAL

CRYSTALS

In this experiment you have the opportunity to study the structure of
microscopic crystals made of polystyrene spheres in water.  By measuring the
angles at which laser light scattered from the crystals constructively interferes,
you can determine the structure of the crystalline lattice.  A similar procedure,
using x-rays instead of visible light, is commonly used to determine the structure
and composition of atomic or molecular crystals for chemical, biological or

materials science.  From the structure of a crystal, you can determine the size of
its spheres, if you know their volume fraction in solution.  In fact, by varying the
volume fraction and the effective charge on the spheres, it is possible to change
the structure of the crystals.

Think! Why are x-rays used instead of visible light for most crystals?  Why don't
you use x-rays for your crystals?

What you will be studying is, in fact, the classic example of what is known
as a colloidal crystal, a colloid being any system in which there are two (or
more) phases with one (the dispersed phase – in this case, polystyrene)

distributed in the other (the continuous phase – in this case, water).  Aside from
being of interest for their own sake, colloidal crystals are important in the
engineering of many modern materials, including photonic semiconductors,
porous catalysts and microfilters.  Thus, understanding and controlling their
structure and phase behavior has many useful applications.

Although constructive interference occurs at well defined angles from a
single crystal, several factors conspire to redistribute the intensity of the scattered
light.  First, as you will see from just looking at them, your samples will be full of
many small crystals oriented at random with respect to one another. (This gives
them an opalescent quality in white light.  In fact, precious opals are naturally
occurring colloidal crystals of similar dimensions, where the dispersed phase

consists of the silica skeletons of single-celled animals called diatoms.)  So rather
than single points, you may see light in a series of rings around the incoming
beam.  However, since the size of the crystallites can be large compared to the
size of the laser beam, the ring may not continuous but, rather, comprised of dots
which brighten and fade as you rotate the sample.



Introduction:
Crystal Lattices

Below a certain temperature, atoms or molecules at equilibrium arrange
themselves in an organized array known as a crystal or lattice.  Technically, a
lattice is an infinite coordinate system in space with points at regularly spaced
intervals (Fig. 1).  A crystal is a material in which atoms or molecules are
organized on a lattice.  Different materials are said to have different crystal
structures depending on the spacing and orientation of the intervals in the
underlying lattice.  A material that is ordered in only one, two, or all three
dimensions is referred to as a 1D, 2D, or 3D crystal, respectively.  Most of the
crystals you have probably dealt with are 3D, however notable exceptions are
liquid crystals (2D), the metal films deposited on silicon wafers found in the
semiconductor industry (2D), and quantum wires (1D) that may be the future’s

electrical technology.

STOP! Give one example each of a 1D, 2D and 3D crystal in your notebook.

Write a rough estimate of the lattice spacing for each.

To specify positions on a lattice, an origin must be chosen.  From this
origin we may use a vector to describe the location of any lattice site relative to
the origin.  A vector between lattice sites is called a translation vector.

Translation vectors which construct the smallest possible building block (the unit

cell or primitive cell) of the lattice are called primitive translation vectors.  Note
that the primitive translation vectors are not necessarily parallel to the Cartesian
unit vectors ( î , ĵ , and k̂ ). an example.)

Figure 1A shows a lattice that does not have any perpendicular primitive
translation vectors.  There is more than one way to construct the primitive cell for
any lattice.  (See Figure 5a in Kittel on page 7).  Usually the primitive cell will be
defined so as to contain only one atom, but some crystal structures are more easily
described in terms of a set of nested lattices such that more than one atom is

contained in the unit cell.  This type of structure is called a lattice with a basis.  In
addition to a set of primitive translation vectors, a lattice with a basis has basis

vectors, which specify the origins of the nested lattices.  Figure 2 gives an
example of a two-dimensional lattice with a basis (see also Borchardt-Ott p. 22).



Figure 1. A) a hexagonal lattice with lattice spacing a1 = a2 = a  and basis vectors

a1 i= a  and a2 i j= +a a

2
3

2
;  B) a square lattice with lattice spacing

b1 = b2 = b and basis vectors b1 i= b  and b2 j= b .

Figure 2. Diagram of a 2D square lattice with a basis.  The primitive translation
vectors are the same as those for a square lattice.  There are two atoms
per lattice site, one located on the lattice site and the other translated
from the lattice site by vector v2.  The basis vectors for this lattice are
then v1=0i + 0j + 0k and v2
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For a thorough introduction to the concept of lattices see Kittel Chapter 1.
In particular you should read the discussion on pp. 10-13 about 3D lattices.
Specifically of interest to this lab are Figures 10, 12 and 13 showing the simple

cubic(SC), the body centered cubic(BCC), and the face centered cubic(FCC)
lattices.

Introduction:
Lattice Planes and Miller Indices

If you look at a model lattice while rotating it slowly in front of you, you

will quickly notice that from certain perspectives you can see clear through the
structure since the atoms fall into well-spaced planes.  While any three non-
colinear lattice points define a lattice plane, the planes that are defined by points
that are closest together are easiest to see because they present the greatest density
of obstacles to your line of sight.  For much the same reason, these are the
principle planes that interact with a beam of collimated light that is incident on a
crystal.

Lattice planes are indexed (hkl) according to their location within a unit
cell.  The indices are chosen such that the plane intersects the unit cell at three
points a/h, b/k, and c/l.  The indices [h k l] are known as the Miller indices. To
calculate the Miller indices corresponding to a set of crystal planes:

1. Use the basis vectors as a coordinate system.

2. Find the intercepts of the plane with the above coordinate system

3. Take the reciprocal of the intercepts.  If there is no intercept then the
reciprocal is 0.

4. Multiply by the lowest common denominator.  The result is written in
standard notation as (hkl) which is called the index of the plane.

Figure 3 provides an example.  (See also pg. 14 in ref Kittel.)



Figure 3. A plane made by three non collinear lattice points.  Here the basis
vectors are indicated by a1, a2, and a3.  The lattice points intersected are
at 6a1, 5a2, and 4a3.  The reciprocals of these numbers are 1/6, 1/5, and
1/4.  The smallest integers sharing the same ratio as the reciprocals are
10, 12, 15.  Therefore the indices of the plane are written (10 12 15).

The interplanar distance for cubic lattices, d, is given by

d
a

h k l
=

+ +2 2 2
( 1 )

where a is the cubic lattice spacing.  This works for the SC, BCC, and FCC
lattices.  A more general formula and derivation is given in Borchardt-Ott on pg.
251.

Exercise 1: Give the Miller indices for the planes drawn below.
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Exercise 2a: Find the interplanar distances for (111), (200), (110), and (101).
The first two will be the scattering planes of interest in the FCC
crystal and the latter two for the BCC crystal.

Exercise 2b: Using the dot product determine the angles between the (111) and
the (200) planes.  Do the same for the (101) and the (110) planes.

BRAGG REFLECTIONS

Bragg reflection is the simplest model used to explain crystals diffracting
light.  From the previous discussion you know that the crystal has many different
planes.  One can think of these planes acting as mirrors to incoming light.  Since
some of the planes will be at different angles to the incoming light, the outgoing

light is reflected at an angle relative to the transmitted beams.  If the angle
between the normal to the plane and the incoming light is ψ then the diffraction

angle will be 2ψ.  (See Fig. 4).

Figure 4. Here incoming light is diffracted off a lattice.  The Bragg planes which
are reflecting the light are the diagonal dashed lines.  Notice that the
incoming light is diffracted by an angle of 2ψ where ψ  is the angle
between the normal to the plane and the incoming light.
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Since light can be reflected from multiple planes there will be interference.
The path length difference between beams reflecting off adjacent planes will
depend on the angle of the plane, ψ, and the interplanar distance, d.  Also the

index of refraction, n, of the medium in which the crystal sits will affect the
wavelength, λ, of the light(the crystals grown in this lab are immersed in water

with n=1.33).  These factors combine to give the Bragg constructive interference

condition

δ ψ λ= =2d m
n

sin ( 2 )

where m is an integer.  In this lab you will only consider lowest order reflections

or those with m=1.

Since different planes have different angles we should see light reflected
constructively at different angles as well.  However, not all planes will contribute
constructively.  Since sinψ ≤ 1 there is a restriction on the interplanar distance for

constructive interference.

Figure 5. The path length difference between beams scattering off of adjacent
planes is δ ψ= =2 2x d sin  where d is the interplanar distance.
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Exercise 3a: Find the constraint on the interplanar spacing for constructive
interference using equation (2). What is the constraint on h, k, and
l?  Remember to consider only lowest order reflections.

Exercise 3b: In this lab you will use a HeNe laser of wavelength 632.8 nm and
the crystals will be immersed in water.  Again considering only
lowest order reflections, give a numerical constraint on the size of
the interplanar spacing.

Exercise 3c: For the largest crystals in this experiment the lattice spacing will
be about 700 nm for the FCC and 555 nm for the BCC.  List all
possible h, k, and l which will satisfy the constraint of interplanar
spacing.  Hint: h, k, and l are each no greater than 2.

FCC VERSUS BCC

There are several important similarities and distinctions between the FCC
and BCC lattices.  Both the FCC and the BCC lattices have primitive cells which

are smaller than the SC lattice (see pg. 13 in Kittel for a diagram).  Both the FCC
and BCC can be thought of as a SC lattice with basis.

Think! How many atoms per unit cell are present in a BCC lattice?  How many in
an FCC lattice?

The intensity of light scattered from a crystal will be affected by the
crystal's structure factor.  The structure factor, S, determines which planes will
reflect light constructively or destructively in a lattice with a basis.  The addition
of basis atoms will often double the number of planes in a certain direction.  For
example, in both the FCC and BCC in the (100) direction the number of planes is

twice that of the SC.  This essentially changes the wavelength in the Bragg
condition by a factor of 2.  Just as in thin film interference, this will change some
constructive interference reflections to destructive interference reflections.  For
the BCC lattice

• Destructive interference occurs when h k l odd+ + =

• Constructive interference occurs when h k l even+ + = .

For the FCC one finds

• Destructive interference when h, k, and l not all even or not all odd

• Constructive interference when h, k, and l all even or all odd.



The structure factor is discussed in more detail in Kittel pgs. 42-45.  To
understand his discussion it may be useful to read the later section in this lab on
reciprocal lattices.

The structure factor combines with the atomic form factor to determine the
brightness of Bragg reflections.  The atomic form factor is discussed in Kittel pgs.

45-48, but you will not use it in this experiment.

Exercise 4: List the planes from Exercise 3c which will contribute to
scattering for FCC and BCC lattices based on structure factor
considerations.  These are then the only possible planes you will
see in your experiment.

POLYSTYRENE MICROSPHERES

To make crystals, we will use a solution of charged polystyrene
microspheres in water.  The spheres carry a negative charge, which is usually
screened by counterions (e.g., Na+) in solution.  The screening length is greatly
increased by placing deionizing resin (aka REXYN) in solution.  The resin binds
counterions and releases hydrogen (H+) and hydroxyl (OH-).  The high motility of
hydrogen and hydroxyl ions in water makes them less effective at screening the
charge of the spheres.  For a high concentration of spheres in deionized water,
electrostatic repulsion between spheres will cause them to arrange in a lattice or
crystal. A convenient measure of the concentration is the volume fraction,
γ, defined by

γ = total volume of spheres

total volume of solution

   
   

( 3 )

This can also be described by the unit cell as

γ = ×(#       ) (    )

    

of spheres per unit cell volume of a sphere

volume of a unit cell
( 4 )

The concentration of solution will determine both the lattice spacing and
the lattice type (FCC or BCC).   Recalling that the number of points per unit cell
is 2 for BCC and 4 for FCC (see FCC versus BCC) we find
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and
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where a is the lattice spacing and r is the radius of a microsphere.  Knowing the

sphere diameter, d = 2r, and solving for the lattice spacing we find

a dbcc = ( ) /π γ3 1 3
( 7 )

and
a dfcc = ( ) /2 3 1 3π γ . ( 8 )

Therefore, for a known γ, determined by the preparation conditions, one can
calculate a.

Exercise 5a: Derive equations (7) an (8) from (5) and (6).

Exercise 5b: The smallest concetrations used in this experiment is 0.5% and the
largest is 1.5%.  Determine the range of lattice spacings.

Exercise 5c: What effect will this have on Q4 and Q3c?  Will you see more or
fewer planes?  Which planes will likely be added or lost?

Exercise 5d: The diameter of the microspheres used in this experiment is 0.093
µm.  Will the spheres be touching in the crystal?

Exercise 5e: What material takes up the rest of the space in the crystal?  What
will be the index of refraction for light hitting the crystal planes?

Materials and Methods:
Overview

Since individual atoms (or microspheres) are diffracting instead of planes
reflecting certain experimental problems arise.  To get constructive interfence
(and thus the bright spots of a diffraction pattern)  the light must directly hit an
atom while simultaneously satisfying the Bragg condition.  For any random
position of a crystal this occurrance is rare.  This means one will not see the entire
diffraction pattern for any one position of the crystal with monochromatic light.

To remedy the above situation, several methods have been employed.  By

using many wavelengths of light at the same time the Bragg condition is likely to
be satisfied when an atom is hit.  This method, called the Laue method, is the
oldest crystallographic technique. Another method is the powder method



(sometimes called the Debye-Scherrer method).  A powder form of the material to
be studied is illuminated with monochromatic light.  In the powder there are many
different crystals randomly oriented, which ensures that some will meet the Bragg
condition for the wavelength used.  However, the diffraction pattern will not show
a distinct spot from a single atom but rather a ring from the many different atoms

of the different randomly oriented crystals.

In the rotating crystal method a monochromatic light shines on a rotating
crystal (or a rotating light shines on a fixed crystal).  As the crystal is rotated the
light will eventaully hit all possible atoms which meet the Bragg condition for the
specific wavelength used.  Each time a spot appears its location can be marked
and the entire diffraction pattern can later be reconstructed.  This is the method
you will use in this experiment.

The crystals will be placed in a spherical flask with lines indicating
longitude (α) and latitude (β).  Longitude is the same as the angle from the x-axis

in spherical coordinates, φ, and runs from –180 to 180.  Latitude is the angle

upwards towards the z-axis and is therefore 90-θ which runs from –90 to 90.  If

one assumes a beam of moving towards the origin along the positive x-axis ( −1î )
and the diffracted beam coming off at an angle of 2ψ then the dot product gives

cos2ψ .  Working out the dot product component by component gives

− = −sin cos cos cosθ φ β α  where the minus sign comes from the beam going in

the negative direction (see Figure 7).  Equating the two gives

. cos cos cos2ψ β α= − ( 9 )

Thus by knowing the latitude and longitude of Bragg spots one can determine the
diffraction angle 2ψ.

The experiment is summarized briefly as follows:

• Prepare microsphere solutions of different concentrations

• Observe the diffraction patterns for each solution

• Determine lattice type, lattice spacing, and concentration for each solution

•  Compare experimental values of the lattice spacing and concentration to
calculated values



Materials and Methods:
Procedure

PREPARE SOLUTIONS

A. Determine the stock solution concentration of microspheres in units of

% by volume.  Use the % by weight value on the bottle and the density
of polystyrene found on the spec sheet.

B. Determine the amount of fluid in µL required to fill a glass sample

tube(6x50 mm) to within 10 µL using the pipettor and a small bottle

filled with deionized water. NOTE: EVERY TIME YOU USE THE
PIPETTOR YOU SHOULD CHANGE THE TIP.  This is to
prevent previous solutions from affecting the concentration of the next
solution to be used.  ALSO:  THE PIPETTE BUTTON HAS TWO
STOPS, THE FIRST FOR TAKING IN SOLUTION AND THE
SECOND FOR EXPELLING IT.  DO NOT DEPRESS THE
BUTTON TO THE SECOND STAGE WHEN TAKNG IN
FLUID.  THIS CAN CAUSE FLUID TO BE DRAWN INTO THE
BODY OF THE PIPETTOR AND ADVERSELY AFFECT
SOLUTION QUANTITIES AND PURITY.

C. Determine how much deionized (DI) water and stock solution you will
need to make concentrations of 0.5%, 0.6%, …, 1.4% by volume.  You
will need a total amount of fluid equal to the volume of the sample
tube you measured in step B, above.  Write the quantities of DI water
and stock solution for each concentration in table in your notebook.

D. Place the bottle of polyspheres in the sonic tank for 30 seconds.  DO
NOT SHAKE THE BOTTLE OF MICROSHERES.

E. Fill 10 glass sample tubes (6x50 mm) about 1/4 full or REXYN.  Use
the scoopula to put the REXYN into the tubes.

F. Determine the total amount of stock solution required.  Write the value
in your notebook and put this amount into one of the hexagonal plastic
weigh dishes.  Don’t put too much in the dish or it will go to waste.
Extra can be added later if needed.  Since you won’t be able to
measure it out as you deliver, you can get an idea for the size of the
drop you'd like to create by first putting that amount of water in
another dish using the pipettor.



G. Get out 10 more plastic weigh dishes out for each of the 10 solutions
to be made.  Label the dishes so that you don't get them confused  Add
the approriate amount of stock solution to each dish using the pipettor
(REMEMBER TO USE A CLEAN TIP - and look carefully to be sure
you deliver the full amount  each time.  There shouldn't be drops left

behind in the tip.)

H. Add the appropriate amounts of DI water to each dish using the
pipettor (new tip!).  Mix each solution by gently agitating the petri
dish.  Be sure you know which solution is which.  You may want to
indicate which dish is for which solution by placing a strip of masking
tape on the tabletop and writing the different concentrations.

I. Add the 0.5% solution to the a glass sample tube(6x50 mm) containing
REXYN (use a new tip).  First fill the glass tube about half full.
Slightly agitate the tube to let the REXYN settle to the bottom.  You
can do this by covering the tube with parafin and inverting it a few
times.  Then proceed to fill the tube so that it has a positive meniscus

at the top.

J. Seal the tube by covering it with a small piece of parafilm (use the side
which was protected by paper against the tube).  Stretch it taut and
wrap the excess around the top of the tube. It is important to not allow
any air bubbles since these will prevent ionization of the spheres.  Use
masking tape to cover the parafilm and immediately write down the
concentration on the masking tape.  If you have trouble writing on the
tape once it is on the tube you should write on the tape before placing
it on the tube and tape it again.

K. Repeat steps 9 and 10 for the 0.6-1.4% solutions.  Be sure to label
them correctly since they will be difficult to distinguish later.

L. Once all 10 tubes are prepared and labeled you may put them in the
tumbler.  Watch the tubes to be sure the REXYN flows smoothly.
You may have to thump the tubes to break up any clumps.

M. Allow to tumble for several hours or overnight if possible.  Remove
your samples from the tumbler and place in a storage tray.  The lower
concentrations are delicate and will take longer to crystallize.  If
possible, after removing the tubes from the tumbler, allow the



solutions to settle overnight or over the weekend.  The quality of the
crystals will improve with time.

OBSERVE DIFFRACTION

A. Align the laser.  Be careful not to look directly at the beam or its
reflections.  You will know the laser is NOT aligned if you see two
spots on the front of the spherical flask.  Keep adjusting until there is
only one spot and that spot is centered on the crosshairs of the
spherical flask.  You may also have to adjust the spherical flask so the
laser is hitting the crosshairs properly.

B. Remove the sample support rod from the top of the spherical flask.

You should find small o-ring fastened to the bottom of the support rod.
Use this to attach a glass sample tube containing crystals.  NOTE: The
blue and yellow spheres at the bottom of your tubes are the REXYN.
They are not the crystals you are looking for.  Your crystals will form
just above the REXYN layer and will be a faint reflective pink color.

C. Replace the sample support rod with sample into the spherical flask.
Lower the the rod so that the crystals (and not the REXYN) are in the
laser beam.

D. Turn out the lights and observe the latitude (β) and longitude (α) of

spots on the surface of the flask.  You may be able to see more spots
by rotating the sample tube or moving it slightly up and down.  To
mark spots you may find it easier to cover small parts of the sphere
with masking tape and mark the spots and perform the measurements
later with the lights on.

DETERMINE CRYSTAL STRUCTURE

•  Use equation (9) to determine the diffraction angle 2ψ for several

spots.

•  Use ψ to determine the interplanar spacing d.  You may have more

than one ψ and d.

• Use d to determine (hkl) if possible.



•  For samples which have more than one angle ψ, take the ratio of

interplanar spacings.

• Compare steps 3 and 4 with what you know from the FCC and BCC
lattices.  Determine if one of the two types can be ruled out.

•  For those crystals with determined lattice type you may use the
scattering planes mentioned in Exercise 2a to determine the lattice
spacing a.  Be sure to use the correct plane for each angle.

• Calculate the sphere diameter using equation (7) or (8).

• Calculate the concentration γ using equation (5) or (6).

QUESTIONS

• What is your error in measuring α and β?  How will this propagate to

ψ?  You may want to consult Bevington section 3.2.  Give propagated

errors for all quantites calculated in the DETERMINE STRUCTURE
section.  Are your errors acceptable?  What are your main sources of
error?  Average the values of ψ and d for Bragg spots which are fairly

close to each other.  Calculate how this modifies the above error
calculations.  You my want to consult Bevington Chapter 4.

• What is the material which makes up the microspheres?

•  What is the index of refraction of the microspheres and for what
wavelength(s) is that  number valid?  Will this produce a strong

reflection(hint:consider the equation for the reflection coefficient in
normal incidence in Hecht p. 80)?

• What material makes up the bulk of the crystals?  What is its index of
refraction?  Why is the spherical flask filled with water(hint:how would
not doing this affect the diffraction pattern)?

• What is the typical size of the microspheres?  What is the uncertainty in
that size?

•  Suppose you had ignored the difference between 10% by weight

solutions and 10% by volume solutions.  What percent by volume will
the 10% by weight solution be?  What is the percent difference between



this solution and one which is truly 10% by volume?  If this error is
ignored will it be a random error or a systematic error?  In light of
question 3 would this have a large effect?

RECIPROCAL LATTICE

The vectors which point normal to different

planes of a lattice are known as reciprocal lattice vectors.  A reciprocal lattice

vector, G, for a plane points perpendicular to the plane.  From geometry it can be

determined that  G b1 b2 b3= + +h k l  where b1, b 2, and b3 are primitive

translation vectors of a reciprocal lattice.  They are defined by

b1 2
a2 a3

a1 a2 a3
= ×

• ×
π  and cyclic permutations thereof(notice the units are

1/length).  For the simple cubic lattice with a1=ai, a2=aj, and a3=ak the

reciprocal lattice vectors become just a1=2π/ai, a2=2π/aj, and a3=2π/ak.  It is

interesting to note that the reciprocal lattice of an FCC lattice is a BCC and vice

versa.  Also, switching between the lattice and reciprocal lattice is the discrete

version of doing a Fourier transform(going from position space to momentum

space).  For more information see Kittel pgs. 33 and 40-42.  His discussion uses

the primitive vectors for FCC and BCC given on pg. 13.


