Phys 150: Homework 1

Due in class on Thursday, October 2 at 3:30pm in North Hall 1111.

From Biological Physics by Nelson

1.3 Metabolism

Metabolism is a generic term for all of the chemical reactions that break down and
“burn” food, thereby releasing energy. Here are some data for metabolism and gas
exchange in humans.

food kcal/g liters O,/g liters CO,/g
carbohydrate 4.1 0.81 0.81
fat 9.3 1.96 1.39
protein 4.0 0.94 0.75
alcohol 7.1 1.46 0.97

The table gives the energy released, the oxygen consumed, and the carbon dioxide
released upon metabolizing the given food, per gram of food.

a.

Calculate the energy yield per liter of oxygen consumed for each food type and
note that it is roughly constant. Thus, we can determine a person’s metabolic rate
simply by measuring her rate of oxygen consumption. In contrast, the C02/02
ratios are different for the different food groups; this circumstance allows us to
estimate what is actually being used as the energy sourcek, by comparing oxygen
intake to carbon dioxide output.

An average adult at rest uses about 16 liters of 02 per hour. The corresponding
heat release is called the “basal metabolic rate” (BMR). Find it, in kcal/hour and
in kcal/day.

What power output does this correspond to in Watts?

Typically, the CO2 output rate might be 13.4 liters per hour. What, if anything,
can you say about the type of food materials being consumed?

During exercise, the metabolic rate increases. Someone performing hard labor
for 10 hours a day might need about3500 kcal of food per day. Suppose the
person does mechanical work at a steady rate of 50W over 10 hours. We can
define the body’s efficienty as the ratio of mechanical work done to excess energy
intake (beyond the BMR calculated in (b)). Find this efficiency.



1.4 Earth’s temperature

The Sun emits energy at a rate of about 3.9 - 1026 W. At Earth, this sunshine gives an
incident energy flux I, of about 1.4kW m™, In this problem, you'll investigate whether
any other planets in our solar system could support the sort of water-based life we
find on Earth.

Consider a planet orbiting at a distance d from the Sun (and let d. be Earth’s
distance). The Sun’s energy flux at distance d is I = I¢(d./d)?, because energy flux
decreases as the inverse square of distance. Call the plant’s radius R, and suppose
that it absorbs a fraction «a of the incident sunlight, reflecting the rest back into space.
The planet intercepts a disk of sunlight of area zR?, so it absorbs a total power of
mR?2a I. Earth’s radius is about 6400 km.

The Sun has been shining for a long time, but Earth’s temperature is roughly
stable: The planet is in a steady state. For this to happen, the absorbed solar energy
must get reradiated back to space as fast as it arrives (see Figure 1.2). Because the
rate at which a body radiates heat depends on its temperature, we can find the
expected mean temperature of the planet, using the formula

radiated heat flux = a o T4

In this formula, o denotes the number 5.7 - 108 W m? K™ (the “Stefan-Boltzmann
constant”). The formula gives the rate of energy loss per unit area of the radiating
body (here, the Earth). You needn’t understand the derivation of this formula but
make sure you do understand how the units work.

a. Using this formula, work out the average temperature at the Earth’s surface and
compare your answer to the actual value of 289K.

b. Using the formula, work out how far from the Sun a planet the size of Earth may
be, as a multiple of d, and still have a mean temperature greater than freezing.

c. Using the formula, work out how close to the Sun a planet the size of Earth may
be, as a multiple of d, and still have a mean temperature below boiling.

d. Optional: If you know the planets’ orbital radii, which ones are then candidates
for water based life, using this rather oversimplified criterion?

1.5 Franklin’s estimate

The estimate of Avogadro’s number in Section 1.5.1 came out too small partly
because we used the molar mass of water, not oil. We can look up the molar mass
and mass density of some sort of oil available in the eighteenth century in the
Handbook of chemistry and physics (Lide, 2006). The Handbook tells us that the
principle component of olive oil is oleic acid and gives the molar mass of oleic acid
(also known as 9-octadecenoic acid or CH3(CHz)7CH=CH(CH2)7COOH) as 282 g mole-
1, We'll see in Chapter 2 that oils and other fatst are triglycerides, made up of three
fatty acid chains, so we estimate the molar mass of olive oil as a bit more than three



times the value for oleic acid. The Handook also gives the density of olive oil as 0.9 g
3

cm”,
Make an improved estimate of Nmoe from these facts and Franklin’s original
observation.

1.6 Atomic sizes, again

In 1858, J. Waterson found a clever way to estimate molecular sizes from macro-
scopic properties of a liquid, by comparing its surface tension and heat of vaporiza-
tion.

The surface tension of water, Z, is the work per unit area needed to create more
free surface. To define it, imagine breaking a brick in half. The two pieces have two
new surfaces. Let Z be the work needed to create these new surfaces, divided by their
total area. The analogous quantity for liquid water is the surface tension.

The heat of vaporization of water, Qvap, is the energy per unit volume we must
add to liquid water (just below the boiling point) to convert it completely to steam
(just above the boiling point). That is, the heat of vaporization is the energy needed
to separate every molecule from every other one.

Picture a liquid as a cubic array with N molecules per centimeter in each of three
directions. Each molecule has weak attractive forces to its six nearest neighbors.
Suppose it takes energy & to break one of these bonds. Then the complete
vaporization of 1 cm® of liquid requires that we break all the bonds. The
corresponding energy cost is Quap x (1 cm?).

Next consider a molecule on the surface of the fluid. It has only five bonds - the
nearst neighbor on top is missing (suppose this is a fluid-vacuum interface). Draw a
picture to help you visualize this situation. Thus to create more surface area requires
that we break some bonds. The energy needed to do that, divided by the new area
created, is 2.

a. For water, Qvap=2.3-10°) m>and 2 = 0.072 J m™. Estimate N.

b. Assuming the molecules are closely packed, estimate the approximate molecule
diameter.

c. What estimate for Avogadro’s number do you get?

C.1.8 Concentration conversion

Frequently in this book we imagine very small regions of space, into which molecules
may wander. Here is a useful conversion factor: Suppose that the concentration of
some species is 10 mM = 0.01 mole/L. Find the average number of particles in a
region of volume (10 nm)3.



C.1.9 Surf’s up

a. Find an approximate formula for the speed of a wave on the surface of the ocean.
Don’t work hard; don’t write or solve any equation of motion. Your answer may
involve the mass density of water, the wavelength of the wave, and/or the
acceleration of gravity. [Hint: The depth of the ocean doesn’t enter the problem
(it's effectively infinity), nor does the surface tension of the water (it’s effectively
zero).]

b. Evaluate your formula for wavelength 1m to see whether your result is
reasonable.

C.1.11 Giro d’ltalia (for 4 units)

This problem is similar to Problem 1.7, but it uses somewhat more realistic numbers.

A bicycle rider in the Giro d’Italia eats a lot. If his total daily food intake were
burned, it would liberate about 6000 kcal of heat. Over the course of the race, his
mass change is negligible, less than 1%. Thus, his energy input and output must
balance.

First, look at the mechanical work done by the racer. A bicycle is incredibly effi-
cient. The energy lost to internal friction, even including the tires, is negligible when
compared with the expenditure of energy against air drag (about 4MJ per day). Each
day, the rider races for 4.5 hour.

a. Compare the 6000 kcal input to the 4MJ of work done. Something’s missing!
Could the missing energy be accounted for by the altitude change in a hard day’s
racing?

Regardless of how you answered (a), next suppose that on one particular day of
racing there’s no altitude change, so we must look elsewhere to see where the
missing energy went. So far, you have neglected another part of the energy equation:
The rider gives off heat. Some of this is radiated. Some goes to warm up the air he
breathes in. But by far the greatest share goes somewhere else.

The rider drinks a lot of water. He doesn’t need this water for his metabolism-he
is actually creating water when he burns food. Instead, nearly all that liquid water
leaves his body as water vapor. The thermal energy needed to vaporize water
appears in problem 1.6.

b. How much water would the rider have to drink for the energy budget to balance?
Is this reasonable?

Next, go back to the 4 MJ of mechanical work done by the rider each day.

c. The wind drag for a situation like this is a backward force of magnitude f = Bv?,
where B is some constant. One can measure B (for example, by using a wind
tunnel), finding B =~ 0.15 kg m™. Suppose that the racer races all day at constant
speed. What is that speed? Is your answer reasonable?



