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Phys 150 HW 5 solutions

Nelson, Problem 5.2, pg 190 (4 pts)
To find the constant pre-factor, recognize that the integral of the concentration throughout the volume has to be

equal to the total number of particles in the volume∫
c(z)dV = A

∫ h

0

c(z)dz = N. (1)

Substituting in from equation 5.1

A

∫ h

0

c(0)e−mnetgz/kBT dz = N (2)

−c(0)A
kBT

mnetg
e−mnetgz/kBT

∣∣∣z=h
z=0

= N (3)

−c(0)A
kBT

mnetg

(
e−mnetgh/kBT − 1

)
= N (4)

c(0)
(

1− e−mnetgh/kBT
)

=
Nmnetg

AkBT
(5)

c(0) =
Nmnetg

AkBT

(
1− e−mnetgh/kBT

)−1

(6)

Therefore,

c(z) =
Nmnetg

AkBT

e−mnetgz/kBT

1− e−mnetgh/kBT
(7)

Nelson, Problem 5.3, pg 190 (8 pts)
a) The sedimentation coefficient s is defined as the ratio between the effective mass and the drag coefficient,

s ≡ mnet/ζ. (8)

When the drift velocity was due to gravity, F = vdriftζ = mnetg, and s = vdrift/g. In the centrifuge, the drift velocity
(in the rotating frame of the particle) is due to the centrifugal force F = vdriftζ = mnetω

2r. The analogous relationship
between drift speed and s is therefore, s = vdrift/(ω2r) or vdrift = ω2rs.

b) Recall that Fick’s law gives the flux due to a concentration gradient:

jx = −Ddc(x)
dx

. (9)

In the rotating frame of the centrifuge, the x-coordinate is the radial position. At the far ends of the tube

jr = −Ddc(r)
dr

+ vdriftc(r) = 0, (10)

where r = r1 or r = r2 = r1 + `. Therefore

vdriftc(r1) = D
dc

dr

∣∣∣
r=r1

and vdriftc(r2) = D
dc

dr

∣∣∣
r=r2

(11)

c) Substituting in for vdrift in terms of mnet, solving for mnet and invoking the Einstein relation Dζ = kBT

mnetω
2r1

ζ
c(r1) = D

dc

dr

∣∣∣
r=r1

(12)

mnet =
Dζ

ω2r1c(r1)
dc

dr

∣∣∣
r=r1

=
kBT

ω2r1c(r1)
dc

dr

∣∣∣
r=r1

. (13)

where all the terms on the right hand side of the final equation are measurable.
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Nelson, Problem 5.4, pg 191 (4 pts)
a) The Stokes drag force is ~F = −6πηR~v. Newton’s Law of motion states ~F = m~̇v. Combining and solving for v

mv̇ = −6πηRv (14)
v̇/v = −6πηR/m (15)

ln v(t) = −6πηRt/m+ const (16)

v(t) = v0e
−6πηRt/m (17)

Knowing v(t), we can solve for x(t) by integrating

∆x =
∫ ∞

0

v(t)dt (18)

= v0

∫ ∞
0

e−6πηRt/mdt (19)

= −v0
m

6πηR
e−6πηRt/m

∣∣∣∞
0

(20)

=
mv0

6πηR
(21)

Given R = 10−6m, η = 9 · 10−4Pa s, v0 = 10−6m s−1, m = 4
3πR

3∆ρ and assuming ∆ρ = (ρbacterium − ρwater) = 0.25,
we find ∆x ≈ 10−12m, which is much less than the size of an atom!

b) This assumption is very well justified in light of (a). The particle loses any drift velocity almost immediately
after the force ceases.

Nelson, Problem 5.5, pg 191 (6 pts)
a) Referring to the Hagen-Poiseuille relation for laminar pipe flow (given on Nelson, page 181)

p

L
=

8Qη
πr4

=
8 · (500 · 10−6m3s−1) · (9 · 10−4Pa s)

π · (0.125 · 10−1m)4
=

8 · 5 · 9
π · (1/8)4

10−8

10−4

Pa
m

= 47 Pa m−1 (22)

Across a 10 cm section of aorta, the pressure drop is therefore only about 5 Pa, which is ¡0.01% of atmospheric
pressure.

b) The power expended is the work done per unit time. The work done can be computed from the pressure drop
(force per unit area) times the flow rate (distance · area per unit time).

pQ = 47
Pa
m
· 0.1 m · 500 · 10−6 m3

s
= 2350 · 10−6 N m

s
= 2.4 mW (23)

This is more than four orders of magnitude less than the basal metabolic rate, which means that very little of the
energy required to sustain life is needed to maintain blood flow.

c) Referencing Equation 5.17 on page 181, the sketch of v(r) = (R2 − r2)p/(4Lη) should be parabolic. To find
v(r = 0) = R2p/(4Lη) note that

Q =
πR4p

8Lη
→ v(0) =

R2p

4Lη
=

2Q
πR2

=
1000 · 10−6m3s−1

π(1.25 · 10−2m)2
= 20 m/s. (24)
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Nelson, Your Turn 5C, pg 161 (5 pts)
a) Combining the relation for viscous drag F = ζv with Stokes formula ζ = 6πηR, gives

F = 6πηRv → η =
F

6πRv
=

Force
L · LT−1 =

Force
L2 · T−1

=
Pressure

T−1
= Pressure · time (25)

b) The drift velocity due to the force of gravity acting on a fat droplet of radius R is

vdrift =
mnetg

6πηR
=

∆ρm4πR3g

3 · 6πηR
=

2∆ρmR2g

9η
(26)

The mass density of butterfat is ≈ 0.9 g cm−3, so ∆ρm ≈ 0.1 g cm−3 = 100 kg m−3. The viscosity of milk is nearly
the same as that of water, η = 9 · 10−4 Pa s. Plugging in these values and calculating the drift velocity for a droplet
with R = 0.5 · 10−6m gives

vdrift =
2 · 100 · (0.5 · 10−6)2 · 10

9 · 9 · 10−4
=

5 · 10−10

81 · 10−4
≈ 6 · 10−8m/s (27)

Seeing as how a typical milk bottle is ≈ 0.25 m tall, it would take4 · 106s ≈ 45 days for such small fat droplets to
accumulate at the top of the milk container. On the other hand, if the droplets were 5 times larger, the drift velocity
would be 25 times faster and separation would occur in only one or two days!

Nelson, Problem 5.11, pg 584 (2 pts) In striving to maintain a constant total flow rate as R decreases, the blood
pressure, p rises in proportion to R−4,which in turn causes the flow velocity v to increase in proportion to R−2. The
Reynold’s number of the flow, R = vRρm/η, therefore increases in proportion to 1/R and, when it becomes R � 1,
the flow switches from laminar to turbulent.

Nelson, Your Turn 5F, pg 171 (4 pts) If c1(x, t) is a solution to the diffusion equation ċ1(x, t) = Dc′′1(x, t) then
c2 ≡ c1(x,−t) is not because, although c′′2 = c′′1 , ċ2 = −ċ1 6= ċ1. In other words, the diffusion equation is not invariant
under time-reversal, which is a mathematical way of saying that diffusion is an irreversible process.

By contrast, a function c3(x, t) ≡ c1(−x, t) is a solution of the diffusion equation because, although c′3 = −c′1,
c′′3 = c′′1 . In other words, diffusion is a spatially invariant process.

Nelson, Problem 5.12, pg 584 (4 pts)
a) The rate at which the apparatus does work on the fiber is given by the time derivative of the product of the force

that the apparatus exerts on the fiber (the opposite of the force given in the problem statement) times the change in
the fiber’s length.

Power =
dWork
dt

=
d

dt

(
~f(t) · ~dx(t)

)
(28)

=
d

dt

(
(f0 +B sin(ωt+ δ))(Aω cos(ωt))

)
(29)

=
d

dt
(f0Aω cos(ωt) +ABω sin(ωt+ δ) cos(ωt)) (30)

= −f0Aω2 sin(ωt) +ABω2
(

cos(ωt+ δ) cos(ωt)− sin(ωt+ δ) sin(ωt)
)

(31)

= ABω2 cos(2ωt+ δ)− f0Aω cos(ωt) (32)

which averages to zero over one full cycle because every term is periodic with frequency of either ω or 2ω.

b) Number 1 is the living muscle fiber and Number 2 is the dead one. The key thing to note is that Number 1
displays negative values of the phase shift, which means that sometimes ”the displacement leads the force” rather
than lagging it. To lead the force requires putting work into the oscillating system. This can only be done by a fiber
that can add mechanical energy to the system - in this case a living muscle fiber that transforms chemical energy in
to mechnical energy.


