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Phys 150 HW 6 solutions

Nelson, Problem 6.2, pg 239 (8 pts)
a) Because the boxes are isolated from the rest of the world, their total energy doesn’t change and the sum of their

temperatures doesn’t change

Ei,total = Ef,total (1)
Ei,1 + Ei,2 = Ef,1 + Ef,2 (2)

N 3
2kB(Ti,1 + Ti,2) = N 3

2kB(Tf,1 + Tf,2) (3)
(Ti,1 + Ti,2) = (Tf,1 + Tf,2) (4)

Knowing that they come to the same final temperature Tf,1 = Tf,2 = Tf , this means

(Ti,1 + Ti,2) = 2Tf (5)
Tf = 1

2 (Ti,1 + Ti,2) (6)

b) The entropy of an ideal gas is given by the Sakur-Tetrode formula (see Nelson, p.201). In the case under
consideration N and V are constant for both systems, so the entropy formula becomes

S = N 3
2kB lnE + const. (7)

To find the total change of total entropy, take the difference

∆Stot = Sf,tot − Si,tot (8)
= Sf,1 + Sf,2 − Si,1 − Si,2 (9)
= N 3

2kB (lnEf,1 + lnEf,2 − lnEi,1 − lnEi,2) (10)

= N 3
2kB ln

Ef,1Ef,2
Ei,1Ei,2

= N 3
2kB ln

Tf,1Tf,2
Ti,1Ti,2

= N 3
2kB ln

T 2
f

Ti,1Ti,2
= N 3

2kB ln
(Ti,1 + Ti,2)2

4Ti,1Ti,2
(11)

c) Dividing the numerator and denominator in the argument of the logarithm above by T 2
i,2 gives

∆Stot = N 3
2kB ln

(Ti,1/Ti,2 + 1)2

4Ti,1/Ti,2
(12)

and substituting X = Ti,1/Ti,2 yields

∆Stot = N
3
2
kB ln

(X + 1)2

4X
. (13)

To determine that ∆Stot ≥ 0 it suffices to show that the argument in the logarithm g(X) = (X + 1)2/(4X) ≥ 1.
Taking the first and second derivatives

g(X) =
(X + 1)2

4X
=
X

4
+

1
2

+
1

4X
(14)

g′(X) =
1
4
− 1

4X2
(15)

g′′(X) =
1

2X3
(16)

(17)

and noting that X ≥ 0, we see that g′′(X) > 0 and that g′(X) = 0 when (and only when) X = 1. Therefore,
g(X) ≥ 1.

d) ∆Stot will be zero only when Ti,1 = Ti,2 because no heat flows when two systems at the same temperature come
into contact.
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Nelson, Problem 6.4, pg 239 (6 pts)
a) Let d1 be the distance the ball moves as the spring relaxes upon reduction of the external force from f to f1. Note

that, after it is “suddenly reduced”, the external force is constant. Therefore, the “work done against the external
force” is simply Wuseful = f1d1. To determine d1, we note that it is the difference between the position at which the
spring force balanced the initial force xi = f/k and the position at which the spring force balances the reduced force
xf = f1/k. Therefore,

d1 = f1/k − f/k = (f1 − f)/k < 0, (18)

where the sign indicates that the displacement took place in a direction that reduced the compression/extension of
the spring, and

Wuseful = f1d1 = f1(f1 − f)/k = (f2
1 − f1f)/k. (19)

b) To maximize Wuseful with respect to f1, set the derivative equal to zero and solve for f1

dWuseful

df1
= (2f1 − f)/k = 0 → f1 = f/2. (20)

When f1 = f/2,

Wuseful = (f2
1 − f1f)/k =

(
f2/4− f2/2

)
/k = −f2/4k, (21)

where the sign is consistent with work having been done “against” the external force.

c) The process would be most efficient if the force were reduced by a factor of 2 with every step.

Nelson, Problem 6.6 pg 240 (3 pts)
Discher found

√
〈(∆x)2〉 = 35 nm. The average energy stored in the “springiness” of the polymer network along

the x-direction is therefore k(∆x)2/2. EQUIPARTITION! When the potential energy of a subsystem in contact with
a thermal reservoir can be written as the sum of terms of the form kx2, then each of the displacement variables shares
average thermal energy 1

2kBT in equilibrium. (See Your Turn 6F on Nelson, p. 219.) Therefore,

1
2k(∆x)2 = 1

2kbT → k =
kBT

(∆x)2
=

4.1 pN · nm
(35nm)2

= 3.3 · 10−3pN nm−1. (22)

Nelson, Problem C.6.11, pg 586 (4 pts)
EQUIPARTITION AGAIN! When the potential energy of a subsystem in contact with a thermal reservoir can be

written as the sum of terms of the form kx2, then each of the displacement variables shares average thermal energy
1
2kBT in equilibrium. (See Your Turn 6F on Nelson, p. 219.) The kinetic energy 1

2mv
2 has the right form. To

determine the form of the potential energy, consider how the vertical displacement of the point mass, ∆z depends on
its mean-square displacement from equilibrium in the horizontal plane ∆r. For small displacements, ∆z = ∆r tan θ,
where θ is the angle the pendulum makes with the vertical axis. Draw a figure to convince yourself that tan θ = (∆r)/L,
where L is the length of the pendulum. Therefore, the gravitational potential energy of the pendulum has the right
form as well: mg∆z = mg∆r tan θ = mg(∆r)2/L.

So equipartition applies, and there will be 1
2kBT of energy in each degree of freedom. Note that there are effectively

only three degrees of freedom: two kinetic (velocity in the vertical direction is “frozen out” because it is opposed by
the force of gravity) and one potential (gravitational potential energy is not a function of θ, only r). Therefore, the
mean translational energy of the pendulum is

1
2m〈vx〉

2 + 1
2m〈vy〉

2 = kBT = 4.1pN nm = 4.1 · 10−12 · 10−9J = 4.1 · 10−21J. (23)

and the mean square displacement of the pendulum is

mg〈∆r〉2

L
= 1

2kBT (24)

〈∆r〉2 =
LkBT

2mg
=

1.2 m · 4.1 · 10−21J
2 · 0.4 kg · 9.8 m s−2

= 0.63 · 10−21m2. (25)

which is about eleven orders of magnitude smaller than the size of an atom!
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Nelson, Problem C.6.12, pg 587 (6 pts)
a) The protein diffuses (i.e., undergoes a one-dimensional random walk) along the DNA. It’s position as a function

of time is described by a probability distribution that evolves from a delta-function at t = 0 into a spreading, Gaussian
profile (see Nelson, Section 4.6.5):

P (x, t) =
1√

4πDt
e−x

2/(2Dt) (26)

Given D, the probability of finding the protein a distance of 34 nm from where it started after a time t is

2 · P (34 nm, t)dx =
0.34 nm√
πDt

e−1156 nm2/(2Dt) (27)

where the factor of 2 comes from the fact that either direction satisfies the condition.

b) The probability that the protein will diffuse a distance greater than 100 basepairs from its starting point in a
time t is 1 minus the probability that it diffuses a distance less than 100 basepairs:∫ −34nm

−∞
P (x, t)dx+

∫ ∞
34nm

P (x, t)dx = 1−
∫ 34nm

−34nm

P (x, t)dx (28)

c) While it is bound to the DNA, the protein isn’t diffusing, so the mean-square displacement of the protein will be
reduced. If the protein spends only a fraction α of the time t unbound, the probability distribution of its displacement
will be given by P (x, αt) instead of P (x, t).

The fraction α will be a function of the difference in free energy, ∆G = Gunbound −Gbound (see Nelson, p. 219):

Punbound

Pbound

=
α

1− α
=
e−Gunbound/kBT

e−Gbound/kBT
= e−∆G/kBT . (29)

Solving for α

α = (1− α)e−∆G/kBT (30)

α(1 + e−∆G/kBT ) = e−∆G/kBT (31)

α =
e−∆G/kBT

1 + e−∆G/kBT
=

1
e∆G/kBT + 1

(32)

Therefore, the protein’s mean-square displacement will be

〈x2〉 =
∫ ∞
−∞

x2P (x, αt)dx =
1√

4πDαt

∫ ∞
−∞

x2e−x
2/(2Dαt)dx = 2Dαt =

2Dt
e∆G/kBT + 1

(33)

and, since the denominator is always greater than 1, this value will always be less than in the absence of binding.

Nelson, Your Turn 6C, pg 212 (4 pts) We wish to compute the change in the gas’s entropy in the case where
the temperature is fixed and then find the value of L that maximizes the entropy. The key is that, when temperature
is fixed, the kinetic energy of the ideal gas does not change. From the Sakur-Tetrode formula, we see that the entropy
is then a strictly increasing function of L. Therefore, the equilibrium location will be the one that maximizes L. This
answer makes sense because the thermal reservoir can supply all the energy required for the gas to expand.

Nelson, Your Turn 6G, pg 224 (4 pts)

Fa = 〈Ea〉 − TSa =
∑
j

PjEj − T (−kB
∑
j

Pj lnPj) (34)

=
∑
j

PjEj − T (−kB
∑
j

Pj ln e−Ej/kBT ) (35)

=
∑
j

PjEj + kBT
∑
j

Pj(−Ej)/(kBT )) (36)

=
∑
j

PjEj +
∑
j

Pj(−Ej) = 0 (37)


