ing from chaos theory is truly nonperiodic, not simply the combi-
nation of a large number of periodic motions. There is a critical
distinction between these two cases. If the transition from lami-
nar to turbulent flow takes place through a succession of orderly
periodic motions, then two particles of fluid that in the laminar
flow are moving similarly will remain in closely related states of
motion throughout the transition into turbulent flow. However,
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if the intermediate condition can be described as chaotic, then
the motion loses its predictability, and the two particles can be
found in the turbulent flow in very different states of motion.
Chaos theory, which is applicable to a wide variety of physical
systems, provides an alternative theoretical basis for under-
standing complex systems such as the turbulent motion of
fluids. m

QUESTIONS

1. Brefly describe what is meant by each of the following and
illustrate with an example: (@) steady fluid flow; (b) non-
steady fluid flow; (¢) rotational fluid flow; (d) irrotational
fluid flow; (e) compressible fluid flow; (/) incompressible
fluid flow; (g) viscous fluid flow; (h) nonviscous fluid flow.

2. Explain the pressure variations in your blood as it circulates
through your body.

3. Explain how a physician can measure your blood pressure.

4. In steady flow, the velocity vector at any point is constant.
Can there then be accelerated motion of the fluid particles?
Explain.

5. Describe the forces acting on an element of fluid as it flows
through a pipe of nonuniform cross section.

6. In alecture demonstration, a Ping-Pong ball is kept in mid-
air by a vertical jet of air. Is the equilibrium stable, unstable,
or neutral? Explain.

7. The height of the liquid in the standpipes of Fig. 25 indicates
that the pressure drops along the channel, even though the
channel has a uniform cross section and the flowing liquid is
incompressible. Explain.

Figure 25 Question 7.

8. Explain why a taller chimney creates a better draft for taking
the smoke out of a fireplace. Why doesn’t the smoke pour
into the room containing the fireplace?

9. (a) Explain how a baseball pitcher can make the baseball
curve to his right or left. Can we justify applying Bernoulli’s
equation to such a spinning baseball? (See “Bernoulli and
Newton in Fluid Mechanics,” by Norman F. Smith, The
Physics Teacher, November 1972, p. 451.) (b) Why is it
easier to throw a curve with a tennis ball than with a base-
ball?

10. Not only a ball with a rough surface but also a smooth ball
can be made to curve when thrown, but these balls will curve
in opposite directions. Why? (See “Effect of Spin and Speed
on the Curve of a Baseball and the Magnus Effect for
Smooth Spheres,” by Lyman J. Briggs, American Journal of
Physics, November 1959, p. 589.)

11. Two rowboats moving parallel to one another in the same

direction are pulled toward one another. Two automobiles
moving parallel are also pulled together. Explain such phe-
nomena on the basis of Bernoulli’s equation.

12. In building “skyscrapers,” what forces produced by the
movement of air must be counteracted? How is this done?
(See “The Wind Bracing of Buildings,” by Carl W. Condit,
Scientific American, February 1974, p. 92.)

13. Explain the action of a parachute in retarding free fall using
Bernoulli’s equation.

14. Why does a stream of water from a faucet become narrower
as it falls?

15. Can you explain why water flows in a continuous stream
down a vertical pipe, whereas it breaks into drops when
falling freely?

16. How does the flush toilet work? Really. (See Flushed with
Pride: The Story of Thomas Crapper, by W. Reyburn, Pren-
tice-Hall, Englewood Cliffs, N.J., 1969.)

17. Sometimes people remove letters from envelopes by cutting
a sliver from a narrow end, holding it firmly, and blowing
toward it. Explain, using Bernoulli’s equation, why this pro-
cedure is successful.

18. On takeoff would it be better for an airplane to move into
the wind or with the wind? On landing?

19. Explain how the difference in pressure between the lower
and upper surfaces of an airplane wing depend on the alti-
tude of the moving plane.

20. The accumulation of ice on an airplane wing may greatly
reduce its lift. Explain. (The weight of the ice is not the issue
here.) ’

21. How is an airplane able to fly upside down?

22. “The characteristic banana-like shape of most returning
boomerangs has hardly anything to do with their ability to
return. . . . The essential thing is the cross section of the

| arms, which should be more convex on one side than on the
other, like the wing profile of an airplane.” (From “The
Aerodynamics of Boomerangs,” by Felix Hess, Scientific
American, November 1968, p. 124.) Explain.

23. What powers the flight of soaring birds? (See “The Soaring
Flight of Birds,” by C. D. Cone, Jr., Scientific American,
April 1962, p. 130.)

24. Why does the factor “2” appear in Eq. 15, rather than *1”7
One might naively expect that the thrust would simply be
the pressure difference times the area, that is, 4o(p — po)-

25. Explain why the destructive effect of a tornado is greater
near the center of the disturbance than near the edge.
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26. When a stopper is pulled from a filled basin, the water drains
out while circulating like a small whirlpool. The angular
velocity of a fluid element about a vertical axis through the
orifice appears to be greatest near the orifice. Explain.

27. Is it true that in bathtubs in the northern hemisphere the
water drains out with a counterclockwise rotation and in
those in the southern hemisphere with a clockwise rotation?
If so, explain and predict what would happen at the equator.
(See “Bath-Tub Vortex,” by Ascher H. Shapiro, Nature,
December 15, 1962, p. 1080.)

28. Explain why you cannot remove the filter paper from the
funnel of Fig. 26 by blowing into the narrow end.

Figure 26 Question 28.

29. According to Bernoulli’s equation, an increase in velocity
should be associated with a decrease in pressure. Yet, when
you put your hand outside the window of a moving car,
increasing the speed at which the air flows by, you sense an
increase in pressure. Why is this not a violation of Ber-
noulli’s equation?

Why is it that the presence of the atmosphere reduces the
maximum range of some objects (for example, tennis balls)
but increases the maximum range of others (for example,
Frisbees and golf balls)?

31. A discus can be thrown farther against a 25-mi/h wind than

30

32.
33.

34.

35.

36.

37.

38.

39.

with it. What is the explanation? (Hint: Think about dy.
namic lift and drag.)

Explain why golf balls are dimpled.

The longer the board and the shallower the water, the farther
will a surf board skim across the water. Explain. (See “The
Surf Skimmer,” by R. D. Edge, American Journal of Phys.
ics, July 1968, p. 630.)

When poured from a teapot, water has a tendency to run
along the underside of the spout. Explain. (See “The Teapot
Effect . . . a Problem,” by Markus Reiner, Physics Today,
September 1956, p. 16.)

Prairie dogs live in large colonies in complex interconnected
burrow systems. They face the problem of maintaining a
sufficient air supply to their burrows to avoid suffocation,
They avoid this by building conical earth mounds about
some of their many burrow openings. In terms of Bernoulli’s
equation, how does this air conditioning scheme work?
Note that because of viscous forces the wind speed over the
prairie is less close to the ground level than itis even a few
inches higher up. (See New Scientist, January 27, 1972,
p- 191.)

Viscosity is an example of a transport phenomenon. What
property is being transported? Can you think of other trans-
port phenomena and their corresponding properties?
Why do auto manufacturers recommend using “multi-
viscosity” engine oil in cold weather?

Why is it more important to take viscosity into account fora
fluid flowing in a narrow channel than in a relatively uncon-
fined channel?

Viscosity can delay the onset of turbulence in fluid flow; that
is, it tends to stabilize the flow. Consider syrup and water, for
example, and make this plausible.

PROBLEMS

Section 18-2 Streamlines and the Equation of Continuity

1. A pipe of diameter 34.5 cm carries water moving at 2.62
m/s. How long will it take to discharge 1600 m? of water?

2. A garden hose having an internal diameter of 0.75 in. is
connected to a lawn sprinkler that consists merely of an
enclosure with 24 holes, each 0.050 in. in diameter. If the
water in the hose has a speed of 3.5 fi/s, at what speed does it
leave the sprinkler holes?

3. Figure 27 shows the confluence of two streams to form a

Figure 27 Problem 3.

river. One stream has a width of 8.2 m, depth of 3.4 m, and
current speed of 2.3 m/s. The other stream is 6.8 m wide,
3.2 m deep, and flows at 2.6 m/s. The width of the river is
10.7 m and the current speed is 2.9 m/s. What is its depth?

. Water is pumped steadily out of a flooded basement at a

speed of 5.30 m/s through a uniform hose of radius
9.70 mm. The hose passes out through a window 2.90 m
above the water line. How much power is supplied by the
pump?

. A river 21 m wide and 4.3 m deep drains a 8500-km? land

area in which the average precipitation is 48 cm/y. One-
fourth of this subsequently returns to the atmosphere by
evaporation, but the remainder ultimately drains into the
river. What is the average speed of the river current?

. Tidal currents in narrow channels connecting coastal bays

with the ocean can be very swift. Water must flow into the
bay as the tide rises and back out to the sea as the tide falls.
Consider the rectangular bay shown in Fig. 28a. The bay 15
connected to the sea by a channel 190 m wide and 6.5 m
deep at mean sea level. The graph (Fig. 28b) shows the
diurnal variation of the water level in the bay. Calculate the
average speed of the tidal current in the channel.
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Section 18-3 Bernoulli’s Equation

7.

How much work is done by pressure in forcing 1.4 m? of
water through a 13-mm internal diameter pipe if the differ-
ence in pressure at the two ends of the pipe is 1.2 atm?

. A water intake at a storage reservoir (see Fig. 29) has a

cross-sectional area of 7.60 ft2. The water flowsinata speed
of 1.33 fi/s. At the generator building 572 ft below the in-
take point, the water flows out at 31.0 fit/s. (a) Find the
difference in pressure, in Ib/in.?, between inlet and outlet.
(b) Find the area of the outlet pipe. The weight density of
water is 62.4 Ib/ft>.

Reservoir

Generator
building

Figure 29 Problem 8.

9.

10.

11.

Models of torpedoes are sometimes tested in a horizontal
pipe of flowing water, much asa wind tunnel is used to test
model airplanes. Consider a circular pipe of internal diame-
ter 25.5 cm and a torpedo model, aligned along the axis of
the pipe, with a diameter of 4.80 cm. The torpedo is to be
tested with water flowing past it at 2.76 m/s. (a) With what
speed must the water flow in the unconstricted part of the

pipe? (b) Find the pressure difference between the con-

stricted and unconstricted parts of the pipe.

Water is moving with a speed of 5.18 m/s through a pipe
with a cross-sectional area of 4,20 cm?. The water gradually
descends 9.66 m as the pipe increases in area to 7.60 cm?
(a) What is the speed of flow at the lower level? (b) The
pressure at the upper level is 152 kPa; find the pressure at the
lower level.

Suppose that two tanks, 1and 2, each with a large opening at
the top, contain different liquids. A small hole ismadein the
side of each tank at the same depth & below the liquid sur-
face, butthe hole in tank 1 has halfthe cross-sectional area of
the hole in tank 2. (a) What is the ratio p,/p, of the densities
of the fluids if it is observed that the mass flux is the same for
the two holes? (b) What is the ratio of the flow rates (volume
flux) from the two tanks? (c) It is desired to equalize the two
flow rates by adding or draining fluid in tank 2. What should

\V
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time (h)

12,

13.

14.

15.

Figure 28 Problem 6.

be the new height of the fluid above the hole in tank 2to
make the flow rate in tank 2 equal to that of tank 1?

In a hurricane, the air (density 1.2 kg/m?) is blowing over
the roof of a house at a speed of 110 km/h. (2) What is the
pressure difference between inside and outside that tends to
lift the roof ? () What would be the lifting force ona roof of
area 93 m??

The windows in an office building are 4.26 mby 5.26 m.On
astormy day, airisblowingat 28.0 m/s pastawindow on the
53rd floor. Calculate the net force on the window. The den-
sity of the air is 1.23 kg/m>.

A liquid flows through a horizontal pipe whose inner radius
is 2.52 cm. The pipe bends upward through a height of
11.5 m-where it widens and joins another horizontal pipe of
inper radius 6.14 cm. What must the volume flux be if the
pressure in the two horizontal pipes is the same?

Figure 30 shows liquid discharging from an orifice in a large
tank at a distance & below the liquid surface. The tank is
open at the top. () Apply Bernoulli’s equation to a stream-
line connecting points 1,2, and 3, and show that the speed of

efflux is
v=12gh.

This is known as Torricelli’s law. (b) If the orifice were
curved directly upward, how high would the liquid stream
rise? (¢) How would viscosity or turbulence affect the
analysis?

N\

Figure 30 Problem 15.

16. A tank is filled with water to a height H. A hole is

punched in one of the walls at a depth h below the
water surface (Fig. 31). (@) Show that the distance x from the
foot of the wall at which the stream strikes the floor is given
by x = 2VA(H — h). (b) Could a hole be punched at another
depth so that this second stream would have the same range?
If so, at what depth? (c) At what depth should the hole be
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Figure 31 Problem 16.

17.

placed to make the emerging stream strike the grou nd at the
maximum distance from the base of the tank? What is this
maximum distance?

A sniper fires a rifle bullet into a gasoline tank, making a
hole 53.0 m below the surface of the gasoline. The tank was
sealed and is under 3.10-atm absolute pressure, as shown in
Fig. 32. The stored gasoline has a density of 660 kg/m?. At
what speed does the gasoline begin to shoot out of the hole?

o
130§ [

53.0m

20m

X

Figure 32 Problem 17.

18.

Consider a uniform U-tube with a diaphragm at the bottom
and filled with a liquid to different heights in each arm (see
Fig. 33). Now imagine that the diaphragm is punctured so
that the liquid flows from left to right. (a) Show that the
application of Bernoulli’s equation to points | and 3 leads to
a contradiction. () Explain why Bernoulli’s equation is not
applicable here. (Hint: Is the flow steady?)

@ Diaphragm

Figure 33 Problem 18.

19.

If a person blows air with a speed of 15.0 m/s across the top
of one side of a U-tube containing water, what will be the

20.

difference between the water levels on the two sides? As-
sume the density of air is 1.20 kg/m?.

The fresh water behind a reservoir dam is 15.2 m deep. A
horizontal pipe 4.30 cm in diameter passes through the dam
6.15 m below the water surface, as shown in Fig. 34. A plug
secures the pipe opening. (a) Find the frictional force be-
tween plug and pipe wall. (b) The plug is removed. What
volume of water flows out of the pipe in 3.00 h?

Figure 34 Problem 20.

21. A siphon is a device for removing liquid from a container

that is not to be tipped. It operates as shown in Fig. 35. The
tube must initially be filled, but once this has been done the
liquid will flow until its level drops below the tube opening
at A. The liquid has density p and negligible viscosity.
(@) With what speed does the liquid emerge from the tube at
C?(b) What is the pressure in the liquid at the topmost point
B? (¢) What is the greatest possible height A, that a siphon
may lift water?

Figure 35

Problem 21.

22. (a) Consider a stream of fluid of density p with speed v,

passing abruptly from a cylindrical pipe of cross-sectional
area a, into a wider cylindrical pipe of cross-sectional area d;
(see Fig. 36). The jet will mix with the surrounding fluid and,
after the mixing, will flow on almost uniformly with an
average speed v,. Without referring to the details of the
mixing, use momentum ideas to show that the increase in
pressure due to the mixing is approximately

Py — Dy = ps(v, — ).




Figure 36 Problem 22.

(b) Show from Bernoulli’s equation that in a gradually wid-
ening pipe we would get

P2 —py=4pi —vd).
(¢) Find the loss of pressure due to the abrupt enlargement
of the pipe. Can you draw an analogy with elastic and inelas-
tic collisions in particle mechanics?
23. Ajugcontains 15 glasses of orange juice. When you open the
tap at the bottom it takes 12.0 s to fill a glass with juice. If

you leave the tap open, how long will it take to fill the
remaining 14 glasses and thus empty the jug?

Section 18-4 Applications of Bernoulli’s Equation and the
Equation of Continuity

24. A Pitot tube is mounted on an airplane wing to determine
the speed of the plane relative to the air, which has a density
of 1.03 kg/m?. The tube contains alcohol and indicates a
level difference of 26.2 cm. What is the plane’s speed rela-
tive to the air? The density of alcohol is 810 kg/m?,

25. A hollow tube has a disk DD attached to its end (Fig. 37).
When air of density p is blown through the tube, the disk
attracts the card CC. Let the area of the card be A and let v be
the average air speed between the card and the disk. Calcu-
late the resultant upward force on CC. Neglect the card’s
weight; assume that v, << v, where v, is the air speed in the
hollow tube.

Di
v

C C N
Figure 37 Problem 25.

26. A square plate with edge length 9.10 cm and mass 488 g is
hinged along one side. If air is blown over the upper surface
only, what speed must the air have to hold the plate horizon-
tal? The air has density 1.21 kg/m>.

27. Air flows over the top of an airplane wing, area 4, with speed
v, and past the underside of the wing with speed v,. Show
that Bernoulli’s equation predicts that the upward lift force
L on the wing will be

L=14pA(v? —v}),
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where p is the density of the air. (Hint: Apply Bernoulli’s
equation to a streamline passing just over the upper wing
surface and to a streamline passing just beneath the lower
wing surface. Can you justify setting the constants for the
two streamlines equal?)

28. An airplane has a wing area (each wing) of 12.5 m? At a
certain air speed, air flows over the upper wing surface at
49.8 m/s and over the lower wing surface at 38.2 m/s.
(@) Find the mass of the plane. Assume that the plane travels
with constant velocity and that lift effects associated with
the fuselage and tail assembly are small. Discuss the lift if the
airplane, flying at the same air speed, is (b) in level flight,
(¢) climbing at 15°, and () descending at 15°. The air den-
sity is 1.17 kg/m?. See Problem 27.

29. Consider the stagnant air at the front edge of a wing and the
air rushing over the wing surface at a speed v. Assume pres-
sure at the leading edge to be approximately atmospheric
and find the greatest value possible for v in streamline flow;
assume air is incompressible and use Bernoulli’s equation.
Take the density of air to be 1.2 kg/m?. How does this com-
pare with the speed of sound under these conditions (340
m/s)? Can you explain the difference? Why should there be
any connection between these quantities?

30. A Venturi tube has a pipe diameter of 25.4 cm and a throat
diameter of 11.3 cm. The water pressure in the pipe is
57.1 kPa and in the throat is 32.6 kPa. Calculate the volume
flux of water through the tube.

31. Consider the Venturi meter of Fig. 9. By applying Ber-
noulli’s equation to points 1 and 2, and the equation
of continuity (Eq. 3), verify Eq. 11 for the speed of flow at
point 1.

32. Consider the Venturi meter of Fig. 9, containing water,
without the manometer. Let 4 = 4.75a. Suppose that the
pressure at point 1 is 2.12 atm. (@) Compute the values of v
at point 1 and »’ at point 2 that would make the pressure p’
at point 2 equal to zero. (b) Compute the corresponding
volume flow rate if the diameter at point 1 is 5.20 cm. The
phenomenon at point 2 when p’ falls to nearly zero isknown
as cavitation. The water vaporizes into small bubbles.

Section 18-5 Fields of Flow

33. Show that the constant in Bernoulli’s equation is the same
for all streamlines in the case of the steady, irrotational flow
of Fig. 14.

34. A force field is conservative if § F-ds = 0. The circle on the
integration sign means that the integration is to be taken
along a closed curve (a round trip) in the field. A flow is a
potential flow (hence irrotational) if § v-ds = 0 for every
closed path in the field. Using this criterion, show that the
fields of (@) Fig. 14 and (b) Fig. 17 are fields of potential flow.

35. In flows that are sharply curved, centrifugal effects are ap-
preciable. Consider an element of fluid that is moving with
speed v along a streamline of a curved flow in a horizontal
plane (Fig. 38). (a) Show that dp/dr= pv?*/r, so that the
pressure increases by an amount pv?/r per unit distance
perpendicular to the streamline as we go from the concave to
the convex side of the streamline. (b) Then use Bernoulli’s
equation and this result to show that vr equals a constant, so
that speeds increase toward the center of curvature. Hence
streamlines that are uniformly spaced in a straight pipe will
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Center of
curvature

Figure 38 Problem 35.

36.

be crowded toward the inner wall of a curved passage and
widely spaced toward the outer wall. This problem should
be compared to Problem 29 of Chapter 17 in which the
curved motion is produced by rotating a container. There
the speed varied directly with r, but here it varies inversely.
(¢) Show that this flow is irrotational.

Before Newton proposed his theory of gravitation, a model
of planetary motion proposed by René Descartes was widely
accepted. In Descartes’ model the planets were caught in
and dragged along by a whirlpool of ether particles centered
around the Sun. Newton showed that this vortex scheme
contradicted observations because: () the speed of an ether
particle in the vortex varies inversely as its distance from the
Sun; (b) the period of revolution of such a particle varies
directly as the square of its distance from the Sun; and
() this result contradicts Kepler’s third law. Prove (a), (b),
and {c).

Section 18-6 Viscosity, Turbulence, and Chaotic Flow

37.

Figure 39 shows a cross section of the upper layers of the
Earth. The surface of the Earth is broken into several rigid
blocks, called plates, that slide (slowly!) over a “slushy™
lower layer called the asthenosphere. See the figure for typi-
cal dimensions. Suppose that the speed of the rigid plate
shown is 7, = 48 mm/y, and that the base of the astheno-
sphere does not move. Calculate the shear stress on the base
of the plate. The viscosity of the asthenosphere material is
4.0 X 10! Pa-s. Ignore the curvature of the Earth.

50 km

.

Asthenosphere ~ 190 km

v=0l

Figure 39 Problem 37.

38.

39.

40.

Calculate the greatest speed at which blood, at 37°C, can
flow through an artery of diameter 3.8 mm if the flow is to
remain laminar.

Liquid mercury (viscosity = 1.55 X 1073 N-s/m?) flows
through a horizontal pipe of internal radius 1.88 cm and
length 1.26 m. The volume flux is 5.35 X 1072 L/min,
(a) Show that the flow islaminar. (b) Calculate the difference
in pressure between the two ends of the pipe.

The streamlines of the Poiseuille field of flow are shown in
Fig. 40. The spacing of the streamlines indicates that al-
though the motion is rectilinear, there is a velocity gradient
in the transverse direction. Show that the Poiseuille flow is
rotational.
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Figure 40 Problem 40.

41.

A fluid of viscosity 7 flows steadily through a horizontal
cylindrical pipe of radius R and length L, as shown in Fig.
41. (a) Consider an arbitrary cylinder of fluid of radius r.
Show that the viscous force F due to the neighboring layer is
= —n(2nrL)dv/dr. (b) Show that the force F” pushing that
cylinder of fluid through the pipeis F* = (r¥)Ap. (c) Use the
equilibrium condition to obtain an expression for dv in
terms of dr. Integrate the expression to obtain Eq. 18.

Figure 41 Problems 41 and 42.

42,

43.

Consider once again the fluid flowing through the pipe de-
scribed in Problem 41 and illustrated in Fig. 41. Find an
expression for the mass flux through the annular ring be-
tween radii rand r + dr; then integrate this result to find the
total mass flux through the pipe, thereby verifying Eq. 20.

A soap bubble of radius 38.2 mm is blown on the end ofa
narrow tube of length 11.2cm and internal diameter
1.08 mm. The other end of the tube is exposed to the atmo-
sphere. Find the time taken for the bubble radius to fall to
21.6 mm. Assume Poiseuille flow in the tube. (For the sur-
face tension of the soap solution use 2.50 X 1072 N/m; the
viscosity of air is 1.80 X 1073 N -s/m%)




