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I. KK 6.1

a) The total linear momentum vanishes:
∑

i ~pi = 0. The angular momentum about a particular

origin is L =
∑

i ~ri× ~pi. The angular momentum about a different origin is L̃ =
∑

i
~̃ri× ~pi. Notice

that the radial coordinate changes, but the linear momentum is unaffected. The new and old radial

coordinates are related via ~̃r = ~r + ~a, for some constant vector ~a. So then

L̃ =
∑
i

~̃ri × ~pi =
∑
i

(~ri + ~a)× ~pi = ~L+ ~a×
∑
i

~pi = ~L.

b) The torque on the system about a particular origin is ~τ =
∑

i ~ri × ~Fi. This is related to the

torque about a different origin via

~̃τ =
∑
i

~̃ri × ~Fi =
∑
i

(~ri + ~a)× ~Fi = ~τ + ~a×
∑
i

~Fi = ~τ .

II. KK 6.2

The key concept is that the total angular momentum is constant. Using that the moment of inertia

of a drum is I = MR2, and that the initial angular frequency of the B drum is zero, we have

Li = IAa
2ωA(0) = (MA +Ms)a

2ωA(0),

Lf = IAa
2ωA(t) + IBb

2ωB(t) = (MA +Ms − λt)a2ωA(t) + (MB + λt)b2ωB(t).

Notice that the mass of the drums is changing in time, and that the change in B is equal to minus

the change in A. Next, we must note that ωA(t) = ωA(0)–the A drum is not changing it’s rotational

velocity. This is because the sand particles are not exerting any torque on the A drum. Solving

for Li = Lf yields

ωB(t) =
( λt

MB + λt

)a2
b2
ωA(0)
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III. KK 6.3

The key concept here is that the total angular momentum Lbug + Lring vanishes.

a) bug opposite pivot

The ring is rotating about pivot with angular velocity ω. The bug is moving relative to the ring

with velocity v. So the bug is moving about the pivot with velocity

v − (distance from bug to pivot)ω = v − 2Rω.

The angular momentum of the bug is then

Lbug = m(velocity of bug about pivot)(distance from bug to pivot) = m(v − 2Rω)2R.

The moment of inertia of the ring about an axis through it’s center is I0 = MR2, so the moment

of inertia through the pivot can be found using the parallel axis theorem: I = I0 +MR2 = 2MR2.

The angular momentum of the ring is then Lring = −Iω = −2MR2ω. The minus sign comes about

because it’s rotating in the opposite direction of the bug. So then we have

Lbug + Lring = 0 ⇒ ω =
mv

(M + 2m)R

b) bug at pivot

Since the bug is at the pivot, it’s angular momentum is zero. Since angular momentum is conserved,

the angular momentum of the ring is also zero. So Lbug = Lring = ω = 0.

IV. KK 6.4

The package is falling through a gravitational field, and therefore feels at all times a force directed

to the planet’s center. Consider the angluar momentum of the packgage with respect to the

center of the planet. Because the gravitational force is always acting radially, it exerts no torque;

therefore this angular momentum is conserved. Also energy is conserved. With these two conserved

quantities we can find the critical angle at which the package will graze the planet.

Initially, the radius of the package is r = 5R. When the package grazes the planet, r = R. The

initial and final energies are:

Ei =
1

2
mv20 −

GMm

5R
= Ef =

1

2
mv2 − GMm

R
.
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The initial and final angular momenta are:

Li = mv0 sin θ(5R) = Lf = mvR.

We can now solve for θ: from the angular momentum equation we have 1
2mv

2
0 − GMm

5R , and then

using this in the energy equation we have

1

2
mv20 −

GMm

5R
=

25

2
mv20 sin2 θ − 5GMm

5R
,

θ =
1

5

√
1 +

8

5

GM

Rv20
.

V. KK 6.5

Consider first the center of mass of the car. The gravitational force acting downwards is mg,

which can be decomposed into mg cos θ acting normal to the ramp, and mg sin θ acting tangen-

tially down the ramp. Therefore, the normal force is N = mg cos θ. Similarly, the frictional force

must be f = mg sin θ in order to prevent the car from sliding down the ramp. Additionally, the

only contact the car has with the ramp are the two sets of wheels, so N = N1+N2, and f = f1+f2.

Both the normal forces and the frictions will exert a torque on the car. But the car should

be stationary, so these must sum to zero. If l1 is the height of the center of mass above the ramp,

and l2 is the distance between the axles and the center of mass (see diagram), then

0 = (N1 −N2)l2 + (f1 + f2)l1

= (N1 −N2)l2 + (mg sin θ)l1.

Solving for N1, N2 yields

N1,2 =
Mg

2

(
cos θ ∓ l1

l2
sin θ

)
.

For the given numerical values, N1 = 924lbs, N2 = 1674 lbs.

VI. KK 6.6

In a similar vein as the previous problem, before considering the individual feet, consider the forces

acting on the center of mass. The gravitational force is acting downwards, and the man feels a

centripetal force pushing him radially outwards.
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Since the man is not accelerating vertically, N = mg. Since he’s not radially accelerating,

f = mv2/R. And since his only point of contact with the railroad car are his feet, N = N1 + N2

and f = f1 + f2.

Both of these forces will produce torques about his center of mass. Since his angular velocity

is constant, these torques must cancel:

0 = (No −Ni)
d

2
= (fo + fi)L.

Solving these equations yields

Ni,o =
1

2

(
Mg ∓ Mv2L

R(d/2)

)
.

VII. KK 6.13

a) Since the force is acting parallel to the axis, it produces no torque, so angular momentum is

conserved but energy is not. Therefore

L = mviri = mvfrf ⇒ vf = vi
ri
rf
.

b) The force is no longer central, so angular momentum is not conserved. But energy is conserved

because the work is zero, W =
∫
~T · d~r =

∫
(~T · ~v)dt = 0 (since T and v are perpendicular). So

1

2
mv2i =

1

2
mv2f ⇒ vf = vi.

VIII. KK 6.14

a) τ = (Mg)(l/2)

b) τ = Iα, α = τ
I = 3g/2l

c) a = α(l/2) = 3g/4.

d) Ma = Mg − Fvert, Fvert = Mg/4.




