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I. HRK 15.17

F (r) = − a

r2
+

b

r3
.

a) The separation at equlibrium is the separation for which F (r) = 0. This is given by r = b
a . At
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FIG. 1. F(r) for a=2, b=1

this radius the attractive and repulsive forces are balanced and the net force vanishes. This is the

equlibrium position.

b) Expanding the force about the equilibrium position yields

F (r) ≈ −
a4
(
r − b

a

)

b3
+

3a5
(
r − b

a

)2

b4
+O

((
r − b

a

)3
)

Neglecting all but the leading term, this is just Hook’s law, mẍ = −kx, with x = r − b/a, and

k = a4/b3

c) The solution to Hook’s equation is of the form x(t) = cos(
√
k/mt), and the period is T =

2π/
√

k/m. For the problem at hand, this is

T =
2πb3/2m1/2

a2
,

where m is the mass of the atoms in question.
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II. HRK 15.20

For two particles undergoing simple harmonic motion about the same origin, and with the same

frequency and amplitude, the positions are given by

x1(t) = A cos(ωt+ φ1), x2(t) = A cos(ωt+ φ2).

At t = t∗, the two positions are the same and equal to A/2, so we have

x1(t∗) = x2(t∗) = A/2

cos(ωt∗ + φ1) = cos(ωt∗ + φ2) =
1

2

ωt∗ + φ1 = ±π

3
, ωt∗ + φ2 = ±π

3

The ± signs are important, as we’ll see shortly. I’ll fix the first one to be positive and the second

one I’ll keep arbitrary. So we have

ωt∗ + φ1 =
π

3
, ωt∗ + φ2 = ±π

3

The velocities are given by

v1(t∗) = −Aω sin(
π

3
) = −Aω

√
3

2
, v2(t∗) = −Aω sin(±π

3
) = ∓Aω

√
3

2

So when we choose the opposite signs, the velocities at the time of crossing are opposite signs. So,

(ωt∗ + φ1)− (ωt∗ + φ2) ≡ ∆φ =
2π

3
.

III. HRK 15.21

The block’s equation of motion is

mẍ =
∑

F = F1 + F2 = −k1x− k2x = −(k1 + k2)x

So this is just the equation of motion for a single spring system with spring constant k = k1 + k2.

So

ν =
ω

2π
=

1

2π

√
k

m
=

1

2π

√
k1 + k2

m

Since if only spring 1 or 2 were attached to the block the frequency would be ν1,2 = (2π)−1
√

k1,2/m,

we can also write

ν =
√

ν21 + ν22 .
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IV. HRK 15.22

For this problem, let the block be at position x and x1,2 be the displacement distance of the springs

from their equilibrium value. The block will feel an effective force

F = −keff(x1 + x2).

The second sping exerts a force F = −kx2 on the block and on the first spring, and the first spring

exerts a force F = −kx1 on the second spring. All these forces are equal since springs’ centers of

mass are not accelerating. So we have

−k1x1 = −k2x2 = −keff(x1 + x2).

Using x1 = k2x2/k1, we can see that

k2x2 = −keff
(k2
k1

+ 1
)
x2 ⇒ keff =

( 1

k1
+

1

k2

)−1
=

k1k2
k1 + k2

So that

ν =
1

2π

√
keff
m

=
1

2π

√
k1k2

m(k1 + k2)
=

ν1ν2√
ν21 + ν22

.

V. HRK 15.34

When the bullet hits the block, some energy is lost to heat, but linear momentum is conserved.

Then the block begins to execute simple harmonic motion, and energy is converved. Assuming the

spring is massless, the initial velocity of the block is found by

mv = (M +m)v0 ⇒ v0 =
m

M +m
v.

Since the spring is initially at its equilibrium position, the energy of the system (initially, and for

all time) is

E =
1

2
(M +m)v20.

Basically the bullet is supplying us with initial conditions for the simple harmonic oscillator equa-

tion, which now reads

x(t) = A sin(ωt),

with ω =
√
k/(M +m). The initial velocity is v0 = Aω, so we have that

A =
v0
ω

= v0

√
M +m

k
=

m√
k(M +m)

v.
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We could have also said that the energy at the maximum displacement is

E =
1

2
k(∆x)2 =

1

2
(M +m)v20,

and that (∆x) = A. So

A =

√
(M +m)

k

m

(M +m)
v =

m√
k(M +m)

v

VI. HRK 15.37

Once the system is released from rest, energy is conserved. At the starting point, all the energy is

tied into potential energy, and as the spring returns to its equilibrium position, all that energy is

converted into kinetic. We have

E =
1

2
k(∆x)2 =

1

2
Mv2cm +

1

2
Iω2.

The cylinder has I = MR2/2, and the no slipping condition is v = Rω. So then,

E =
1

2
k(∆x)2 =

3

4
Mv2cm,

so that

vcm =

√
2

3

k

M
(∆x).

a),b) The translational and rotational energies are then

Ktrans =
1

2
Mv2cm =

1

3
k(∆x)2 = 5.6 Joules

Krot =
1

2
Iω2 =

1

6
k(∆x)2 = 2.8 Joules

c) That the center of mass of the cylinder undergoes simple harmonic motion can be seen as follows:

(∆x) = Rθ, and vcm = Rω, so that the energy at a generic moment in time is

E =
1

2
kR2θ2 +

3

4
MR2θ̇2.

Since this is conserved, ∂tE = 0, and

kθ +
3

2
M θ̈ = 0 ⇒ θ̈ + ω̃2θ = 0.

This is the equation for a SHO with

T =
2π

ω̃
= 2π

√
3M

2k
.
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VII. HRK 15.52

a), b) Start the particle from rest anywhere inside the bowl, but orient the bowl so that it’s only

moving in the x-direction. Let θ be the angle between the line normal to the bowl at the bowl’s

bottom, and the radial vector pointing towards the particle. The max height is found as

cos θ = 1− h

R
, h = R(1− cos θ).

For small θ, the heigh is h ≈ Rθ2/2. The energy is

E = mgh+
1

2
mv2 = mgR(1− cos θ) +

1

2
mR2θ̇2.

For small θ, i.e. near the bottom of the bowl, this is

E ≈ mgR

2
θ2 +

1

2
mR2θ̇2.

Since this is conserved, ∂tE = 0, and we have

θ̈ +
g

R
θ = 0.

This is just a SHO with

g

R
=

g

l
,

so leff = R, this is just a simple pendulum.

VIII. HRK 15.56

This problem asks us to find the period of oscillation for two different physical pendulua. The

general formula is

T = 2π

√
I

MgL
,

where L is the distance from the center of mass to the pivot, which in this case is 2r1+∆, where r1

is the inner radius and ∆ is the thickness (the ∆ comes about because the pivot lies on the inside

of one of the pipes). So our job is to calculate the moment of inertia for these two configurations.

The moment of inertia about the center of mass for a constant density annulus (a ring with

non-zero thickness) is

dI = r2dm = r2ρdA = r2ρrdrdφ ⇒ I = (2π)ρ
r4

4

∣∣∣∣∣

r1+∆

r1

=
πρ

2
((r1 +∆)4 − r41).
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The density is ρ = M/A, and

A = π((r1 +∆)2 − r21).

Since this expression is rather complicated, I’ll just plug in the numbers now, to find that

Icm = 110.8Mcm2

a) The moment of inertia about the pivot is

Ia = I1+I2 =
(
Icm+Mr21

)
+
(
Icm+M(3r1+2∆)2

)
= 2Icm+M(r21+(3r1+2∆)2) = 1341.9Mcm2.

So then the period is

Ta = (2π)

√
1341.9cm2

gL
= 1.602s.

b) For part b), the only difference is in the second Icm. Because of the perpendicular axis theorem,

and the symmetry of the problem, the moment of inertia about an axis in the plane of the cylinder

should be 1/2 as much as through the z-axis. So the formula for the total I changes to

Ib = I1+I2 =
(
Icm+Mr21

)
+
(Icm

2
+M(3r1+2∆)2

)
=

3

2
Icm+M(r21+(3r1+2∆)2) = 1286.5Mcm2.

The new period is

Tb = (2π)

√
1286.5cm2

gL
= 1.569s.

And lastly,

1− Tb

Ta
= 0.021,

So that the new period is 2% less than the old.

IX. HRK 15.61

See the mathematica notebook for this one.

X. HRK 15.64

The solution to a damped harmonic oscillator equation,

mẍ+ bẋ+ kx = 0,



7

for the underdamped case (ω2
0 > γ2) is

x(t) = Ae−γt cos(ωdt+ φ),

where

γ =
b

2m
, ω2

0 =
k

m
, ω2

d = ω2
0 − γ2.

So the underdamped case corresponds to ωd ∈ R (it’s a real number). The period is given by

T = 2π/ωd. We are told that after 4 cycles the amplitude falls to 3/4 it’s original value, which in

equations translates to

x(4T )

x(0)
= e−4Tγ cos(ωd(4T ) + φ)

cosφ
= e−4Tγ =

3

4
.

In the above I used the fact that cos(4Tωd + φ) = cos(4Tωd) cosφ− sin(4Tωd) sinφ = cosφ.

a) I can now solve for b. Taking the logarithm of the above equation, I have

−4Tγ = −4
2π√

ω2
0 − γ2

γ = ln(3/4) = − ln(4/3).

Squaring, and substituting in the values for ω0, γ, this becomes

8π√
k
m − b2

4m2

b

2m
= ln(4/3).

This is perverse, so I’m just going to plug it into my handy calculator. Throwing in m, k, we can

solve for b:

b → 0.112292kg/s

b) How much energy has been lost? Well the amplitude has decreased to 3/4 it’s original value,

so it’s amplitude has decreased to (3/4)2 = 9/16 it’s original value. They tell us it’s original value,

so we can find the energy lost as

(
1− 9

16
=

7

16

)
Ei =

7

16
× 1

2
k(∆x)2 =

7

32
(12.6N/m)(26.2cm)2 = 0.189 Joules.



Phys 21 HW 5
by Gavin Hartnett

HRK 15.17
HRK 15.56
HRK 15.61

Part a)
Here are some Lissajous figures for xm=ym and fx=fy: The figures depend on f, so I’ve done a few 
different ones.

In[1]:= Clear@"Global`*"D;
In[2]:= x@t_D = Cos@wx t + fxD;

y@t_D = Cos@wy t + fyD;
In[4]:= fx = f;

fy = f;

In[6]:= wxlist = 81, 1, 2<;
wylist = 82, 2, 3<;

In[8]:= f = 0;
Table@ParametricPlot@8x@tD ê. wx Æ wxlistPiiT, y@tD ê. wy Æ wylistPiiT<, 8t, 0, 10<,

PlotRange Æ All, PlotLabel Æ StringJoin@"wxêwy = ", ToString@wxlistPiiTD,
"ê", ToString@wylistPiiTD, ", fx=fy=", ToString@fDDD, 8ii, 1, 3<D

Out[9]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=fy=0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=fy=0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 2ê3, fx=fy=0

>



In[10]:= f = N@p ê 4D;
Table@ParametricPlot@8x@tD ê. wx Æ wxlistPiiT, y@tD ê. wy Æ wylistPiiT<, 8t, 0, 10<,

PlotRange Æ All, PlotLabel Æ StringJoin@"wxêwy = ", ToString@wxlistPiiTD,
"ê", ToString@wylistPiiTD, ", fx=fy=", ToString@fDDD, 8ii, 1, 3<D

Out[11]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=fy=0.785398

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=fy=0.785398

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 2ê3, fx=fy=0.785398

>

In[12]:= f = N@p ê 2D;
Table@ParametricPlot@8x@tD ê. wx Æ wxlistPiiT, y@tD ê. wy Æ wylistPiiT<, 8t, 0, 10<,

PlotRange Æ All, PlotLabel Æ StringJoin@"wxêwy = ", ToString@wxlistPiiTD,
"ê", ToString@wylistPiiTD, ", fx=fy=", ToString@fDDD, 8ii, 1, 3<D

Out[13]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=fy=1.5708

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=fy=1.5708

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 2ê3, fx=fy=1.5708

>

Part b)
Here are some Lissajous figures for xm=ym.

In[14]:= Clear@"Global`*"D;
In[15]:= x@t_D = Cos@wx t + fxD;

y@t_D = Cos@wy t + fyD;
In[17]:= fx = f;

fy = 0;

In[19]:= wxlist = 81, 1, 2<;
wylist = 82, 2, 3<;
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In[21]:= f = 0;
Table@ParametricPlot@8x@tD ê. wx Æ wxlistPiiT, y@tD ê. wy Æ wylistPiiT<,8t, 0, 10<, PlotRange Æ All, PlotLabel Æ

StringJoin@"wxêwy = ", ToString@wxlistPiiTD, "ê", ToString@wylistPiiTD,
", fx=", ToString@fD, ", fy = 0"D, ImageSize Æ 250D, 8ii, 1, 3<D

Out[22]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=0, fy = 0

,

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=0, fy = 0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 2ê3, fx=0, fy = 0

>
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In[23]:= f = N@p ê 4D;
Table@ParametricPlot@8x@tD ê. wx Æ wxlistPiiT, y@tD ê. wy Æ wylistPiiT<,8t, 0, 10<, PlotRange Æ All, PlotLabel Æ

StringJoin@"wxêwy = ", ToString@wxlistPiiTD, "ê", ToString@wylistPiiTD,
", fx=", ToString@fD, ", fy = 0"D, ImageSize Æ 250D, 8ii, 1, 3<D

Out[24]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=0.785398, fy = 0

,

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=0.785398, fy = 0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 2ê3, fx=0.785398, fy = 0

>
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In[25]:= f = N@p ê 2D;
Table@ParametricPlot@8x@tD ê. wx Æ wxlistPiiT, y@tD ê. wy Æ wylistPiiT<,8t, 0, 10<, PlotRange Æ All, PlotLabel Æ

StringJoin@"wxêwy = ", ToString@wxlistPiiTD, "ê", ToString@wylistPiiTD,
", fx=", ToString@fD, ", fy = 0"D, ImageSize Æ 250D, 8ii, 1, 3<D

Out[26]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=1.5708, fy = 0

,

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 1ê2, fx=1.5708, fy = 0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
wxêwy = 2ê3, fx=1.5708, fy = 0

>

Part c)
Now I want to show that when wx/wy is not rational, the curves fill the whole unit square.

In[27]:= Clear@"Global`*"D;
In[28]:= x@t_D = Cos@wx t + fxD;

y@t_D = Cos@wy t + fyD;
In[30]:= fx = f;

fy = f;
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In[32]:= wxlist = 81, 1, 2<;
wylist = 82, 2, 3<;

In[34]:= wx = N@GoldenRatioD
wy = 1

Out[34]= 1.61803

Out[35]= 1

Here’s the case of fx=0, fy=0, and wx/wy=F (the golden ratio)

In[36]:= f = 0;
TableAParametricPlotA8x@tD, y@tD<, 9t, 0, 3ii=, PlotRange Æ All,

PlotLabel Æ StringJoinA"t = ", ToStringA5iiEE, ImageSize Æ 200E, 8ii, 1, 6<E

Out[37]= :
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
t = 5

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
t = 25

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
t = 125

,

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
t = 625

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
t = 3125

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
t = 15625

>

Isn’t this cool!!!!

HRK 15.64
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