PHYS 21: Assignment 6 Solutions

Due on Feb $25\ 2013$

Prof. Oh

Katharine Hyatt

K + K 10.2

$Q=\!$	
We know that:	$\omega = \frac{2\pi \text{rad}}{\text{cycle}} \cdot \frac{2\text{cycles}}{\text{second}} = \frac{4\pi \text{rad}}{\text{s}}$
So:	$\gamma = \frac{4\pi \text{rad/s}}{60 \text{rad}} = 0.21 \frac{1}{\text{s}}$
	$\gamma = \frac{4\pi \text{rad/s}}{60 \text{rad}} = 0.21 \frac{1}{\text{s}}$ $b = \gamma m = 0.063 \frac{\text{kg}}{\text{s}}$
	$\omega = \sqrt{\frac{k}{m}}$ $k = m\omega^2$
	$=0.3$ kg $\cdot (4\pi rad/s)^2 = 47.5$ N/m

K + K 10.5

The equation of motion for the damped oscillator is:

 $0 = \ddot{x} + \gamma \dot{x} + \omega^2 x$

For $\gamma = 2\omega_0$, we have:

 $0 = \ddot{x} + 2\omega_0 \dot{x} + \omega_0^2 x$

Let's use a trial solution of

$$\begin{aligned} x(t) &= (A+Bt)e^{-\gamma t/2} \\ &= (A+Bt)e^{-\omega_0 t} \\ \Rightarrow \dot{x} &= -\omega_0(A+Bt)e^{-\omega_0 t} + Be^{-\omega_0 t} \\ \ddot{x} &= \omega_0^2(A+Bt)e^{-\omega_0 t} - 2B\omega_0 e^{-\omega_0 t} \\ 0 &= \omega_0^2(A+Bt)e^{-\omega_0 t} - 2B\omega_0 e^{-\omega_0 t} - 2\omega_0^2(A+Bt)e^{-\omega_0 t} + 2\omega_0 Be^{-\omega_0 t} + \omega_0^2(A+Bt)e^{-\omega_0 t} \\ 0 &= 2\omega_0^2(A+Bt)e^{-\omega_0 t} - 2\omega_0^2(A+Bt)e^{-\omega_0 t} - 2B\omega_0 e^{-\omega_0 t} + 2\omega_0 Be^{-\omega_0 t} \\ = 0 \end{aligned}$$

Now we apply the initial conditions:

 $\begin{aligned} x(0) &= 0 \\ \Rightarrow 0 &= A \\ \dot{x}(0) &= \frac{I}{m} \\ \Rightarrow \frac{I}{m} &= B \\ \Rightarrow x(t) &= \frac{It}{m} e^{-\omega_0 t} \end{aligned}$

We see that $\dot{x} = 0$ when $t = \frac{2}{\gamma}$, and since the second derivative is always negative this is the maximum.

K + K 10.7

We can see from Equation 10.25 of the textbook that x(t) has the form:

$$\begin{split} x(t) = &A\cos(\omega t + \varphi) \\ \varphi = \arctan \frac{\gamma \omega}{\omega_0^2 - \omega^2} \end{split}$$

So we see that:

 $\dot{x}(t) = -A\omega\sin(\omega t + \varphi)$

To be "in phase" with the driving force, we need

$$-\sin(\omega t + \varphi) = \cos(\omega t)$$
$$-\sin(\omega t)\cos(\varphi) - \sin(\varphi)\cos(\omega t) = \cos(\omega t)$$

This means that $\sin \varphi = -1$ and $\cos \varphi = 0$ so $\varphi = \frac{3\pi}{2}$. But this forces $\tan \phi = 0$, which occurs when $\omega = \omega_0$, or when resonance occurs.

However much power is generated by dropping the weight is dissipated by friction. If the weight has descended a distance L in a time T, then:

$$\bar{p} = \frac{\Delta E}{\Delta t} \\ = \frac{MgL}{T}$$

And we'd like to find the energy lost per radian swung:

$$\bar{\Delta E} = \frac{\bar{p}}{\omega}$$

We can also write down the average stored energy

$$\bar{E} = \frac{m}{2}\bar{v^2} + \frac{mg\ell}{2}\bar{\theta^2}$$

On average, the kinetic and potential energies are equal so if θ_0 is the angle at the maximum of the swing:

$$\begin{split} \bar{E} &= \frac{mg\ell}{2}\theta_0^2 \\ \Rightarrow Q &= \frac{\bar{E}}{\bar{\Delta}\bar{E}} \\ &= \frac{\omega}{\bar{p}}\frac{mg\ell}{2}\theta_0^2 \\ &= \frac{\omega T}{MaL}\frac{mg\ell}{2}\theta_0^2 \end{split}$$

We can now plug in the numbers the problem gives us to find:

Q = 68

The amount of energy required to drive the clock for one day is:

$$E = MgL$$

=0.2kg · g · 2m
=4J

If the battery only holds 1 joule of power, then it will only make it through a quarter of the day (6 hours).

$K + K \ 10.12$

The equation of motion for the free damped oscillator is

 $\ddot{x} + \gamma \dot{x} + \omega_0^2 x = 0$

The equation of motion for the forced damped oscillator is

$$\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \frac{F_0}{m} \cos(\omega t)$$

Let $x_a(t)$ be a solution for the first equation and let $x_b(t)$ be a solution for the second. We also say $x_c(t) = x_a(t) + x_b(t)$. Then we substitute $x_c(t)$ into the second DE.

$$\ddot{x}_c + \gamma \dot{x}_c + \omega_0^2 x_c = \ddot{x}_a + \gamma \dot{x}_a + \omega_0^2 x_a + \ddot{x}_b + \gamma \dot{x}_b + \omega_0^2 x_b$$
$$= \frac{F_0}{m} \cos(\omega t)$$

So we see that $x_c(t)$ satisfies this differential equation. Now we see that,

$$x_a(t) = A\cos(\omega t + \varphi)$$

And that

$$x_b(t) = Be^{-\gamma t} \cos(\omega_1 t) + Ce^{-\gamma t} \sin(\omega_1 t)$$

Where $\omega_1^2 = \omega_0^2 - \gamma^2/4$. Now the initial condition requires that

$$x_c(0) = 0 \dot{x}_c(0) = 0$$

The conditions require that:

$$A\cos\varphi + B = 0$$
$$-A\omega\sin\phi - B\gamma + C\omega_1 = 0$$

At resonance, $\omega = \omega_0$. Also, $A = \frac{F}{m\omega_0\gamma}$. $\varphi = \arctan \infty = \frac{\pi}{2}$. Then:

$$B = 0$$

$$C = \frac{A\omega}{\omega_1} = \frac{F_0}{m\omega_1\gamma}$$

$$\gamma \ll 2\omega_0 \Rightarrow C \approx \frac{F}{m\omega_0\gamma}$$