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I. HRK Q17.3

In this problem we are comparing apples and oranges. The pressure that causes pain above water

is of an entirely different nature than the ambient pressure below the water. The water pressure is

just the ambient pressure, while the pain-causing pressure is due to sound waves. As can be seen

from the equations section 20-3, a sound wave of the same frequency under water would actually

result in a much greater pain than in air (since both the speed of sound and the density are greater

underwater).

II. HRK Q17.7

The paradox is resolved when one notes that we haven’t accounted for all the forces in the vertical

direction. The walls of the containers feel a force/area due to the pressure, and in the first two

containers, this force has a verticle component.

III. HRK Q17.8

In a sense, the Archimedes principle holds even in free fall. There is no buoyancy in free fall, but

this is consistent with Archimedes principle: The acceleration due to gravity is zero, so the weight

of the displaced fluid is zero, and so the buoyant force is zero.

And in this same trivial sense it holds for cicular orbit, that is, there is no bouyancy force

because there is no weight. If a rubber ducky is sitting in a bathtub orbiting the Earth, the rubber

ducky is weightless and does not press down on the water at all.
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IV. HRK Q17.17

According to Archimedes principle, the bouyant force is the weight of the volume of water displaced

by the ship. If we start with a hollow ship, and fill it with sea water, then it’s weight increases, so

the ship sinks a bit to displace a greater volume of water. If we keep adding water, eventually the

ship sinks more and more until it is completely submerged because it’s weight is exactly equal to

a volume of water whose volume is that of the ship (interior+hull). Adding any more water will

sink the ship, since the volume of displaed water, and hence bouyant force will not change. Here

its important to remember that the hull is part of the ship, and that it’s more dense than water.

If it were less dense, then you’d never be able to sink the ship.

V. HRK Q17.19

Split the ice cube into a bottom and a top part. The bottom part is submerged and the top is not.

The ice cube is not moving, so
∑

Fy = 0, i.e. the bouyant force cancels the weight of the ice cube.

Fbouy = ρwVb = ρi(Vb + Vt).

Then the ice cube melts. Melting changes volume but conserves mass, so that

ρi(Vt + Vb) = ρwVw.

Now if Vw > Vb, there will be overflow of water, and if Vw < Vb, there will be room left in the

container. If Vw = Vb, then the jar will still filled to the brim. Working it out,

Vw =
ρi
ρw

(Vt + Vb) =
Vt + Vb

Vb + Vt
Vb = Vb.

So the beaker is sill filled to the brim. Now let’s add either sand or air bubbles in the ice. Which

I’ll model by saying that the density of ice is modified, ρi → ρi + δ. This enters into the first

equation, but not the second since the sand just goes along for the ride. Then we have

Vw =
ρi
ρw

(Vt + Vb),
ρw

ρi + δ
=

Vb + Vt

Vb
.

So then,

Vw =
ρi
ρw

ρw
ρi + δ

Vb =
ρi

ρi + δ
Vb.

So if δ > 0, i.e. the sand or whatever is more dense than ice, there is room left in the container,

and if the stuff is less dense, then there is an overflow.
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Addendum: The above answer is wrong for the air bubble case, I forgot to take into account

the fact that once freed from the ice, the air bubbles will simply escape into the atmosphere. The

density argument only works if the impurities remain in the container.

VI. HRK Q17.22

The density of air decreseas as you go up, and the density of water increases as you go down. So

if a balloon is less heavy than it’s displaced air, eventually it will rise to a height where it’s weight

and the displaced air are equal. The same argument might suggest that a submarine would sink

until the water got so dense that the displaced water’s weight balanced the submarine’s weight.

But remember, that the submarine is filled with water, whose weight is increasing along with the

displaced water. So, as long as it doesn’t sink to a crazy depth where the hull can be less dense

than seawater, the bouyant force will never be able to balance the weight once it starts sinking.

VII. HRK Q17.34

Neither of these things is important. Looking at the derivation of the pressure gradient, neither

the area nor the orientation of the tube were important. But keep in mind that you must measure

the height, and not distance along the tube when it’s not aligned vertically.

VIII. HRK Q17.37

When you try to separate the plates by diret pull, you have to work against the surface tension.

When you slide them, you don’t need to, until the plates begin to separate, at which point you are

fighting the surface tension, but only a little bit at a time.

IX. HRK P17.3

Since pressure is force/area, so

∆F = (p1 − p2)A = (1− 0.962)(3.43× 2.08)1.0135× 105N = 2.75× 104N.
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X. HRK P17.20

We already know how the pressure and density fall-off as you go up in altitude. The same formulae

apply for going down in water, simply change a sign in eq 17.13 to get

p(y) = p0e
ya, ρ(y) = ρ0e

y/a,
1

a
=

gρ0
p0

.

Expanding the density near the surface (y = 0) yields

ρ(y) ≈ ρ0

(
1 +

y

a

)
.

Now I want to write a in terms of the bulk modulus, B. To do that, use the definition

B = ρ
dp

dρ

∣∣∣∣∣
y=0

,

and the fact that p = (p0/ρ0)ρ. Then we see that B = p0, and

ρ(y) ≈
(
1 +

gρ0
B

y
)
.

XI. HRK P17.27

Pressure here acts like the normal force does in the problem of having a point particle on an inclined

plane. So the force balance condition on an infinitesimal fluid element yields

ma = p sin θ, mg = p cos θ, ⇒ tan θ =
a

g
.

The pressure is given by p = p0 + ρgh, so the pressure is proportional to the height.

XII. HRK P17.28

For the unaccelerated case, the vertical force balance condition is

FB −mg − T0 = 0, FB = T0 +mg = Mwg,

where Mw is the mass of the displaced water. In the accelerated case, the bouyant force is going

to change because the weight of the displaced water will change. We have

ma = F ′
B −mg − T, F ′

B = Mw(g + a) = Mwg(1 + a/g) = FB(1 + a/g).

Solving for T then yields

T = T0(1 + a/g).
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XIII. HRK P17.45

For this problem I’ll assume the density of air is zero. Originally we have

FB = mg =
1

4
V ρHg.

Then when we add water we have

FB = mg = xV ρHg + (1− x)V ρw.

The bouyant force doesn’t change, and neither does the weight, but now the bouyant force is split

between the displaced mercury and the displaced water. x is the fraction of the object underneath

the mercury. Dividing these two equations yields

x =
1− 4y

4(1− y)
, y =

ρw
ρHg

. Plugging y = 1/13.56 (I looked this up), I get

x = 0.19.

XIV. HRK P17.46

Let x be the vertical distance that the log sinks by, and let ρ be the density of the water. Then

when x = 0, the force balance condition reads∑
Fy = 0 = F 0

B −mg ⇒ F 0
B = mg.

Now sink the log by a distance x. Then we have∑
Fy = ma = FB −mg = F 0

B + (xAρ)g −mg = (xAρ)g.

I want to solve for a, which means dividing my m. I want to write m in terms of the given variables

of the problem, so use the fact that

F 0
B = mg = (LAρ)g ⇒ m = LAρ.

Then we have that

a =
xAρg

LAρ
=

x

L
g.

And this is just the equation of motion for a harmonic oscillator with period

T = (2π)

√
L

g
= 3.2s.


