
Problems for HW 2

C. Gwinn

Due 20 Jan 2010, 5 pm

1 HW2 Problem 1

Consider a plasma, containing a uniform background charge-density +eN0, provided by
positive ions, and a gas of free electrons at temperature T , with density N(r). We suppose
that the ions are stationary, and that the average charge density far from the origin is
zero: N(r →∞) = N0. At the origin resides an impurity ion with charge +Q. Its electric
field will be partly cancelled by passing electrons. The Poisson equation will determine the
potential Φ:

∇2Φ(r) =
1
ε0
e(N(r)−N0)−Qδ3(~r) (1)

The average density of electrons is given by the Boltzmann factor:

N(r)
N0

= eeΦ(r)/kT . (2)

Make the approximation of large distances from the ion: eΦ(r) << kT . Find the result-
ing potential. The characteristic length scale of this potential is the “Debye length” or
“screening length” which is important in biophysics, astrophysics, and many other areas
of physics and chemistry. Electrostatic fields can penetrate only this length into a fluid
containing free charges such as a plasma.

2 HW2 Problem 2

A dodecahedron is a regular polyhedron with 12 sides, each a regular pentagon. Inter-
estingly, a cube can be inscribed in a dodecahedron, so that each of the 8 corners of the
cube coincides with one of the 20 vertices of the dodecahedron. In this case, each edge
of the cube coincides with a diagonal of one of the pentagonal faces. (See, for example
http://www.math.umn.edu/∼roberts/java.dir/JGV/cube-in-dodeca.html ).

Find the work required to bring 20 point charges +q from r → ∞ to the corners of a
dodecahedron. The length of one side of any pentagon of the dodecahedron is a.

One of the charges is replaced with a spherical shell with charge +q and radius (4/3)a.
What is the change in work?
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3 HW2 Problem 3

Consider a solid conducting sphere of radius r0 at potential φ0, surrounded by a concentric,
spherical conducting shell of radius R0. Both are at potential φ0. According to the Laplace
Equation, the electric field will vanish between the spheres, and the inner sphere will contain
zero charge. However, if the photon had mass mγ , the inner sphere would contain charge,
and a field would be present between the spheres, as we show here.

If the photon had mass, the electric potential would take the form

Φ(r) =
Q

4πε0
e−µγr

r
(3)

where µγ = h̄mγ/c. We assume that mγ is nonzero, but very small; or equivalently that
1/µγ is large compared with r0 or R0.

a) Show that if the photon has mass, then Gauss’s Law becomes∫
S

~E · n̂da =
Q

ε0
− µ2

γ

∫
V

Φd3r, (4)

where S is the closed surface bounding the volume V , and Q is the total charge inside
S. The electric field is ~E = −~∇Φ.

b) Because the solid inner sphere is a conductor, it will be at potential Φ0 throughout.
(However, it may contain a charge distribution). On the other hand, the region
between the spheres contains no charge, but the potential may vary.

Show that the potential between the spheres is given by

Φ = Φ0
r0

r

[
K+e

µγ(r−r0) +K−e
−µγ(r−r0)

]
(5)

where the constants K+, K− satisfy the boundary conditions

K+ +K− = 1 (6)
r0

R0

[
K+e

µγ(R0−r0) +K−e
−µγ(R0−r0)

]
= 1. (7)

Argue that the potential has a minimum between the spheres.

c) Show that the electric field at the surface of the inner sphere is radial, with magnitude

Er(r0) = −dΦ
dr

∣∣∣∣
r0

=
Φ0

r0
[1− µγr0(2K+ − 1)] (8)
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d) Show that to first order in the photon mass, the charge on the inner sphere is given by:

Q

4πε0 r0

1
Φ0

= 1− µγr0(2K+ − 1) +
1
3
µ2
γr

2
0 ≈

1
6
µ2
γ(R2

0 +R0r0) (9)

A constraint on the photon mass can be set in the laboratory by constructing a pair
of spheres, connected with a thin wire. An alternating potential is applied to the
outer sphere and the wire is monitored for a current at that frequency.
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