
NAME:

Physics 210A: Fall 2009

MIDTERM EXAM

This exam consists of 2 problems, each with 2 parts for a total of 4 parts. Each part is
worth 25 points, for a total of 100 points.
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1) An unknown surface charge lies in the x − y plane. No other charge resides anywhere
else in space. The potential falls to zero far from the plane: V → 0 for z → ±∞.
The potential along a line parallel to the x-axis, above the x− y plane at z = h, y = 0 is
given by:

V (x, y = 0, z = h) = V0 sin(2πx/L) (1)

The potential along the perpendicular line, parallel to the y-axis at z = h, x = 0, is zero:

V (x = 0, y, z = h) = 0. (2)

a) Write down an expression for the potential throughout space that matches these bound-
ary conditions. You need not derive this mathematically, if you explain why it is a solution.

!(x,y)

z

z=h

x

y

V=0

V=V0 sin(2" x/L)

Solution:
The potential

V (x, y, z) = V0 sin
(

2π
L
x

)
exp

{
−2π
L

(|z| − h)
}

(3)

matches the boundary conditions.
This form is taken from separation of variables for Cartesian coordinates.
Note that if charge is confined to the plane z = 0 then this form holds in both half-

spaces.
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b) Is the solution you found for part a unique? If so, explain why it is unique. If not, give
a different solution that matches these boundary conditions.

Solution:
The solution given in part a is not unique.
Note: the boundary conditions are not Dirichlet because they are not defined on a closed

surface, but only along two lines. (Note that the surface charge is said to be unknown.)
Thus, the uniqueness theorems for Dirichlet boundary conditions are not applicable. More-
over, the Green’s function for such boundary conditions isn’t useful in this case.

The potential

V (x, y, z) = V0 sin
(

2π
L
x

)
cos (βy) exp {−γ(|z| − h)} , whereγ =

√
β2 + (2π/L)2 (4)

also matches the boundary conditions.
This form is again taken from separation of variables for Cartesian coordinates.
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2) Consider the electrostatic potential at point ~r:

Φ(~r) = Φ0
e−µ|~r−

~R|

|~r − ~R|
. (5)

The vector ~R is a parameter.
a) Find the charge density ρ(~r) responsible for this potential. (Note: You may translate
the coordinate origin, as long as you remember to translate it back afterwards!)

Solution:
The charge density is given by:

ρ = −ε0∇2Φ(~r) (6)

Introduce the translation:
~r1 = ~r − ~R. (7)

Then,

Φ(~r1) = Φ0
e−µ|~r1|

|~r1|
. (8)

Spherical coordinates centered at the origin of ~r1 are convenient; then, the potential de-
pends only on the distance from that point r1 = |~r1|.

Then, as long as r1 6= 0,

∇2Φ(r1) =
1
r21

∂

∂r1
r21

∂

∂r1
Φ(r1) (9)

=
1
r1

∂2

∂r1
2 r1 Φ(r1), (10)

where Jackson gives the second, convenient form inside the back cover. (This was also
mentioned in class). This gives, for the charge density at r1 6= 0,

ρ = −ε0Φ0 µ
2 e
−µr1|

r1
= −µ2Φ(r1) (11)

where the last equality is convenient!
The special case r1 = 0 requires special treatment. Note that the above expressions for

∇2 are not defined there. For r1 → 0, the potential Φ(r1) → Φ0/r1. This is the potential
of a point charge at the origin (as explored in problems on Debye shielding and a massive
photon). The Laplacian is then given by

∇2|r1=0Φ(r1) = −4πΦ0δ
3(~r1) (12)
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(see argument in Jackson using the Divergence Theorem to evaluate this).
Combining the two contributions to ρ we find:

ρ(~r) = 4πε0Φ0δ
3(~r − ~R)− ε0µ2Φ(~r) (13)

This is a point charge at ~R, with a surrounding neutralizing halo. The net charge is zero,
as can be seen by integrating this expression or observing that the term in the potential
proportional to 1/r vanishes.
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b) Now consider the electrostatic potential

Φ(~r) = p0 e
−µr

(
1
r2

+
µ

r

)
cos θ. (14)

Here, (r, θ, φ) are spherical coordinates. (Note that here I have corrected the − sign inside
the parentheses, as also announced in class.)
Describe the charge density; you need not work this out mathematically if you briefly
explain your argument. What is the net dipole moment of the underlying charge density?

Solution:
This potential is the difference of 2 copies of the potential from part a. The copies are

offset by a separation dẑ, and Φ0 is scaled to Φ0/d; these are differenced in the limit d→ 0.
This is precisely the construction used to make a physical dipole into a point dipole; here,
the construction is carried out with neutralizing halos (or, if you prefer, with a massive
photon).

I introduce the notation Φa for the potential used in part a, and Φb for the potential
introduced above. Mathematically, with ~R = 0,

∂

∂z
Φa = Φ0

(
−µ− 1

r

)(
e−µr

r

)
∂r

∂z
(15)

and also:
∂r

∂z
=

1
2

1
r

2z =
z

r
= cos θ (16)

So,
∂

∂z
Φa = Φ0

{
e−µr

(
µ

r
− 1
r2

)
cos θ

}
(17)

and consequently,

Φb =
(
−p0

Φ0

)
∂

∂z
Φa (18)

Then, using the definition of derivative,

Φb =
(
−p0

Φ0

)
lim
d→0

1
d

(
Φa(~r − d/2 ẑ)− Φa(~r + d/2 ẑ)

)
(19)

as promised above. (Note: “net” dipole moment is a hint of the delta-function, and the
offset by ~R in 2a might foreshadow the above construction).

The charge density is a point dipole at the origin, surrounded by a neutralizing dipole
halo.

The net dipole moment of the charge distribution is zero, as can be seen from the
fact that the net charge of each of the two contributing charge distributions is zero, as
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mentioned above. Alternatively, you could calculate the charge distribution and integrate
~r′ρ. This is fairly tedious.

Finally, and most likely just for fun, you could evaluate the dipole moment by finding
the term in the potential that is proportional to 1/r2 at large r. In this connection, you
might recall that the Taylor series of the function e−1/u about u = 0 is zero, for all powers
of u. In another form,

lim
r→∞

(µr)ne−µr = 0, for all n (20)

This interesting and always-astounding fact can be proved using L’Hospital’s rule and
induction; or, for our purposes (the lowest few powers) by direct calculation. The particular
fact we need is

lim
r→∞

r2Φb = 0 (21)

which follows directly from the previous equation and the definition of Φb above. More
generally, for our potential Φb, all multipole moments are zero. The same is true, of course,
for Φa.
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