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Mathematical Approximation Methods

Occasionally in the course of solving a problem in physics you may find
that you have become so involved with the mathematics that the physics
is ’cotélly obscured. In such cases, it is worth stepping back for a moment
to see if you cannot sidestep the mathematics by using simple approxi-
mate expressions instead of exact but complicated formulas. If you
have not yet acquired the knack of using approximations, you may feel
that there is something essentially wrong with the procedure of substitut-
ing inexact results for exact ones. However, this is not really the case,
as the following example illustrates.

Suppose that a physicist is studying the free fall of bodies in vacuum,
using a tall vertical evacuated tube. The timing apparatus is turned on
when the falling body interrupts a thin horizontal ray of light located a
distance L below the initial position. By measuring how long the body
takes to pass through the light beam, the physicist hopes to determine
the local value of g, the acceleration due to gravity. The falling body in
the experiment has a height 1.

For a freely falling body starting from rest, the distance s traveled in
time ¢ is

s = Bgt?,

which gives

NG

T&we time interval t, — {; required for the body to fall from s, = L centi-
meters to 8, = (L -+ 1) centimeters is

b= =J§(\/S_z—'\/3«1)
=\/§(\/L+ — VL.

If t, — ¢, is measured experimentally, ¢ is given by

g=2<\/1,+z—\/f>2
(ta — t1)

This formula is exact under the stated conditions, but it may not be the
most useful expression for our purposes.
Consider the factor

VL+1-VL

In practice, L will be large compared with I (typical values might be L =
100 cm, I = 1 cm). Our factor is the small difference between two large
numbers and is hard to evaluate accurately by using a slide rule or ordi-
nary mathematical tables. Here is a simple approach, known as the
method of power series expansion, which enables us to evaluate the factor
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to any accuracy we please. As we shall discuss formally later in this Note,
the quantity \/1 -+ x can be written in the series form
V1itz=1+43r—ta2 + v+ - - -

for —1 < z < 1. Furthermore, if we cut off the series at some point, the
error we incur by this approximation is of the order of the first neglected
term. We can put the factor in a form suitable for expansion by first

extracting \/E
VITi-vI= \/z(\/l . _1)_

The dimensionless ratio [/L plays the part of zin our expansion. Expand-

ing V1 + /L in the series form gives
l 1(1 11V
Lli+2—=1)=L]1+2(=2) ===
f<\/ K 2 ) ff[ +2(L> 8<L>
1/1\3
e — « o __1
() ]
1/1 1/1\2 1/1\3
= AL |22} s 2 i e
AH O O RS
We see that if [/L is much smaller than 1, the successive terms decrease

rapidly. The first term in the bracket, $(I/L), is the largest term, and
extracting it from the bracket yields

e ViV -i() 1)

A ORONS!

Our expansion is now in its final and most useful form. The first
factor, l/(Z\/L), gives the dominant behavior and is a useful first approx-
imation. Furthermore, writing the series as we have, with leading term
1, shows clearly the contributions of the successive powers of [/L. For

Il

-example, if /L = 0.01, the term (/L) = 1.2 X 107® and we make a

fractional error of about 1 part in 10° by retaining only the preceding
terms. In many cases this accuracy is more than enough. For instance,
if the time interval ¢, — {; in the falling body experiment czT__bf measx:l_red
to only 1 part in 1,000, we gain nothing by evaluating \/1 + 1 - \/L to
greater accuracy than this. On the other hand, if we require greater
accuracy, we can easily tell how many terms of the series should be
retained.

Practicing physicists make mathematical approximations freely (when
justified) and have no compunctions about discarding negligible terms.
The ability to do this often makes the difference between being stymied
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by impenetrable algebra and arithmetic and successfully solving a
problem.
Furthermore, series approximations often allow us to simplify compli-
cated algebraic expressions to bring out the essential physical behavior.
Here are some helpful methods for making mathematical approxi-
mations.

1 THE BINOMIAL SERIES-

3

(1+x>"=1+nx+"(”2|“1>xz+n(n—13)l(n—2)x
nn —1) - - (n——k—i—l)x

k!

+...+ k+.A.

This series is valid for —1 < 2 < 1, and for any value of n. (If nis
an integer, the series terminates, the last term being 2z*.) The series
is exact; the approximation enters when we truncate it. For n = 4, as
in our example,

QA+ o)t =143z — a2 4 3 + - - - -1 <2<l
If we need accuracy only to O(z?) (order of z%), we have
A+ 2} =143z — 322 + 0,

where the term O(2?%) indicates that terms of order z® and higher are not
being considered. As a rule of thumb, the error is approximately the
<size of the first term dropped.

The series can also be applied if |z| > 1 as follows:

<1+x>n=x"<1+-1)"
z
g— 2
=xn[1+n1+n<n _1><_1> L oa ]
z 2! z
Examples:
1
1 =@ I
1T s QA+ )
=1—z42x2— 2%+ ¢4 -1 <z<1
2. ! =1 —z)!
1 e
=14+z+z2+234+ - -1 <z<l1

3. (1,001)} = (1,000 + 1)} = 1,000%1 + 0.001)}
= 10[1 + 0.001(3) + - -
2= 10(1.0003) = 10.003
1

Vitz Vi-=z

4. 2 : for small z, this expression is zero to first
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approximation. However, this approximation may not be adequate.
Using the binomial series, we have

1 1

2 — — .
Vi+z Vi—z

If

2— (1 —3z+ %224+ -0

—Q+dz+get+ )

= —3z2

Notice that the terms linear in z also cancel. To obtain a nonvanishing
result we had to go to a high enough order, in this case-to order z2. It

is clear that for a correct result we have to expand all terms to the same
order.

2 TAYLOR'S SERIES!

Analogous to the binomial series, we can try to represent an arbitrary
function f(z) by a power series in x:

f@) = G0+ az + @z + - > = 2 aatt.

k=0
For z = 0 we must have
J©0) = ao.
Assuming for the moment that it is permissible to differentiate, we have
daf

— = f'(x) = a1 + 2a.x + - - -
dx

Evaluating at x = 0 we have
pu— {4
a J'(z) |z=0'

Continuing this process, we find

o= L gy

z=0

where f®(z) is the kth derivative of f(z). For the sake of a less cum-

bersome notation, we often write f*(0) to stand for f* (x) o but bear
3

in mind that f®(0) means that we should differentiate f(z) k times and
then set z equal to 0.

The power series for f(z), known as a Taylor series, can then be
expressed formally as

z? 2

@) = f(0) + f'O)z + f”(O)—z—I + ]"”(0)-3-| e &0 F
This series, if it converges, allows us to find good approximations to f(z)
for small values of z (that is, for values of = near zero). Generalizing,

2
ja+ o) =j@+ @+ @5 +

1 Taylor's series is discussed in most elementary calculus texts. See the list at
the end of the chapter.
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gives us the behavior of the function in the neighborhood of the point a.
An alternative form for this expression is

t — )2
f@&) = f(a) + f'(@)¢ — a) +f”(a)£__;.ﬁ)_ o

Our formal manipulations are valid only if the series converges. The
range of convergence of a Taylor series may be —w <z < « for
some functions (such as e*) but quite limited for other functions. (The
binomial series converges only if —1 <z < 1.) The range of conver-
gence is hard to find without considering functions of a complex vari-
able, and we shall avoid these questions by simply assuming that we are
dealing with simple functions for which the range of convergence is either
infinite or is readily apparent. Here are some examples:

a. The Trigonometric Functions
Let f(z) = sin z, and expand about z = 0.
f0) =sin(@) =0
f'(0) = cos (0) =1

f'0) = —sin(0) =0
F7(0) = —cos (0) = —1,  etc.
Hence
; 1 1
sing =20 — —a23 4+ —25 — =27 - + - - .
3! 51 7!
Similarly

cos T = 1—1332—1—1954—
¢ 2! 41

These expansions converge for all values of x but are particularly use-
ful for small values of z. To O(z?), sinz = z, cosz = 1 — 2%/2.

The figure below compares the exact value for sin z with a Taylor
series in which successively higher terms are included. Note how each

7
y Jy=x
e
P P ciiiny - N
~ S Y BX = e b mex
/// \ \\\ 3' 7 5l
SO v
\\ e
N\
\ .
30° 60° 90° 1200\ 150° 180° (degrees)
| | | [ \__|
05 T I T 1 N I
0.5 1.0 1.5 2.0 2.5 3.0 (radians)
\
— \\ y=sinx
Ll
Ok y=x-gyx
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term increases the range over which the series is accurate. If aninfinite
number of terms are included, the Taylor series represents the function
accurately everywhere.

b. The Binomial Series
We can derive the binomial series introduced in the last section by letting

flz)y = Q@A + ).
Then
fo)y =1

/'@ = n(l 40y = n
7@ = nn — 1)

f®QO) = nn —1)n —2) + - - (n—F%F+1
(1+x)"=1+n:c+%n(n7-1)xz+'-~
+”'n(n-—1)"k'l(n—k+1)xk_'_H,

c. The Exponential Function
If we let f(z) = e, we have f'(z) = f(z), by the definition of the expo-
nential function. Similarly f®(z) = f(z). Since f(0) = ¢° = 1, we have

1 1
ee=14+z+—at+—=-24+ .
2! 3!
This series converges for all values of z.
A useful result from the theory of the Taylor series is that if the series

converges at all, it represents the function so well that we are allowed to
differentiate or integrate the series any number of times. For example,

d . d 1 1
d—x(smx)—g;<m——§x3+ax5+ )

1 1
ol e i
! 2!:5 +4!x+

Il

= COsS T.

Furthermore, the Taylor series for the product of two functions is the
product of the individual series:

1 1
sinxcosx=<x—lx3+1x5+ - ')(1——$2+~—$4+ i )
3! 5! 2! 41
1,1 S S
—~x~<i+§>xx+<ﬂ+3m+5!>x +



NOTE 1.1 MATHEMATICAL APPROXIMATION METHODS 45

4x3 165
=x——.—— —
3! 5!
@z)* | @z)°
= 2% ks ) e
[( i ek }

= ! [sin (22)]
5 .

The Taylor series sometimes comes in handy in the evaluation of inte-
grals. To estimate

1.1 ¢*
/ — dz,
1 z

1 + 2. We then have

1.1 e? 0.1 e(l+x) )
f —dz = f dx
1 z 0 144z

@ -/;)0.1 er dss

let z

Ii

1+4+z

. 01(1+x)

© / (1+x)
=~ 0.le.

The approximation should be better than 1 part in 100 or so, for x always
lies in the interval 0 < z < 0.1. In this range, e* = 1+ 2 is a good
a;gproximation to two or three significant figures.

3 DIFFERENTIALS

Consider f(x), a function of the independent variable z. Often we need
to have a simple approximation for the change in f(x) when z is changed
to z -~ Az. Let us denote the change by Af = f(z + Az) — f(x). It
is natural to turn to the Taylor series. Expanding the Taylor series for
f(x) about the point x gives

fx + Az) = fz) + f'(x) Az + f”(rc) Az? 4 -

where, for example, f/(z) stands for df/dx evaluated at the point 2.
Omitting terms of order (Az)? and higher yields the simple linear approx-
imation

Af = f@ + Az) — f(z) = ['(z) Az.

This approximation becomes increasingly accurate the smaller the
size of Az. However, for finite values of Az, the expression

Af = ['(z) Az
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has to be considered to be an approximation. The graph at left shows
a comparison of Af = f(z + Az) — f(z) with the linear extrapolation
f'(x) Az. 1t is apparent that Af, the actual change in f(z) as z is
changed, is generally not exactly equal to Af for finite Az.

As a matter of notation, we use the symbol dz to stand for Az, the
increment in z. dz is known as the differential of z; it can be as large or
small as we please. We define df, the differential of f, by

df = f'(z) dx.

This notation is illustrated in the lower drawing. Note that dz and
Az are used interchangeably. On the other hand, df and Af are different
quantities. df is a differential defined by df = f'(z) dz, whereas Af is
the actual change f(z + dz) — f(z). Nevertheless, when the linear
approximation is justified in a problem, we often use df to represent
Af. We can always do this when eventually a limit will be taken. Here
are some examples.

1. d(sin ) = cos 6 db. )

2. d(ze®*) = (e5* + 2x%*") da.

3. Let V be the volume of a sphere of radius 7:
V = gwrd

dV = 4mwr2dr.

4. What is the fractional increase in the volume of the earth if its average
radius, 6.4 X 108 m, increases by 1 m?

d_‘_f bt dr
v Fmrd
_ g
”
3
=—— =47 X 1077,
6.4 X 10°

One common use of differentials is in changing the variable of integra-

tion. For instance, consider the integral

b
/ ze** dx.
a

A useful substitution is ¢ = 22 The procedure is first to solve for z in
terms of ¢,
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PROBLEMS a7

This result is exact, since we are effectively taking the limit. The original
integral can now be written in terms of ¢:

/bxefzdx /“V‘e’(z—l—:dt)——-é—/”e‘dé
a i 2 \/i ty
= §(e — eh),

where ¢{; = a? and ¢, = b2,

i

Some References to Calculus Texts

A very popular textbook is G. B. Thomas, Jr., ““Calculus and Analytic
Geometry,"” 4th ed., Addison-Wesley Publishing Company, Inc., Reading,
Mass.

The following introductory texts in calculus are also widely used:

M. H. Protter and C. B. Morrey, ‘‘Calculus with Analytic Geometry,"
Addison-Wesley Publishing Company, Inc., Reading, Mass.

A. E. Taylor, “Calculus with Analytic Geometry,” Prentice-Hall, Inc
Englewood Cliffs, N.J.

R. E. Johnsonand E. L. Keokemeister, ““Calculus With Analytic Geometry,"
Allyn and Bacon, Inc., Boston.

(3}

A highly regarded advanced calculus text is R. Courant, “'Differential and
Integral Calculus,” Interscience Publishing, Inc., New York.

If you need to review calculus, you may find the following helpful: Daniel
Kleppner and Norman Ramsey, ‘“‘Quick Calculus,” John Wiley & Sons,
Inc.,( New York.

11 Given two vectors, A = (2i — 3j +7k) and B = (5t 4+ j - 2k), find:
(a) A+ B; (b) A — B; (c) A-B; (d) AX B.
Ans. (a) 71 — 2j 4+ 9%k; (¢) 21

1.2 Find the cosine of the angle between

A=Q@GEi+j+ k) and B = (—2i — 3] — k).

Ans. —0.805
1.3 The direction cosines of a vector are the cosines of the angles it
makes with the coordinate axes. The cosine of the angles between the

vector and the z, y, and z axes are usually called, in turn «, B, and ~.
Prove that o? + 2 4 42 = 1, using either geometry or vecter algebra.

1.4 Show that if |A — B| = |A 4 B[, then A is perpendicular to B.

15 Prove that the diagonals of an equilateral parallelogram are per
pendicular.

1.6 Prove the law of sines using the cross product. It should only take
a couple of lines. (Hint: Consider the area of a triangle formed by A,
B, C, where A+ B 4 C = 0.)



