
Phys 22: Homework 1 Solutions

HRK 18.4

Since power is defined as dW
dt we want to know how much work the pump is doing (Wpump). We

already know from the work-energy theorem that WTotal = ∆K. In deriving Bernoulli’s equation
we saw there were two forces contributing to the total work, the pressure force and the force of
gravity. In this problem the pressure force is provided by the pump so we have

WTotal = Wpump + Wgrav = ∆K ⇒Wpump = −Wgrav + ∆K

This is just a restatement of ∆K +∆U = Wpump which appears in the textbook after the derivation
of Bernoulli’s equation. The units of power are J.s−1 so we need to figure out how much energy
the pump transmits to the water per second.

The water in the basement is effectively moving with speed 0m/s and we are told that it exits
the hose at 5.30m/s. The mass of water leaving the hose every second is

∆m = ρAv = 103π(.0097)25.30 = 1.566kg

so the increase in kinetic energy per second is

∆K/s :
1
2
(ρAv)v2 =

1
2
1.566(5.30)2 = 22J.s−1

Since the water comes out of the hose 2.90m higher than where it entered, it gains potential
energy to the tune of

∆U/s : ∆mg(yout − yin) = 1.566(9.81)(2.90) = 44.55J.s−1

Putting the two energy terms together we see

Power =
∆K + ∆U

∆t
= 66.55 Watts

HRK 18.10

One of the key is results of the chapter is that, when ρ is constant (incompressible fluid), the volume
flow rate is constant

Volume flow rate: R = A1v1 = A2v2

This is all we need to know to solve part (a).

18.10 (a)

A1v1 = A2v2

(4.2× 10−4)(5.18) = (7.60× 10−4)(v2)
⇒ v2 = 2.86 m/s

18.10 (b)

Here we need to use Bernoulli’s equation to solve for pB .

pa +
1
2
ρv2

a + ρgya = pb +
1
2
ρv2

b + ρgyb

pa +
1
2
ρv2

a = pb +
1
2
ρv2

b + ρg(yb − ya)

(152× 103) +
1
2
103(5.18)2 = pb +

1
2
103(2.86)2 + 103(9.81)(−9.66)

pb = 256.1× 103 = 256.1 kPa
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Phys 22: Homework 1 Solutions

HRK 18.11

We will prove Torricelli’s Law in problem 18.15 but for now we will just use the result which states:
the speed, v of the stream of water coming out, is related to the depth below the water’s surface,
h, where the hole is positioned via

v =
√

2gh

18.11 (a)

The mass flux is the same for both holes. The volume δV of liquid, moving with speed v emerging
from a hole of area A in a time δt is given by

δV = Avδt.

Furthermore, the mass δm emerging is related to the volume emerging via

δm = ρδV

⇒ δm = ρAvδt

Overall, we have the result that mass flux dm
dt = ρAv so equating this quantity for both tanks we

get

Mass flux: ρ1A1v1 = ρ2A2v2

The set-up of the question tells us that A2 = 2A1, so let us use that piece of information and also
Toricelli’s Law (which is independent of density and area)

ρ1A1v1 = ρ2A2v2

ρ1A1

√
2gh = ρ22A1

√
2gh

ρ1

ρ2
= 2

18.11 (b)

The volume flow rate is defined as R = Av so

R1

R2
=

A1v1

A2v2
=

A1
√

2gh

2A1
√

2gh
=

1
2

18.11 (c)

We want to make R1 = R2 by setting the holes at different heights in the tanks. Let the appropriate
height for tank two be denoted h′, then

R1 = R2

A1

√
2gh = 2A1

√
2gh′

√
2gh =

√
2g(4h′)

⇒ h′ =
h

4

HRK 18.15

18.15 (a)

We use Bernoulli’s equation for the vertical streamline 1 → 2 and the horizontal streamline 2 →
3. Intuitively you know that he water level in the tank is dropping very slowly, and using the
conservation of volume flow between points 1 and 3 we have

v1A1 = v3A3

v1

v3
=

A3

A1
.

HW1 - Page 2 of 10



Phys 22: Homework 1 Solutions

We know from the setup of the question that A3
A1
≈ 0 which tells us v1 ≈ 0. The same reasoning

leads us to v2 ≈ 0 since A2 = A1.

1→ 2 : p1 +
1
2
ρv2

1 + ρgy1 = p2 +
1
2
ρv2

2 + ρgy2

p0 +
1
2
ρ(0)2 + ρg(0) = p2 +

1
2
ρ(0)2 + ρg(−h)

p2 = p0 + ρgh

2→ 3 : p2 +
1
2
ρv2

2 + ρgy2 = p3 +
1
2
ρv2

3 + ρgy3

p2 +
1
2
ρ(0)2 + ρgy2 = p0 +

1
2
ρv2

3 + ρgy2 (since y3 = y2)

p2 = p0 +
1
2
ρv2

3

Now let us combine our two expressions for p2 to find an expression for the “speed of efflux” v3

p0 + ρgh = p0 +
1
2
ρv2

3

gh =
1
2
v2
3

v3 =
√

2gh

This is a very useful result! If you recognize this expression from elsewhere it is because this is
exactly the speed acquired by a projectile dropped from rest from a height h and accelerated by
the force of gravity (ignoring friction etc.). It is not too surprising since Bernoulli’s equation was
derived assuming energy conservation (ignoring friction etc.).

18.15 (b)

Use energy considerations to figure out how high the water can stream. We can think of this like
a 1-d projectile problem from Chapter 4; the water has zero potential energy on leaving the spout
(point a) and all of its energy is kinetic. At its highest point (point b) the water will have zero
kinetic energy and all potential energy.

∆K + ∆U = 0
1
2
∆m(v2

b − v2
a) + ∆mg(yb − ya) = 0

1
2
(v2

b − v2
a) = −g(yb − ya)

1
2
(02 − (

√
2gh)2) = −g(yb − ya)

1
2
(2h) = (yb − ya)

This tells us the maximum height the water stream can reach is h - the original height of the
water surface! The connection with projectile motion appears again. This height is exactly what
could be reached by a projectile hitting the ground at v =

√
2gh and rebounding up without losing

any energy (i.e. a perfectly elastic collision).

18.15 (c)

If we allow the fluid to be viscous or turbulent then friction-like forces enter the picture, and
mechanical energy is not conserved: ∆K + ∆U < 0 so the stream would not reach as high

(yb − ya) < h
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HRK 18.16

Again, this is a Torricelli type set-up so we will use his Law.

18.16 (a)

Similar to problem 18.15 we can treat this like a projectile question (.e.g. throwing a ball off a
cliff). The vertical distance the water covers in falling is (h−H) and since it shoots sideways out
of the tank, the initial component v0y of velocity in the y direction is zero.

yf − yi = v0yt +
1
2
ayt2

h−H = 0t +
1
2
(−g)t2

t2 =
2(H − h)

g

See what horizontal distance the water has travelled in this time t, bearing in mind there is nothing
accelerating the water in the x direction

xf − xi = v0xt +
1
2
axt2

xf − xi =
√

2ght +
1
2
(0)t2

xf − xi =
√

2gh

√
2(H − h)

g

xf − xi = 2
√

h(H − h)

18.16 (b)

We want to see if there exist another height h′ such that the analysis performed above would give
the same range i.e.

xf − xi = 2
√

h′(H − h′)

If you equate the range for both holes

2
√

h(H − h) = 2
√

h′(H − h′)

then you can see that as well as the obvious solution h′ = h there also exists a solution

h′ = H − h

By rearranging you can get a feel for what this means physically. Since h + h′ = H then

h

H
+

h′

H
= 1

so that e.g. water emerging from a hole 1/3 of the way down any tank has the same horizontal
range as water emerging from a hole 2/3 of the way down the same tank.

18.16 (c)

We want to optimize (maximize) xf − xi with respect to h. Using the expression from part (a) let
us take the derivative and set equal to zero

xf − xi = 2
√

h(H − h)

→ d

dh
(2

√
h(H − h)) = 0

−2h + H

h(H − h)
= 0
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The final line is satisfied for H = 2h or h = H
2 . The range for h = H

2 is

Max Range: xf − xi = 2
√

h(H − h) = 2

√
H

2

(
H − H

2

)
= H

You can take the second derivative of the range to make sure this is a maximum not some other
critical point

xf − xi = 2
√

h(H − h)
d2

dh2
(2

√
h(H − h))h= H

2
< 0?

(
− (H − 2h)2

2(h(H − h)) 3
2
− 2√

h(H − h)

)

h= H
2

< 0?

− 4
H

< 0

so it is a maximum.

HRK 18.20

The pressure in the water at a depth of 6.15m is p0+ρg(6.15) = 161.33kPa. If this depth corresponds
to the middle of plug, then it is very slightly less than this above the center of the plug and very
slightly greater than this below the center. We could integrate over the height of the plug but that
is not necessary – you can satisfy yourself that taking the pressure at the midpoint of the plug
works, because pressure is linear in depth.

18.20 (a)

Anyway this pressure acts on an area πr2
p = (3.14)(.0215)2 = 1.452× 10−3 so that

Fout = (p0 + ρg(6.15))A = 234.29N

and the force pointing in, which must balance, is due to atmospheric pressure and friction

Fin = p0A + Ffric = 146.67 + Ffric

So solving Fout = Fin for Ffric we get

Ffric = 87.6 N

18.20 (b)

This could be made more complicated by assuming a small reservoir, in which case the water level
would drop as water flowed out. Such an example is done for the orange juice question 18.23.
Here we will assume the water level stays constant so that the pressure at a depth of 6.15m stays
constant. We can use Torricelli’s Law to find the speed of efflux of the water

v =
√

2gh =
√

2g(6.15) = 10.985 m/s

The volume flow rate (in m3/sec) is given by R = Av

R = Av = (1.452× 10−3) ∗ 10.985 = 1.595× 10−2 m3/s

So, finally in 3 hours, the volume that comes out is

Volume = Av∆t = (1.595× 10−2)(3× 60× 60) = 172.26 m3
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HRK 18.21

We will repeatedly use Bernoulli’s eqn here. We will use the surface of the water in the container
as a reference point S and ignore reference point A given to us in the picture. Note that since the
area of the container is much greater than the area of the inside of the tube, we can say that the
velocity of water on the surface is effectively zero, vs ≈ 0. Note also that the speed of the liquid
travelling through the tube will be constant because of conservation of mass (ρAv is constant inside
tube).

18.21 (a)

We want to solve for vc in the following

ps +
1
2
ρv2

s + ρgys = pc +
1
2
ρv2

c + ρgyc

ps +
1
2
ρ(0)2 + ρg(ys − yc) = pc +

1
2
ρv2

c

p0 + ρg(ys − yc) = p0 +
1
2
ρv2

c

v2
c =

2
ρ
(ρg(ys − yc))

v2
c = 2g(d + h2)

vc =
√

2g(d + h2)

18.21 (b)

We want to solve for pb in the following

ps +
1
2
ρv2

s + ρgys = pb +
1
2
ρv2

b + ρgyb

p0 +
1
2
ρ(0)2 + ρg(ys − yb) = pb +

1
2
ρv2

b

p0 + ρg(−h1) = pb +
1
2
ρ(2gd + 2gh2) since vb = vc

pb = p0 − ρgh1 − ρgd− ρgh2

18.21 (c)

The siphon will stop working if the pressure at the top of the tube, pb, falls below the vapor pressure
of the liquid. When this happens the liquid at the top will become gaseous and the resulting bubbles
will ruin the operation of the siphon. Assuming this liquid has a low vapor pressure pvap ≈ 0 this
amounts to finding when pb ≈ 0. We will use the result from part (b) and find out for what h1 we
get pb = 0.

pb = 0 = p0 − ρgh1 − ρgd− ρgh2

Part (a) told us that if the siphon is to output water then we must have (d + h2) > 0. Set this sum
to be very small ε = (d + h2) ! 0 so that just a trickle is coming out at point c. Now look at the
expression for pb again.

pb = 0 = p0 − ρgh1 − ρgε

Now ignore the very small ε term and solve for h1

h1 =
p0

ρg
=

1.01× 105

(103)(9.81)
= 10.29 m

Note: the vapor pressure for water at room temperature is actually about (.023)p0. If you use
this value, you will get a slightly smaller (and more realistic) value for the maximum possible h1.
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HRK 18.23

18.23 (a)

We will let the jug have cross-sectional area A, with an initial juice height H (inital volume of
juice= AH) . Picture the first glass of juice escaping from the tap at the bottom of the jug. The
juice level in the jug falls by a distance of H

15 . The volume missing from the top of the jug is equal
to the volume output in 12 seconds by the tap. We know that at the instant we begin to pour the
first drop of juice, the speed of the juice stream is v =

√
2gH by Torricelli’s Law. However as the

juice level drops to h < H the speed of the juice stream also drops to v(h) =
√

2gh. We need to
set up a differential equation to capture this relationship

The volume of juice lost per unit time from the top of the jug is

dVol
dt

=
d(Ah)

dt
= A

dh

dt

Let us assign a cross-sectional area a to the hole that forms the tap. The volume flux leaving
through the tap is

dVol
dt

= −av = −av(h)

We know that these two expressions must be equal by conservation of volume (the orange juice’s
denity ρ does not change), so

A
dh

dt
= −av(h)

Cancelling and rearranging we get

dh

dt
= − a

A
v(h)

dh

dt
= − a

A

√
2gh

dh√
h

= −a
√

2g

A
dt

Our ultimate goal is to get h as a function of t, i.e. h(t), and then solve for h = 0. You could
perform the indefinite integral, get a constant of integration, and find this constant of integration
using the conditions given in the problem. Equivalently you can perform the definite integral over
the period of draining the first glass of juice. Either way, we get around the fact that we don’t
know A or a.

First we will rewrite the constant term a
√

2g
A as simply C.

∫
dh√

h
= −

∫
a
√

2g

A
dt

∫
dh√

h
= −C

∫
dt

Now let us use the 12-seconds-to-fill-one-glass piece of information

∫ 14H
15

H

dh√
h

= −C

∫ 12

0
dt

2
√

h
14H
15

H = −Ct120

2
√

14H

15
− 2
√

H = −12C

C =
√

H

6

(
1−

√
14
15

)
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Now that we know C, we can answer the question we were asked – let’s call the time to drain
completely T :

∫ 0

H

dh√
h

= −C

∫ T

0
dt

2
√

h0
H = −CtT

0

2
√

0− 2
√

H = −CT

T =
2
√

H
√

H
6

(
1−

√
14
15

)

T =
12

1−
√

14
15

= 353.89 seconds

The time to drain the jug after one glass has already been removed is T − 12 = 341.89 seconds.

HRK 18.41

18.41 (a)

For the set-up containing two flat planes separated by a viscous fluid, one of which is moving at v
with respect to the other stationary plane, the defining equation for the force on the moving plane
is

F = ηA
dv

dy

Here we are in a cylindrical geometry so the velocity gradient varies with r instead of y. Also
note that the area of fluid in contact with the cylinder of radius r is 2πrL. Putting these two
observations into the equation for η we get

⇒ F = η(2πrL)|dv

dr
|

And finally F = −η(2πrL)dv
dr since dv

dr is negative (because velocity drops with increasing r).

18.41 (b)

The diagram accompanying the question shows that a pressure p+∆p is pushing the cylinder from
behind, and an opposing pressure of p is pushing the front of the cylinder back. Consequently the
net pressure force is ∆pA where A is the area of the cylinder of fluid with radius r

F ′ = ∆pA = ∆pπr2

18.41 (c)

Since the cylinder of fluid of radius r is not accelerating we must have F = F ′.

−∆pπr2 = η(2πrL)
dv

dr

We want to solve this differential equation to get v in terms of r.

− ∆pπr2

η(2πrL)
dr = dv

−
∫

∆pr

η(2L)
dr =

∫
dv
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− ∆p

η(2L)

∫ r

R
r dr =

∫ v

0
dv

∆p

η(2L)

∫ R

r
r dr =

∫ v

0
dv

∆p

η(2L)
1
2
r2

∣∣R
r

= v

∆p

η(4L)
(R2 − r2) = v

∆pR2

η(4L)

(
1− r2

R2

)
= v

Note how the term inside the bracket behaves for different values of r. For r = R (outer walls) the
velocity is zero, while the velocity is maximized for r = 0 (at the center of the tube).

HRK 18.42

18.42 (a)

The mass flux through an annular ring is dm
dt = ρAv where we have to be careful that both A and

v depend on r. We need to find the area dA in a thin circular ring. One way to picture this is to
imagine a circle of circumference 2πr. Now, in the region between this and an infinitesimally larger
circle (with radius r + dr ), we have an area dA = 2πrdr. To get the flux through a finite region
we have to integrate over r.

Mass flux through tube: = ρ

∫ R

0
v(r)dA

= ρ

∫ R

0
(2πr)

∆p

η(4L)
(R2 − r2)dr

=
ρπ∆p

η(2L)

∫ R

0
(r)(R2 − r2)dr

=
ρπ∆p

η(2L)

∫ R

0
rR2 − r3dr

=
ρπ∆p

η(2L)

[
r2

2
R2 − r4

4

]R

0

=
ρπ∆p

η(2L)

(
R4

2
− R4

4

)

=
ρπ∆pR4

η(8L)

HRK 18.43

For this problem we need to know the difference between the pressures inside and outside a soap
bubble. This is problem 17.55 and I’ll sketch the proof here: For a spherical soap bubble there are
two surfaces which have surface tension (the inner and outer surface of the bubble). Recall that
the force F parallel to the surface, divided by the length of line L over which it acts gives you the
surface tension

γ =
F

L

The way to approach the soap bubble is consider half of it first (i.e. a hollow hemisphere).
Newton’s second law says that the forces on this hemisphere must balance, in particular along the
direction normal to the plane of the hemisphere (call this the x̂ direction).
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(pA)x = (pin − pout)πr2

(F tension)x = −2γ(2πr)
(pA)x + (F tension)x = 0

(pin − pout)πr2 = 2γ(2πr)

(pin − pout) =
4γ

r

In this derivation the quantity F tension
x = −2γ(2πr) arises from two surfaces each providing a

force γ(2πr) in the opposite direction to (pA)x. For a spherical droplet of water, we could do the
same analysis but now there is only one surface acting as a boundary between air and water. This
is the reason why (pin − pout) for a droplet is exactly half that of a soap bubble (of the same size).

Armed with this we can start problem 18.43. We need an expression for the volume of a
thin spherical shell in 3 dimensions dVol (this is like the annular ring ring we saw before but one
dimension higher). Imagine a sphere of radius r, which consequently has a surface area of 4πr2.
The volume contained between a sphere of radius r and an infinitesimally larger sphere with radius
r+dr is given by dVol = 4πr2dr. Recall we just showed above that ∆p = 4γ

r . If we write Poiseuille’s
law

dm

dt
=

ρπR4∆p

η(8L)

ρ
dVol
dt

=
ρπR4∆p

η(8L)

ρ
4πr2dr

dt
=

ρπR4∆p

η(8L)

ρ
4πr2dr

dt
=

ρπR4

η(8L)
4γ

r

Cancel, rearrange and prepare to integrate

η(8L)
γR4

r3dr = dt

η(8L)
γR4

∫ rfinal

rinit

r3dr =
∫ T

0
dt

η(8L)
γR4

r4

4

]rfinal

rinit

= T

η(8L)
4γR4

(
(3.82× 10−2)4 − (2.16× 10−2)4

)
= T

(1.8× 10−5)(2)(0.112)
(2.5× 10−2)( 1.08

2 × 10−3)4
(
(3.82× 10−2)4 − (2.16× 10−2)4

)
= T

⇒ T = 3626s
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