
Phys 22: Homework 2 Solutions

HRK 19.2

The frequency, ν, is the number of full oscillations per second. Since the boat completes 12 oscil-
lations in 30 seconds we have

ν =
12
30

= 0.4 Hz

If it takes 5s for a point (in this case, the crest) of the wave to travel 15m then

v =
15
5

= 3 m/s

Since v = νλ we can rearrange and insert the above values to get

λ =
v

ν
=

3
0.4

= 7.5 m

HRK 19.3

If you sketch a sinusoidal wave you can see that it takes 1
4 of one full period for the displacement to

go from a maximum (in magnitude) to zero (or vice-versa). Hence, the piece of information given
in the problem tells us that

Period: T = 4(1.78× 10−1) = 7.12× 10−1 s.

Once we have the period in its correct units (seconds) we can invert to find frequency

ν =
1
T

=
1

7.12× 10−1
= 1.4 Hz.

Use the ν we just found, along with λ = 1.38 m to get

v = νλ = (1.4)(1.38) = 1.93m/s

HRK 19.8

Compare the general form for a sinusoidal wave with the description given

y = ymax sin(kx− ωt) vs. y = (2.3× 10−3) sin(18.2x− 588t)
→ ymax = 2.3× 10−3 m

→ k = 18.2 rad/m

→ ω = 588 rad/s

You will need to remember how the factor of 2π appears in the relative definitions of ω and ν

ω = 2πν ⇒ ν =
588
2π

= 93.6 Hz

The period is given by

T =
1
ν

= 193.6 = 1.07× 10−2 s

The wavenumber k is given by

k =
2π

λ
= 18.2 ⇒ λ =

2π

18.2
= 0.345 m

The velocity is v = νλ and hence

v = (93.6)(0.345) = 32.31 m/s
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Phys 22: Homework 2 Solutions

or, equivalently, use v = ω
k to get the same result

v =
588
18.2

= 32.31 m/s.

The transverse speed of a particle in the string (which is completely different from the speed,
v, of the traveling wave) is given by the change in vertical displacement (at a particular point) per
unit time, or more precisely

vtransverse =
∂y

∂t
∂

∂t
ymax sin(kx− ωt) = −ymaxω cos(kx− ωt)

Since this quantity vtransverse = −ymaxω cos(kx− ωt) varies with time, we should find the time at
which |vtransverse| is maximized. That would be when kx− ωt = nπ with n being some integer.

max(|vtransverse|) = |− ymaxω cos(nπ)| = ymaxω = (2.3× 10−3)(588) = 1.352 m/s

HRK 19.15

Although this has no relevance until part (f) of the question we should note that the waveform
pictured has y %= 0 when (x = 0, t = 0). This means that the waveform is described by an equation
of the form

y(x, t) = ymax sin(kx + ωt + δ) where δ = sin−1

(
y(x = 0, t = 0)

ymax

)
→ δ = sin−1

(
.04
.05

)

By inspecting the picture we see

19.15(a)

The amplitude is ym = .05 m and

19.15(b)

One full cycle of the wave takes λ = 0.4 m to complete. (Note that this means k = 2π
λ = 15.7 rad/m)

19.15(c)

The speed of the traveling wave is given by

v =

√
FT

µ
=

√
3.6

2.5× 10−2
= 12 m/s

19.15(d)

The period T is obtained from v = λν = λ
T . Rearranging slightly,

T =
λ

v
=

0.4
12

= 3.333× 10−2 (⇒ ν =
1
T

= 30 Hz)

19.15(e)

Similar to the analysis done in the last question we can show

vtransverse = ymaxω cos(kx + ωt + δ),

and the maximum speed, max(|vtransverse|), occurs when kx + ωt + δ = nπ. Therefore

max(|vtransverse|) = |(ymax)(ω)| = |(ymax)(2πν)| = (0.05) (2π(30)) = 9.43 m/s
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19.15(f)

Using answers (a),(d), ω = 2πν = 188.5 and δ = sin−1
(

.04

.05

)
= 0.93 we get

y(x, t) = (.05) sin(15.7x + 188.5t + 0.93)

HRK 19.23

The amount of mass contained in a small element of string at point x with linear density µ(x) is
given by

δm = µ(x)δx

19.23(a)

dm = µ(x) dx = kx dx
∫ M

0
dm =

∫ L

0
kx dx

M =
1
2
kx2

]L

0

M =
1
2
kL2

19.23(b)

We know the speed of a traveling wave is given by

v =

√
FT

µ

but here we must be careful not to forget that that µ varies with x, so consequently the velocity is
a function of x:

v(x) =
√

FT

kx
.

Rewrite this as a differential equation

dx

dt
=

√
FT

kx
.

and rearrange so that dx and
√

x are on one side, and dt is on the other (it does not matter which
side of the equation the constant terms go).

Now we can integrate to find the total time, T , for a pulse to traverse the length L.

∫ T

0
dt =

∫ L

0

√
kx

FT
dx

T =
√

k

FT

(
2
3
x

3
2

) ]L

0

T =
√

k

FT

(
2
3
L

3
2

)

T =

√
4kL3

9FT
and, since M =

1
2
kL2,

T =

√
8L

9FT

(
kL2

2

)

T =
√

8LM

9FT
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HRK 19.24

Because of the rotational motion, there will be just enough tension in the string to keep all the
little pieces of the string moving in a circle. This is the picture to keep in mind.

Let us concentrate on a small segment, of length δl, of the spinning hoop of string. Similar
to the discussion in deriving the wave equation we can rationalize why the force on this segment,
directed toward the center of the hoop is given by (see Chapter 19 Figure 9)

F⊥ =
FT δl

R

where FT is the tension in the string and R is the radius of the hoop.
Since this hoop is assumed to be spinning in the absence of gravity, this is the only force acting

on the string. This force F⊥ must therefore be providing the centripetal acceleration that is always
present in circular motion.

Let us equate F⊥ with the centripetal force, Fc, on a small segment of string:

F⊥ =
FT δl

R
=

(δm)v2
0

R
= Fc

⇒
(

δm

δl

)
v2
0 = FT

⇒ µv2
0 = FT

We know that the speed of waves in a string, v, is governed by the linear density, µ, of the
string, and the tension, FT in the string

v =

√
FT

µ

But using µv2
0 = FT we see that the speed of waves is the same as the tangential speed

v =

√
FT

µ
=

√
µv2

0

µ
= v0.

This is rather surprising – what does this mean? Is a wave, traveling in the same direction as the
string is rotating, just a permanent deformation of the string? – No! – The wave speed v is relative
to the string, not absolute. One consequence of this is that a wave, propagating in the opposite
direction from the direction of rotation, would not be moving in a fixed reference frame!

HRK 19.28

Call the initial distance (at which the observer measures the intensity to be 1.13 W/m2) r1, and
the second distance from the source r2.

We know that the intensity measured at a distance r from a source of spherical waves with
power P is given by

I =
P

4πr2

We have I1 =
P

4πr2
1

and I2 =
P

4πr2
2

⇒ I1

I2
=

(
P

4πr2
1

)(
4πr2

2

P

)

I1

I2
=

4πr2
2

4πr2
1

Useful result: r2
2 =

(
I1

I2

)
r2
1

HW2 - Page 4 of 11



Phys 22: Homework 2 Solutions

Use this in conjunction with r2 = r1 − 5.3 to find the radii

r2 =
√

I1

I2
r1 = r1 − 5.3

r1

(
1−

√
I1

I2

)
= 5.3

r1 =
5.3

0.31525
= 16.82 m

⇒ r2 = 16.82− 5.3 = 11.52 m

To get the power from this piece of information:
Short way:

I1 =
P

4πr2
1

4πr2
1I1 = P

4π(16.82)2(1.13) = 4017 W

Unnecessarily Long way:

I2 − I1 =
P

4πr2
2

− P

4πr2
1

I2 − I1 =
P (4πr2

1 − 4πr2
2)

(4πr2
1)(4πr2

2)

P =
(I2 − I1)(4πr2

1)(4πr2
2)

(4πr2
1 − 4πr2

2)

P =
(I2 − I1)(4πr2

1)(r2
2)

(r2
1 − r2

2)

P =
(2.41− 1.13)(4π(16.82)2)(11.52)2

((16.82)2 − (11.52)2)
P = 4021 W

HRK 19.33

The waves are moving towards each other, from an initial (t = 0) separation of 6cm = .06 m. The
right-moving wave will move 1 cm to the right every 5 ms, and similarly, the left-moving wave will
move 1 cm to the right every 5 ms so they will be exactly superimposed at t = 15 ms and for e.g.
t = 20 ms or t = 25 ms they will have passed through each other. We can see this easily from

x = vt where v = ±2m/s

x(t = 0ms) = (±2)(0) = 0 m

x(t = 5ms) = (±2)(5× 10−3) = ±.01 m

x(t = 10ms) = (±2)(10× 10−3) = ±.02 m

x(t = 15ms) = (±2)(15× 10−3) = ±.03 m
x(t = 20ms) = (±2)(20× 10−3) = ±.04 m

x(t = 25ms) = (±2)(25× 10−3) = ±.05 m

x(t = 30ms) = (±2)(30× 10−3) = ±.06 m

and we depict these results below.
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(a) t = 0, 5, 10 ms (b) t = 15 ms: Rationale for Fig. (d). Pink arrows depict transverse velocity.
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(c) t = 20, 25, 30 ms (d) t = 15 ms: Instantaneous transverse velocity, denoted by pink arrows.

Figure 1

The point of the question is to consider what happens at t = 15ms when the principle of superpo-
sition tells us that the right-moving and left-moving waveforms completely cancel out (destructively
interfere) at that instant, in the center of the piece of string.

The wave equation we are using was derived assuming conservation of energy. Since the dis-
placement from the equilibrium y = 0 position is zero at this particular instant then the potential
energy contribution is zero and all the energy is kinetic. In Figure 1 (b) and (d) we depict the
string at the instant t = 15 ms – we can see there is no displacement from y = 0. The transverse
velocity, though, compensates for this and we depict the direction and strength of this velocity at
various points using vertical pink arrows.

HRK 19.36

If you glance at problem 27 you will see that the displacement y(r, t) of a medium at a distance r
from a point source of spherical waves is given by

y =
Y

r
sin(kr − ωt)
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Here we have two point sources so write out each of their wave equations

y1 =
Y1

r1
sin(k1r1 − ω1t + φ1)

y2 =
Y2

r2
sin(k2r2 − ω2t + φ2)

The fact that the waves y1 and y2 have the same frequency and phase relation at all times
means that ω1 = ω2 = ω, k1 = k2 = k and also φ1 = φ2 = φ. The amplitude of each wave is
given by ym,1 = Y1

r1
and ym,2 = Y2

r2
respectively (recall the discussion about why the amplitude

has a 1
r dependence - this arises from energy conservation considerations) and we are told that the

amplitudes of each wave are the same therefore Y1 = Y2 = Y .
We will add these two waves in a region where r1 ≈ r2:

ytotal = y1 + y2

ytotal =
Y

r1
sin(kr1 − ωt + φ) +

Y

r2
sin(kr2 − ωt + φ)

We know that both r1 and r2 are very close to r = r1+r2
2 . You might be inclined to replace every

occurrence of r1 or r2 with r in seeking to simplify this problem – however you must be careful.
The insight required to deal with this situation is that we can set 1

r1
≈ 1

r2
≈ 1

r in the denomi-
nator, if r1 ≈ r2, but we must not do so in treating the phases of the two waves. In the
first case (the denominators) we only need |r1 − r2| ( r while in the second case (the phases) we
would need |r1 − r2|( λ, where λ may be quite small.

Armed with this approximation we can write

ytotal =
Y

r1
sin(kr1 − ωt− φ) +

Y

r2
sin(kr2 − ωt− φ)

≈ Y

r
(sin(kr1 − ωt− φ) + sin(kr2 − ωt− φ))

Use: sin(A) + sin(B) = 2 cos
(

A−B

2

)
sin

(
A + B

2

)

by identifying A = kr1 − ωt− φ and B = kr2 − ωt− φ.

⇒ ytotal =
2Y

r
cos

(
k(r1 − r2)

2

)
sin

(
kr1 + kr2 − 2ωt− 2φ

2

)

⇒ ytotal =
2Y

r
cos

(
k(r1 − r2)

2

)
sin (kr − ωt− φ)

ytotal = (Amplitude) sin (. . .)

which is the typical result for an interference pattern. The sin (. . .) term jsut means there is
a wave present, having the same wavelength and frequency as the sources. The cos (. . .) term
shows how the amplitude, and thus the intensity, varies from point to point (which is called an
interference effect). This result predicts perfect cancellation whenever cos

(
k(r1−r2)

2

)
= 0. While

we should expect very small amplitude in such regions, we should not expect to see zero– why not?
For perfect cancellation the two source amplitudes must be exactly equal at the observation point.
Our assumption that r1 ≈ r2 is not exact, and so we should not expect perfect cancelation.

19.36(b)

Obviously destructive interference (imperfect cancellation so amplitude is minimal but not zero)
occurs for the regions where cos

(
k(r1−r2)

2

)
= 0 and so the argument of the cosine must be some

HW2 - Page 7 of 11



Phys 22: Homework 2 Solutions

odd multiple of π
2

Cancelation:
k(r1 − r2)

2
=

nπ

2
n = 1, 3, 5 . . .

⇒ (r1 − r2) =
nπ

k
n = 1, 3, 5 . . .

⇒ (r1 − r2) =
nλ

2
n = 1, 3, 5 . . . (using k =

2π

λ
)

or equivalently (r1 − r2) =
(

n +
1
2

)
λ n = 0, 1, 2, 3 . . .

Similarly, constructive interference (amplitude is max) occurs for the regions where cos
(

k(r1−r2)
2

)
= 1

and so the argument of the cosine must be some multiple of π

Constructive:
k(r1 − r2)

2
= nπ n = 1, 2, 3 . . .

⇒ (r1 − r2) =
2nπ

k
n = 1, 2, 3 . . .

⇒ (r1 − r2) = nλ n = 1, 2, 3 . . . (using k =
2π

λ
)

HRK 19.39

19.39(a)

It is reasonable to assume that the mass per unit length of this string is constant and therefore

µ =
M

L
=

0.122
8.36

= 1.46× 10−2

v =

√
FT

µ
=

√
96.7

1.46× 10−2
= 81.4 m/s

19.39(b)

The longest possible standing wave is the fundamental mode (n = 1), where half a wavelength fits
between the ends.

λn =
2L

n
λ1 = 2L = 16.72 m

19.39(c)

Quick Way: Use the relationship v = νλ and plug in v from part (a) and λ from part (b)

ν =
v

λ
=

81.4
16.72

= 4.87 Hz

Unnecessarily Long Way: Recall that for standing waves, the natural frequencies are given by

νn =
v

λn
=

nv

2L

and we can rearrange to give the speed of a traveling wave when the nth mode is present

v =
2Lνn

n
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Equating this with the expression for the speed of a wave in a string under tension gives us a
useful relationship

v =
2Lνn

n
=

√
FT

µ

⇒ ν2
n =

n2FT

4L2µ

Now, since we are considering the fundamental mode we insert n = 1 and the rest of the values
given in the question to solve for the frequency, ν

ν =

√
FT

4L2µ
=

√
96.7

4(8.36)2(1.46× 10−2)
= 4.87 Hz

HRK 19.47

This problem illustrates what happens when any wave goes from one medium to another in which
the wave speed is different. Part of the wave is transmitted and part is reflected (perhaps with
inversion). That is why it is such an important problem.

19.47(a)

On the left hand side of the knot (where x < 0 and µ = µ1), we have an incident wave approaching
the knot yinc = A sin(k1(x− v1t)) and we also have the reflected wave yref = C sin(k1(x + v1t))
moving away from the knot. On the right hand side of the knot (where x > 0 and µ = µ2) we have
the transmitted wave ytrans = B sin(k2(x− v2t)), moving away from the knot.
Note: We will repeatedly use the facts that cos(−θ) = cos(θ) and sin(−θ) = − sin(θ).

Apply the principle of superposition to the waves in the string on the left hand side of the knot
to find the total disturbance

yleft(x, t) = yinc + yref

yleft(x, t) = A sin(k1(x− v1t)) + C sin(k1(x + v1t))

In particular, notice the form this takes at the knot

yleft(0, t) = A sin(−k1v1t) + C sin(k1v1t)
= sin(k1v1t)(−A + C)
= sin(ω1t)(−A + C)

where in the last line we used k1v1 = 2π
λ1

v1 = 2πν1 = ω1.
Now let us examine the string on the right hand side of the knot, and in particular what its

displacement is at x = 0.

yright = ytrans

yright(x, t) = B sin(k2(x− v2t))
yright(0, t) = −B sin(k2v2t)
yright(0, t) = −B sin(ω2t)

With some thought you can convince yourself that yleft(0, t) = yright(0, t) must be true for all
times t – otherwise segments of the string arbitrarily close to each other (but on either side of the
knot which we imagine to be point-like) would have different vertical displacements – i.e. the knot
would break. Furthermore, the only possible way to have the string remain intact for all values of t,

HW2 - Page 9 of 11



Phys 22: Homework 2 Solutions

is to have the two angular frequencies ω1 = k1v1 and ω2 = k2v2 be identical. Using these physically
motivated conditions we get

yleft(0, t) = yright(0, t)
sin(k1v1t)(−A + C) = −B sin(k2v2t)

sin(ω1t)(−A + C) = −B sin(ω1t)
⇒ A = B + C

19.47(b)

Physical reasoning told us that the displacement y should be the same immediately either side of
the knot. Similarly the slope of the string should not change abruptly at the point x = 0. The
reason is a bit more subtle and holds only if the knot has negligible mass. In that case the net
force acting on the knot must vanish. The tension must be the same on both sides, or else the knot
would accelerate sideways and so a net Fy = 0 implies T sin(θ1) = T sin(θ2) i.e. θ1 = θ2. This gives
us the following condition, true for all times t,

∂yleft

∂x

]

x=0
=

∂yright

∂x

]

x=0
.

Let us use this result to gain some more information about the relationship between A,B and C.

∂yleft

∂x

]

x=0
=

∂yright

∂x

]

x=0

k1A cos(k1(x− v1t)) + k1C cos(k1(x + v1t))
]

x=0
= k2B cos(k2(x + v2t))

]

x=0

k1A cos(−k1v1t) + k1C cos(k1v1t) = k2B cos(k2v2t)
k1A + k1C = k2B

k1(A + C) = k2B

Now let us use this result in conjunction with A = B + C to get an expression for C which
doesn’t involve B

k1(A + C) = k2B

k1(A + C) = k2(A− C)
k1C + k2C = −k1A + k2A

C =
A(k2 − k1)

k2 + k1

To get the other form use k1v1 = k2v2 = ω to eliminate the k’s

C = A
(k2 − k1)
k2 + k1

C = A
ω
v2
− ω

v1
ω
v2

+ ω
v1

C = A
(ωv1−ωv2)

v1v2
ωv1+ωv2

v1v2

C = A
(v1 − v2)
v1 + v2

C is negative when v1 < v2.
C is positive when v2 < v1 and this corresponds to the reflected wave being inverted with respect

to the incident wave. When a wave goes into a new medium where it slows down (e.g light going
from air into glass so that v2 < v1 ) the reflected wave is inverted.

As you continue your physics studies, it is more common to see things defined so that C < 0
would correspond to an inverted wave (in contrast to this particular problem).
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A sin(kx− ωt)

C sin(kx + ωt)

Satisfy yourself that the left-moving wave C sin(kx + ωt) is inverted with respect to the right
moving wave A sin(kx− ωt) by looking at the picture below (Figure 2). Remember that |C| < |A|
so the amplitude of the reflected wave is less than that of the incoming wave. The black dashed
arrow shows how one particular point from the wave A sin(kx− ωt) would get inverted.
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