
Phys 22: Homework 3 Solutions

HRK 20.8

Denote the speed of the S waves as vs and the speed of the P waves as vp. The time taken to reach
the surface is ts for an S wave, and tp for a P wave. If the earthquake occurred d m below the
surface then

vs =
d

ts
and vp =

d

tp

ts − tp =
d

vs
− d

vp

180 s = d

(
1

4500 ms−1
− 1

8200 ms−1

)

⇒ d = 1.795× 106 m

HRK 20.11

Compare the form of the sound wave given to the general form

Given: ∆p(x, t) = (1.48 Pa) sin
(
(1.07π)x− (334π)t

)

General: ∆p(x, t) = ∆pm sin(kx− ωt)

Comparison easily tells you

20.11 (a)

Pressure amplitude: ∆pm = 1.48 Pa

20.11 (b)

ω = 334π

2πν = 334π

ν =
334π

2π
= 167 Hz.

20.11 (c)

k = 1.07π
2π

λ
= 1.07π

λ =
2

1.07
= 1.87 m

20.11 (d)

v =
ω

k

v =
334π

1.07π
= 312 ms−1
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HRK 20.13

Recall that for spherical waves, the wave intensity varies inversely as the square of the distance

I =
P

A
=

P

4πr2

In our case the intensity is 1.97× 10−8 W at a distance 42.5 m from the source

1.97× 10−8 =
P

4π(42.5)2

P = 4.47 W

HRK 20.14

Method 1: Most Direct Route:

The key relationships we need to bear in mind are summarized as

∆ρ

ρ
=

∆p

B
= − ∂s

∂x

The second equality can be re-arranged to say

∆p = −B
∂s

∂x

For a sinusoidal wave we have

s(x, t) = sm cos(kx− ωt)

⇒ −B
∂s

∂x
= Bksm sin(kx− ωt) = ∆p

Now replace the bulk modulus B using v =
√

B
ρ to get

∆p = (kρv2sm)︸ ︷︷ ︸
Pressure Amplitude

sin(kx− ωt)

∆p = ∆pm︸ ︷︷ ︸
Pressure Amplitude

sin(kx− ωt)

In order to find the relationship between intensity, I, and displacement amplitude, sm, first
recall that

I = ∆p
∂s

∂t
⇒ I = ∆p ωsm sin(kx− ωt)

Now for a time-averaged sinusoidal wave we have

I =
1
2
∆pmωsm.

Replace the ∆pm term, which is a quantity we are not given in the question, with (kρv2sm)

I =
1
2
(kρv2sm)ωsm.

I =
1
2
kρv2ωs2

m

I =
1
2
ρvω2s2

m using k =
ω

v
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which can be re-arranged to say

s2
m =

2I

ρvω2

sm =

√
2I

ρvω2

sm =

√
2(1.13× 10−6)

(1.21)(343)(2π(313))2

sm = 3.75× 10−8 m

Method 2: Manipulating relevant equations from HRK:

Recall that the expression for time-average intensity (in the pressure amplitude picture) is given by

I =
(∆pm)2

2ρv
.

We will first find the value for ∆pm and then convert to the displacement amplitude picture using
the relation

∆pm = kρv2sm

I =
(∆pm)2

2ρv

∆pm =
√

2ρvI

∆pm =
√

2(1.21)(343)(1.13× 10−6)
∆pm = 3.06× 10−2N/m2

where in the second last line I substituted in the given value for I and standard density and speed-
of-sound values for air.

The final step is to find the displacement amplitude sm

∆pm = kρv2sm

sm =
∆pm

kρv2

sm =
3.06× 10−2

k(1.21)(343)2
where v =

ω

k
⇒ k =

ω

v
=

2πν

v
=

2π(313)
343

= 5.73

sm =
3.06× 10−2

(5.73)(1.21)(343)2

sm = 3.75× 10−8 m

We could have found this result more neatly by deriving the equation which relates intensity
and sm i.e.

I =
(∆pm)2

2ρv
and ∆pm = kρv2sm

I =
k2ρ2v4s2

m

2ρv

I =
k2ρv3s2

m

2

I =
1
2
ρvω2s2

m (using v2 =
ω2

k2
)

I =
1
2
ρv(ωsm)2
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Plug values directly into this to obtain the same value as previously

I =
1
2
ρv(ωsm)2

sm =

√
2I

ρvω2

sm =

√
2(1.13× 10−6)

(1.21)(343)(2π(313))2

sm = 3.75× 10−8 m

HRK 20.23

The location of the point B tells us how far the sound wave has to travel in moving through the
right hand portion of the apparatus. For some position Bmin the sound intensity detected at the
opening is a minimum, and for a position Bmax the sound intensity detected is a mximum. The
piece of information given to us in the problem is that

|Bmax −Bmin| = 1.65× 10−2m

Every centimeter that B is increased adds 1cm to the path before the tube bends and also 1cm
to the path after the bend. This reasoning tells us that the difference in distance traveled between
sound waves when B = Bmin and when B = Bmax is

Change in distance traveled on right: = 2|Bmax −Bmin| = 3.3× 10−2m

Since the path on the left side of the apparatus stays constant, and since there are no other
maximum/minimum amplitude locations between Bmin and Bmax, we know that the change in
distance traveled must correspond to half a wavelength of the sound wave

Change in distance traveled on right: 3.3× 10−2m =
1
2
λ

λ = 6.6× 10−2m

20.23(a)

Assuming the speed of sound in the tube is 343m/s (which is certainly not exact) we can find the
frequency of the sound

v = νλ

ν =
v

λ

ν =
343

6.6× 10−2

ν = 5196 Hz = 5.2 kHz

20.23(b)

Recall from the previous chapter, as well as this one, that for all waves

Intensity ∝ (Amplitude)2

We are told the ratio of the intensities for the the two configurations of the tube (i.e. when
intensity is a minimum at point D and when intensity is a maximum) so it easy to work out the
ratio of the amplitudes for these two configurations.

⇒ Imax

Imin
=

[
∆pm

]2

max[
∆pm

]2

min
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Since we are told Imin = 10× 10−6 and Imax = 90× 10−6 then

9 =

[
∆pm

]2

max[
∆pm

]2

min

3 =

[
∆pm

]

max[
∆pm

]

min[
∆pm

]

min
=

1
3

[
∆pm

]

max

20.23(c)

Constructive and destructive interference, with the waves that have traveled on the left path of the
apparatus, causes a difference in amplitude at the point D (the detector).

HRK 20.32

P1

P2

P3 3.05 m3.05 m

θ
θ

θ

There will be interference at point P2 due to the superposition of two waves (i) the wave which
travels directly form P1 to P2 and (ii) the wave which reflects off the wall and then travels to P2.
We need to find out what extra distance the second wave has traveled. Look at the picture and
you can see that the distance from P1 to P2 via the reflection is the same as the distance between
P2 and a point I have called P3. Note: As with most geometrical problems, there is not only one
way to find the length of the path for reflected waves – you could, for example, use trigonometry
to find a value for how far down the wall the reflected wave bounces.

Direct path length: |P1 − P2| =
√

24.42 + 15.22 = 28.747 m

Reflected path length: |P3 − P2| =
√

(24.4 + 2(3.05))2 + 15.22 = 34.077 m

Path Difference: 34.077− 28.747 = 5.33 m

In order to maximize sound intensity at point P2 we want constructive interference to occur
there. The condition for this to happen is that path difference is some integer multiple of the
wavelength

5.33 = nλ (n = 1, 2, . . .)

λ =
5.33
n
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Since v = νλ and the speed of sound in air is 343m/s we have

λ =
343
ν

but λ =
5.33
n

343
ν

=
5.33
n

ν = n
343
5.33

The two lowest frequencies that will gives constructive interference are found by plugging n = 1
and n = 2 into the above equation

Lowest: ν =
343
5.33

= 64.35 Hz

Second Lowest: ν = 2
343
5.33

= 128.7 Hz

HRK 20.38

The well is like a tube that is closed at one end. We can’t just use v = 343 m/s here, as we are
given information about the conditions inside the well. We find

v =

√
B

ρ

v =

√
1.41× 105

1.21
v = 341.4 m/s

We know that the general expression for frequency of a wave in a resonant mode (in a tube with
one closed end) is given by

ν = n
v

4L
n = 1, 3, 5 . . .

where L is the distance from the entrance of the tube to the closed end. If you cannot remember
this expression it is easy to derive it by drawing a sketch. For the fundamental resonant mode we
can picture a node at the entrance to the tube, and the first antinode at the closed end (in our
case the surface of the water). We know that a wave goes from a minimum (node) to a maximum
(antinode) in one-quarter of a wavelength and so L = λ

4 or, using v = νλ we get L = v
4ν .

We are told the lowest frequency of a resonant mode (which corresponds to n = 1) is 7.2 Hz.

7.2 =
341.4
4L

L =
341.4
4(7.2)

L = 11.85 m

HRK 20.42

In the usual picture of tubes and nodes and antinodes, (i) the pressure at a closed end is a pressure
anti-node, since the pressure there can vary with its maximum amplitude (ii) the pressure at an
open end is a pressure node since it must be equal to the ambient pressure outside the tube.

Recall that a pressure node is a displacement antinode, a pressure antinode is a displacement
node, and vice-versa.

20.42 (a)

Here, we are thinking of displacement nodes and antinodes and not pressure (anti)nodes. The
material at the center of the star cannot move so it must correspond to a displacement node. The
surface is a pressure node and hence a displacement antinode.
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20.42 (b)

If we picture a tube with a node at one end (source) and an antinode at the other (open) end, then
it is easy to see that (in the fundamental mode) the length of this tube corresponds to one-quarter
of a wavelength.

In our case the length of the tube corresponds to the average radius of the star i.e. L = R.

R =
λ

4
⇒ ν =

v

4R
using v = νλ

1
T

=
v

4R

T =
4R

v

20.42 (c)

v =

√
B

ρ

v =
√

1.33× 1022

1× 1010

v = 1.153× 106 m/s

R = (.009)R0 Find a value for R0 in Appendix C
R = (.009)(6.955× 108)
R = 6.26× 106

T =
4R

v

T =
4(6.26× 106)
1.153× 106

T = 21.71 s

HRK 20.53

20.53(a)

You might have seen elsewhere that the number of ways of picking two items from a group of 5
different ones is

“ Five choose two ”:
(

5
2

)
= 10

You can figure this question out, however, without knowing anything about combinatorics.
Every pair of forks has a beat frequency νbeat = |νi − νj |. We can arrange it so that every

such pair has a beat frequency that is different to that of any other pair. For example, consider
{ν1 = 2, ν2 = 4, ν3 = 8, ν4 = 16, ν5 = 32}, then the ten distinct beat frequencies are

νbeat
1,2 = 2, νbeat

1,3 = 6, νbeat
1,4 = 14, νbeat

1,5 = 30, νbeat
2,3 = 4,

νbeat
2,4 = 12, νbeat

2,5 = 28, νbeat
3,4 = 8, νbeat

3,5 = 24, νbeat
4,5 = 16
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where the notation I have used is

νbeat
i,j = |νi − νj |.

Obviously νbeat
i,j = νbeat

j,i so I don’t bother listing terms like νbeat
4,2 = νbeat

2,4 .

20.53(b)

In trying to find a worst case scenario we could arrange it so that the a number of the pairs have the
same beat frequency. Since the forks are all distinct the worst we can come up with is something
like {ν1 = 100, ν2 = 200, ν3 = 300, ν4 = 400, ν5 = 500} where

|ν1 − ν2| = |ν2 − ν3| = |ν3 − ν4| = |ν4 − ν5|

and also

|ν1 − ν3| = |ν2 − ν4| = |ν3 − ν5|

and finally

|ν1 − ν4| = |ν2 − ν5|

If you select one representative pairing from each of the above groups and add in the final
possible beat frequency |ν1 − ν5| then we have a total of 4 distinct beat frequencies

{|ν1 − ν2|, |ν1 − ν3|, |ν1 − ν4|, |ν1 − ν5|}

Note: We know that 4 is the lowest achievable since all 5 forks are distinct, and straight away
that implies that none of the 4 beat frequencies listed above {|ν1− ν2|, |ν1− ν3|, |ν1− ν4|, |ν1− ν5|}
can be same.

HRK 20.70

20.70(a)

The source is moving towards the observer. The observer is moving towards the source. They are
both moving with respect to the medium (water). Convert speeds to meters/second first.

20.2 km/h = 2.02×104 m
3600 s = 5.611m/s

94.6 km/h = 9.46×104 m
3600 s = 26.277m/s

5470 km/h = 5.47×106 m
3600 s = 1519.44m/s

Here sub 1 is the source and sub 2 is the observer. The frequency ν is 1030 Hz.

ν′ = ν
v + vO

v − vS

ν′ = ν
1519.44 + 26.277
1519.44− 5.611

ν′ = ν(1.02106)
ν′ = (1030)(1.02106)
ν′ = 1051.7 Hz

20.70(b)

Here, we make sub 2 the source (since the waves are reflecting from sub 2) and sub 1 the observer.
The frequency ν of the reflected waves is 1051.7 Hz, the frequency of the wave arriving at sub 2
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(which we worked out in part (a)).

ν′ = ν
v + vO

v − vS

ν′ = ν
1519.44 + 5.611
1519.44− 26.277

ν′ = ν(1.02136)
ν′ = (1051.7)(1.02136)
ν′ = 1074.16 Hz

Taylor Expansions:

1

We will construct the first few terms of the following series

f(x) = f(0) + f ′(0)x + f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ f ′′′′(0)

x4

4!
. . .

f, f ′, f ′′ Value at x = 0 Resulting Term

f = 1
1+x f(0) = 1 1

f ′ = −1
(1+x)2 f ′(0) = −1 −x

f ′′ = 2
(1+x)3 f ′′(0) = 2 x2

f ′′′ = −6
(1+x)4 f ′′′(0) = −6 −x3

f ′′′′ = 24
(1+x)5 f ′′′′(0) = 24 x4

Overall we have
1

1 + x
= 1− x + x2 − x3 + x4 . . .

You could apply the ratio test to show that the series converges if |x| < 1.

2

f(x) = f(0) + f ′(0)x + f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ f ′′′′(0)

x4

4!
. . .

f(θ) = f(0) + f ′(0)θ + f ′′(0)
θ2

2!
+ f ′′′(0)

θ3

3!
+ f ′′′′(0)

θ4

4!
. . .

From the 4th derivative onwards, you can see the first two columns are going to keep repeating,
so that all even powers of θ in f(0) + f ′(0)θ + f ′′(0) θ2

2! + f ′′′(0) θ3

3! + f ′′′′(0) θ4

4! . . . will be multiplied
by zero. All the odd powers of θ will have sign ±1 (alternating).

sin x = x + (−1)
x3

3!
+ (1)

x5

5!
+ (−1)

x7

7!
. . .

sin θ = θ + (−1)
θ3

3!
+ (1)

θ5

5!
+ (−1)

θ7

7!
. . .
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Table 1: Table for f = sin θ

f, f ′, f ′′ Value at θ = 0 Resulting Term

f = sin θ f(0) = 0 0

f ′ = cos θ f ′(0) = 1 θ

f ′′ = − sin θ f ′′(0) = 0 0

f ′′′ = − cos θ f ′′′(0) = −1 −θ3

3!

f ′′′′ = sin θ f ′′′′(0) = 0 0

3

Table 2: Table for f = cos θ

f, f ′, f ′′ Value at θ = 0 Resulting Term

f = cos θ f(0) = 1 1

f ′ = − sin θ f ′(0) = 0 0

f ′′ = − cos θ f ′′(0) = −1 −θ2

2!

f ′′′ = sin θ f ′′′(0) = 0 0

f ′′′′ = cos θ f ′′′′(0) = 1 θ4

4!

From the 4th derivative onwards, you can see the first two columns are going to keep repeating,
so that all odd powers of θ in f(0) + f ′(0)θ + f ′′(0) θ2

2! + f ′′′(0) θ3

3! + f ′′′′(0) θ4

4! . . . will be multiplied
by zero. All the even powers of θ will have sign ±1 (alternating).

cos x = 1 + (−1)
x2

2!
+ (1)

x4

4!
+ (−1)

x6

6!
. . .

cos θ = 1 + (−1)
θ2

2!
+ (1)

θ4

4!
+ (−1)

θ6

6!
. . .

4

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
. . .
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Table 3: Table for f = ex

f, f ′, f ′′ Value at θ = 0 Resulting Term

f = ex f(0) = 1 1

f ′ = ex f ′(0) = 1 x
1!

f ′′ = ex f ′′(0) = 1 x2

2!

f ′′′ = ex f ′′′(0) = 1 x3

3!

f ′′′′ = ex f ′′′′(0) = 1 x5

5!

Now, setting x = iθ, we get

e(iθ) = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
. . .

Let us combine the series for cos θ and i sin θ into one series:

cos θ = 1 + (−1)
θ2

2!
+ (1)

θ4

4!
+ (−1)

θ6

6!
. . .

+i sin θ = iθ + (−i)
θ3

3!
+ (i)

θ5

5!
+ (−i)

θ7

7!
. . .

⇒ cos θ + i sin θ = 1 + iθ + (−1)
θ2

2!
+ (−i)

θ3

3!
+ (1)

θ4

4!
+ (i)

θ5

5!
+ (−1)

θ6

6!
+ (−i)

θ7

7!
. . .

The last step is to write all the ±1,±i coefficients as powers of i – then we immediately see Euler’s
Theorem:

cos θ + i sin θ = 1 + iθ + (i2)
θ2

2!
+ (i3)

θ3

3!
+ (i4)

θ4

4!
+ (i5)

θ5

5!
+ (i6)

θ6

6!
+ (i7)

θ7

7!
. . . = e(iθ)
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