
Phys 22: Homework 4 Solutions

HRK 21.2

From the discussion of length contraction and time dilation we would expect the tube to appear
shorter (in the direction of motion) when we are moving at high speed with respect to it. The
proper length L0 is the length of the tube as measured in the reference frame of the tube (i.e the
laboratory frame). If we imagine ourselves as observers, moving along with the electron, then we see
the tube (and, in general, the whole lab) rush by at speed 0.999987c. The relevant transformation
is

L =
L0

γ
where γ =

1√
1− 0.999987c2

c2

= 196.1

Plugging in the numbers, we find the observed tube length L when observed by someone traveling
with the electron (i.e. observed by someone in frame S′) is

L =
2.86
196.1

= 1.458× 10−2 m

HRK 21.4

The proper time ∆t0 of the muons’ mean lifetime is 2.20µs. If we were travelling along with the
muon, this is how long we would see it last. By the phenomenon of time dilation, we expect muons
traveling at high speeds relative to us to have a longer observed lifetime ∆t (in this case ∆t = 16µs).
The relationship between the two periods of time is given by

∆t = γ∆t0 =
∆t0√
1− u2

c2

We know ∆t0 and ∆t so let us rearrange in order to solve for u, the speed of the muons in the
laboratory (i.e. Earth) reference frame

∆t

γ
= ∆t0

1
γ

=
∆t0
∆t

1
γ2

=
∆t0
∆t

(1− u2

c2
) =

∆t20
∆t2

u2

c2
= 1− ∆t20

∆t2

u = c

√
1− ∆t20

∆t2

u = c

√

1− (2.2× 10−6)2

(16× 10−6)2

u = .990502 c

HRK 21.5

Method 1 (More Direct)

For an observer in the lab frame, they would see see the particle travel a distance 1.05 × 10−3 m
while moving at a speed of v = 0.992 c. The observed lifetime of the particle in the lab frame is
then

∆tLAB =
1.05× 10−3

0.992 c
=

1.05× 10−3

(0.992)(3× 108)
= 3.528× 10−12 s
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We know from our discussions of time dilation that an observer traveling along with particle
would see the proper time ∆t0 for the lifetime of the particle, and we know that the proper time is
related to the time in lab frame via

∆tLAB = γ∆t0 where γ =
1√

1− 0.9922

and therefore

∆t0 =
∆tLAB

γ

∆t0 = (3.528× 10−12)
√

1− 0.9922

∆t0 = 4.454× 10−13 s

Method 2 (Slightly Circuitous)

The key idea this time is that an observer traveling with particle would measure the distance
between when the particle entered the detector, to when it stopped, as being some length ∆L
which is shorter than the the observed length of travel ∆L0 in the reference frame of the laboratory
(here, a detector). This is the phenomenon of length contraction.

An observer traveling along with the particle would have seen the detector move by at a speed
of u = 0.992c and this observer would measure the distance traveled into the detector as

∆L =
∆L0

γ
where γ =

1√
1− 0.9922

∆L = (1.05× 10−3)
√

1− 0.9922

∆L = 1.3255× 10−4 m

For an observer traveling with the particle, since the detector was moving by at u = 0.992c and
since it traveled a distance of 1.3255×10−4 m, the amount of time the particle lasted must then be

time =
dist

speed

∆t0 =
1.3255× 10−4 m

(0.992)(3× 108)
∆t0 = 4.454× 10−13 s

HRK 21.14

There is nothing too tricky going on here. This is just like the normal set up in which we imagine
tow coordinate systems S and S′, with S′ moving in the positive x direction (which is also the x′

direction) at constant speed u with respect to S. Note that the Lorentz factor γ for this problem
has a value γ = 1√

1−u2
c2

= 1√
1−(0.95)2

= 3.20256.

Answering this question requires a straightforward application of the Lorentz transformation
equations

x′ = γ(x− ut)
y′ = y

z′ = z

t′ = γ
(
t− ux

c2

)

We know the y and z coordinates are the same in both frames S and S′ so concentrate on x′

and t′ using the given information

x = 100× 103 m

t = 200× 10−6 s

u = 0.95 c = 2.85× 108 m/s
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x′ = γ(x− ut) = (3.2025)
[
(100× 103)− (2.85× 108)(200× 10−6)

]
= 1.377× 105 m

t′ = γ
(
t− ux

c2

)
= (3.2025)

[
(200× 10−6)− (0.95)(100× 103)

(3× 108)

]
= −3.736× 10−4 s

HRK 21.17

It should be obvious from the wording of the question that what we are interested in here is the
intervals in space and time between two events, in two different coordinate systems. We let the
experimenter occupy reference frame S, and so the second observer is in the reference frame S′. We
can solve this problem by either using the regular Lorentz transformation equations, or by using
the interval version of these transformation equations. The choice of which version to use is purely
one of convenience – so we will do it both ways here.

Method 1: Regular Lorentz Transformation equations

21.17 (a)

The relevant equations are

x′ = γ(x− ut)

t′ = γ
(
t− ux

c2

)

We will put subscripts on the x and t to denote which color light we are talking about. Let us
say that that the blue light flashes at tb = 0 and at location xb = 0. Since the red and blue flash
simultaneously (to the experimenter) we have tr = 0 too, and we also know that xr = 30.4×103 m.
Before we start plugging in values, note that the Lorentz factor is γ = 1√

1−u2
c2

= 1√
1−(0.247)2

= 1.032.

x′b = γ(xb − utb) = (1.032) [0− u0] = 0
x′r = γ(xr − utr) = (1.032)

[
30.4× 103 − u0

]
= 3.1372× 104 m

t′b = γ
(
tb −

uxb

c2

)
= (1.032)

[
0− u0

c2

]
= 0

t′r = γ
(
tr −

uxr

c2

)
= (1.032)

[
0− (0.247)(30.4× 103)

c

]
= −2.583× 10−5 s

21.17 (b)

Since t′r < t′b we know that the red light must flash first according to the observer in the frame S′.

Method 2: Interval Lorentz Transformation equations

21.17 (a)

The fact that the bulbs flash simultaneously in S tell us that time interval between the events in
this frame is tr − tb = ∆t = 0 where the r and b subscripts correspond to the colors of the lights.
The spatial separation between these two flashes, in S, is ∆x = xr − xb = 30.4× 103 m.

The interval version of the Lorentz transformation equations is given by

∆x′ = γ(∆x− u∆t)
y′ = y

z′ = z

∆t′ = γ

(
∆t− u∆x

c2

)

Since the observer’s frame S′ is moving at u = 0.247c with respect to S (in the positive x
direction) then the Lorentz factor γ = 1√

1−u2
c2

= 1√
1−(0.247)2

= 1.032.
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Find the spatial and temporal intervals (∆x′ and ∆t′ respectively) between the two flashes in
the S′ frame by plugging in the above values:

∆x′ = (1.032)
[
(30.4× 103)− (0.247c)(0)

]
= 3.1372× 104 m

y′ = y

z′ = z

∆t′ = (1.032)
[
0− (0.247)(30.4× 103)

(3× 108)

]
= −2.583× 10−5 s

We defined ∆x = xr − xb and ∆t = tr − tb so the relevant expressions for the S′ frame are

∆x′ = x′r − x′b
∆t′ = t′r − t′b

21.17 (b)

Since ∆t′ < 0 that means that t′r < t′b and consequently the red light flashes first.

HRK 21.18

We want to invert the relationships

x′ = γ(x− ut)
y′ = y

z′ = z

t′ = γ(t− ux

c2
)

The job is already done for y′ and z′. For x′ and t′ there are a couple of ways to arrive at the
desired expressions.

Method 1: shorter

x′ = γ(x− ut)
⇒ x′ = γx− γut

and also

t′ = γ(t− ux

c2
)

t′ = γt− γux

c2

⇒ ut′ = uγt− γu2x

c2
.

Now add these two expressions

x′ = γx− γut

+ut′ = uγt− γu2x

c2

⇒ x′ + ut′ = γx− γu2x

c2
+ uγt− γut

x′ + ut′ = γx

(
1− u2

c2

)

x′ + ut′ =
x

γ
using γ−2 =

(
1− u2

c2

)

γ(x′ + ut′) = x as required.
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Now we do a similar thing to get the expression for t.

x′ = γ(x− ut)
x′ = γx− γut

⇒ ux′

c2
=

uγx

c2
− γu2t

c2

and also

t′ = γ(t− ux

c2
)

⇒ t′ = γt− γux

c2

Now add these two expressions

ux′

c2
=

uγx

c2
− γu2t

c2

+t′ = γt− γux

c2

⇒ ux′

c2
+ t′ =

uγx

c2
− γux

c2
+ γt− γu2t

c2

ux′

c2
+ t′ = γt− γu2t

c2

ux′

c2
+ t′ = γt

(
1− u2

c2

)

ux′

c2
+ t′ =

t

γ
using γ−2 =

(
1− u2

c2

)

γ

(
ux′

c2
+ t′

)
= t as required.

Method 2: Longer

We will just multiply out and re-arrange

x′ = γ(x− ut)
x′ + γut = γx

⇒ x =
x′

γ
+ ut

We want x in terms of γ, x′ and t′ so we must replace t in the last line. We will come back to this
in a minute. For now, let us rearrange the expression for t′

t′ = γ(t− ux

c2
)

γt = t′ + γ
ux

c2

⇒ t =
t′

γ
+

ux

c2
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Plug t = t′

γ −
ux
c2 into x = x′

γ + ut and do some tidying

x =
x′

γ
+ u

(
t′

γ
+

ux

c2

)

x− u2x

c2
=

x′

γ
+

ut′

γ

x

(
1− u2

c2

)
=

x′ + ut′

γ

xγ−2 =
x′ + ut′

γ
using γ−2 =

(
1− u2

c2

)

⇒ x = γ(x′ + ut′)

Similarly, to get t in terms γ, x′ and t′ we substitute x = γ(x′ + ut′) into t = t′

γ + ux
c2

t =
t′

γ
+

uγ(x′ + ut′)
c2

t =
t′

γ
+

u2γt′

c2
+

uγx′

c2

t = γ

(
t′

γ2
+

u2t′

c2
+

ux′

c2

)

t = γ

(
t′

(
1
γ2

+
u2

c2

)
+

ux′

c2

)

t = γ

(
t′

(
1− u2

c2
+

u2

c2

)
+

ux′

c2

)
using γ−2 =

(
1− u2

c2

)

⇒ t = γ

(
t′ +

ux′

c2

)

HRK 21.21

21.21(a)

If galaxy A is receding from us with speed 0.347c (in our reference frame) then we are receding
from it with the same speed (in its reference frame).

21.21(b)

Let’s stick to the usual convention of calling the lab frame S (here lab=earth). If galaxy A is moving
in our positive x direction, with speed 0.347c, and we let S′ be the reference frame associated with
galaxy A, then "u = 0.347x̂. Since galaxy B is receding from us in the opposite direction we know
that we would observe B to have velocity "v = −0.347c. What we are trying to find is the velocity
"v′ that an observer in S′ would find for galaxy B. The relevant expression is

The relevant Lorentz velocity transformation is

v′x =
vx − u

1− uvx
c2

where vx = −0.347c and u = 0.347c

vx =
−0.347c− 0.347c

1− −(0.347c)2

c2

vx = −0.6194c

HRK 21.24

21.24(a)

Note that if we just used Gallilean relativity (and not special relativity) we would find that the
electron is moving faster than c in the lab frame – which is nonsense.
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Once we have agreed upon the definitions for the various ingredients S, S′, "u, "v and "v′ then the
question will boil down to a straightforward application of one of the Lorentz velocity transforma-
tions.

S: the laboratory frame

S′: the frame moving along with the nucleus.

"u: the velocity of the S′ frame relative to S. This is the velocity of the nucleus relative to the
lab frame i.e. "u = 0.24c x̂.

"v: The velocity of the electron in the lab frame. This is what we are trying to find. The
components are "v = (vx, vy, vz)

"v′: The velocity of the electron in the nucleus’ frame, S′. We are given that this is
"v′ = 0.78c x̂. The individual components are "v′ = (v′x = 0.78c, v′y = 0, v′z = 0)

The version of Lorentz’s velocity transformation that is most helpful to us is

vx =
v′x + u

1 + uv′
x

c2

vy =
v′y

γ
(
1 + uv′

x
c2

)

vz =
v′z

γ
(
1 + uv′

x
c2

)

and so plugging in the values we get

vx =
0.78c + (0.24c)
1 + (0.24c)(0.78c)

c2

vy =
0

γ
(
1 + (0.24c)(0.78c)

c2

)

vz =
0

γ
(
1 + (0.24c)(0.78c)

c2

)

The Lorentz factor is γ = 1√
1−u2

c2

= 1√
1−(0.24)2

= 1.03011 and the quantity
(
1 + (0.24c)(0.78c)

c2

)

has a value 1.1872

vx =
1.02c

1.1872
= 0.8592c

vy =
0

(1.03011)(1.1872)
= 0

vz =
0

(1.03011)(1.1872)
= 0

The magnitude of "v is
√

v2
x + v2

y + v2
z = 0.8592c
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21.24(b)

The set up here is the same as part (a) except now the emitted electron moves along the y′ axis
and not the x′ axis. List out the ingredients again, noting that "v′ must be modified from part (a):

S: the laboratory frame

S′: the frame moving along with the nucleus.

"u: the velocity of the S′ frame relative to S. This is the velocity of the nucleus relative to the
lab frame i.e. "u = 0.24c x̂.

"v: The velocity of the electron in the lab frame. This is what we are trying to find. The
components are "v = (vx, vy, vz)

"v′: The velocity of the electron in the nucleus’ frame, S′. We are given that this is
"v′ = 0.78c ŷ′. The individual components are "v′ = (v′x = 0, v′y = 0.78c, v′z = 0)

vx =
v′x + u

1 + uv′
x

c2

vy =
v′y

γ
(
1 + uv′

x
c2

)

vz =
v′z

γ
(
1 + uv′

x
c2

)

vx =
0 + (0.24c)

1 + (0.24c)(0)
c2

= 0.24c

vy =
(0.78c)

γ
(
1 + (0.24c)(0)

c2

) =
0.78

1.03011
c = 0.7572c

vz =
0

γ
(
1 + (0.24c)(0)

c2

) = 0

The magnitude of "v is
√

v2
x + v2

y + v2
z =

√
(0.24)2 + (0.7572)2 + 0 = 0.7943c

The direction of motion is in the positive quadrant of the x − y plane and the velocity vector
makes an angle of arctan(0.757

0.24 ) = 72.4◦ with the x−axis.

21.24(c)

This time we are given the electron’s velocity "v, as measured by someone in S, and we have to
figure out what someone in S′ would measure the electron’s velocity as (i.e. we have to figure out
"v′).

S: the laboratory frame

S′: the frame moving along with the neutron.

"u: the velocity of the S′ frame relative to S. This is the velocity of the neutron relative to
the lab frame i.e. "u = 0.24c x̂.
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"v: The velocity of the electron in the lab frame.Now we are given this – its velocity is
"v = 0.78c ŷ. The components are "v = (vx = 0, vy = 0.78c, vz = 0)

"v′: The velocity of the electron in the neutron’s frame, S′. This is what we are trying to
figure out. The components are "v′ = (v′x, v′y, v′z).

We will use the other version of Lorentz’s velocity transformation equation, since that is more
convenient.

v′x =
vx − u

1− uvx
c2

v′y =
vy

γ
(
1− uvx

c2

)

v′z =
vz

γ
(
1− uvx

c2

)

Plug in numbers

v′x =
0− (0.24c)

1− (0.24c)(0)
c2

= −0.24c

v′y =
0.78c

γ
(
1− (0.24c)(0)

c2

) =
0.78

(1.03011)
c = 0.7572c

v′z =
0

γ
(
1− (0.24c)(0)

c2

) = 0

The magnitude of "v′ is
√

(v′x)2 + (v′y)2 + (v′z)2 =
√

(0.24)2 + (0.7572)2 + 0 = 0.7943c

The direction of motion is in the quadrant of the x′ − y′ plane with x′ < 0 and y′ > 0, and the
velocity vector makes an angle of arctan(0.757

0.24 ) = 72.41◦ with the x′−axis.
Note: Compare this with the angle we found in part (b). In part (b), a velocity that was purely

y′ directed in the S′ frame, was observed in the S frame to make an angle of +72.41◦ with the x
axis. In part (c), a velocity that was purely y directed in the S frame, was observed in the S′ frame
to make an angle of −72.41◦ with the x′ axis. Thinking about the relative motion between frame
S and frame S′ you can convince yourself that such a relationship must always hold.

Ambiguous wording in the question

Depending on how you read the question, you could double the amount of work involved if, for each
of (a), (b) and (c), you let the electron’s velocity be directed in the positive and negative directions
of the axis they refer to i.e. ±x̂′,±ŷ′,±ŷ respectively. Anyone who interpreted the question this
way will get extra credit for each correct answer.

For example

(a) again

S: the laboratory frame

S′: the frame moving along with the nucleus.

"u: the velocity of the S′ frame relative to S. This is the velocity of the nucleus relative to the
lab frame i.e. "u = 0.24c x̂.

"v: The velocity of the electron in the lab frame. This is what we are trying to find. The
components are "v = (vx, vy, vz)
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"v′: The velocity of the electron in the nucleus’ frame, S′. We now change this to "v′ =
−0.78c x̂. The individual components are "v′ = (v′x = −0.78c, v′y = 0, v′z = 0)

and so

vx =
v′x + u

1 + uv′
x

c2

vy =
v′y

γ
(
1 + uv′

x
c2

)

vz =
v′z

γ
(
1 + uv′

x
c2

)

and so plugging in the values we get

vx =
−0.78c + (0.24c)
1 + (0.24c)(−0.78c)

c2

= −0.6644c

vy =
0

γ
(
1 + (0.24c)(−0.78c)

c2

) = 0

vz =
0

γ
(
1 + (0.24c)(−0.78c)

c2

) = 0

HRK 21.31

Obviously this question will involve using the interval version of Lorentz’s transformation equation
in some way.

21.31(a)

The information given to us is that

The spatial separation between events “red light flashes” and “blue light flashes” ∆x =
xr − xb = 730 m

The temporal separation between events “red light flashes” and “blue light flashes” ∆t =
tr − tb = −4.96µs (Note the minus sign)

We want to find a frame S′ in which the spatial separation between events “red light flashes”
and “blue light flashes” is ∆x′ = x′r − x′b = 0 m

There is no need to bring y and z coordinates into this problem. We will solve this in one spatial
dimension x̂ = x̂′.

The most useful interval version of Lorentz’s transformation equations are

∆x′ = γ(∆x− u∆t)

∆t′ = γ(∆t− u∆x

c2
)

Setting ∆x′ = 0 as required, we get

⇒ ∆x = u∆t
∆x

∆t
= u

730
−4.96× 10−6

= −1.4717× 108 = u

−0.4906c = u

This result tells us that frame S′ should be moving with speed 0.4906c relative to the frame S in
the negative x̂ = x̂′ direction, in order for an observer in S′ to see ∆x′ = 0.
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21.31(b)

Given that we have now found u, let us use that to see what the temporal separation ∆t′ = t′r − t′b
is between the two events ‘red light flashes” and “blue light flashes”.

∆t′ = γ(∆t− u∆x

c2
)

∆t′ = γ(−4.96× 10−6 − (−0.4906c)(730)
c2

)

and, calculating the Lorentz factor to be γ = 1√
1−u2

c2

= 1√
1−(0.4906)2

= 1.1476 we get

∆t′ = (1.1476)(−4.96× 10−6 − (−0.4906c)(730)
c2

)

∆t′ = −4.322× 10−6s

Since ∆t′ = t′r − t′b < 0 this means that t′r < t′b and the observer in S′ sees the red light flash
first.

HRK 21.32

Same setup as the last question but now we must leave the temporal separation ∆t in frame S as
an unknown.

The spatial separation between events “red light flashes” and “blue light flashes” ∆x =
xr − xb = 730 m

The temporal separation between events “red light flashes” and “blue light flashes” ∆t < 0
We retain the ordering red-then-blue – hence the minus sign

We want to find a frame S′ in which the spatial separation between events “red light flashes”
and “blue light flashes” is ∆x′ = x′r − x′b = 0 m

The most useful interval version of Lorentz’s transformation equations are again

∆x′ = γ(∆x− u∆t)

∆t′ = γ(∆t− u∆x

c2
)

Setting ∆x′ = 0 as required, we get

⇒ ∆x = u∆t

∆x = u(tr − tb)
∆x

(tr − tb)
= u

Recall, we said that red flashes first so that tr < tb and hence the quantity (tr − tb) in the
denominator is negative. That implies the velocity u, of the observer in the x direction, must be
negative (since ∆x is positive). Also, we want the magnitude of this quantity (tr − tb) to be as
small as possible. This necessitates making the magnitude of u as large as possible. Taking all of
this into account we arrive at the result that setting "u = −cx̂ makes the magnitude of (tr − tb) as
small as possible, whilst retaining the order red-then-blue.

730
(tr − tb)

= −c

730
−c

= (tr − tb)

−2.433× 10−6s = (tr − tb)

So, in order for it to be possible to see events “red light flashes” and then “blue light flashes” as
occurring at the same location in S′, we must have the red light flash at least 2.433× 10−6s before
the blue light in the S frame.
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