
Phys 22: Homework 5 Solutions

HRK 22.2

The thermometric property X that we are using is voltage, of which temperature is a linear function
(on this practical scale, not actual thermodynamic temperature) i.e.

T (X) = aX + b

We are given two reference measurements so we can identify the unknown a and b.

T (X = 0 mV ) = a(0) + b = 0◦C ⇒ b = 0

T (X = 28 mV ) = a(28 mV ) + 0 = 510◦C ⇒ a =
510◦C
28 mV

Now we can find the corresponding temperature when the voltage reading is 10.2 mV

T (X) =
510◦C
28 mV

X

T (10.2 mV ) =
510◦C
28 mV

10.2 mV = 185.79◦C

HRK 22.9

We want to find an expression for ∆T as a function of time, given that

d∆T

dt
= −A(∆T ).

22.9(a)

First look at the units on both sides of the equation above

d∆T

dt
= −A(∆T )

[K]
[s]

= −[A][K]

Therefore, the units of A must be inverse time 1
s .

22.9(b)

The units tell us that A must be the inverse of some kind of a so-called “time constant” which is
a property of the system that is cooling. As we will see, A−1 is the time required for ∆T to relax
to ∆T

e . Physically you would expect the rate of cooling (or heating) to be related to quantities like
surface area, mass, specific heat etc. You would therefore expect some combination of these kinds
of these properties to have overall units of 1

s .
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22.9(c)

d∆T

dt
= −A(∆T )

d∆T

(∆T )
= −A dt

∫ ∆T (t)

∆T0

d∆T

(∆T )
= −

∫ t

0
A dt using ∆T (t = 0) = ∆T0

ln(∆T )
]∆T (t)

∆T0
= −At

ln(∆T (t))− ln(∆T0) = −At

ln
(

∆T (t)
∆T0

)
= −At

∆T (t)
∆T0

= e−At

∆T (t) = ∆T0e
−At

Note that if you evaluate ∆T (t) at t = A−1 we get

∆T (A−1) = ∆T0e
−1

∆T (A−1) =
∆T0

e

HRK 22.13

Using figure 5 in your text book, you need to read off ∆T = TN − THe at a triple point value of
ptr = 100 cm Hg.

∆T = 0.2K at ptr = 100 cm Hg

∆T = (273.16)
∆p

ptr

0.2 = (273.16)
pN − pHe

100
0.2

273.16
(100) = pN − pHe

.0732 cm Hg = pN − pHe

HRK 22.16

Method 1

If you recall from your discussion of expansion, every line in an isotropic material lengthens by a
factor

∆L

L
= α∆T
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for a given increase in temperature ∆T . Since the diameter d is just a particular line in this isotropic
material we can say

∆d

d
= α∆T

df − di

di
= α∆T (f inal, initial)

df = di + diα∆T

df = di(1 + α∆T )
df = 2.725(1 + (23× 10−6)(138))
df = 2.73365 cm

Note that the hole gets bigger, not smaller as people sometimes think it should. Remember all
the atomic bond lengths are increasing with temperature, so the circumference must increase.

Method 2

∆A = Af −Ai

⇒ Af = Ai + ∆A

Using the formula for change in area per change in temperature

∆A = 2αAi∆T

we see that the final area Af is related to the initial area Ai via

Af = Ai(1 + 2α∆T )

Let us re-write the areas in terms of the radii as this is more useful to us.

πr2
f = πr2

i (1 + 2α∆T )

Canceling π and taking the square root of both sides

rf = ri

√
(1 + 2α∆T )

Finally, multiply both sides by two to gives us the diameter instead of the radius

df = di

√
(1 + 2α∆T )

df = (2.725 cm)
√

1 + 2(23× 10−6)(138)
df = 2.73364 cm

HRK 22.19

22.19(a)

The surface area of the cube is just 6 times the area A of any particular face. We know that the
area will change by

∆A = 2αA∆T

∆ Surface Area = (6)(2αA∆T )
∆ Surface Area = (6)(2)(19× 10−6)(33.22)(55)
∆ Surface Area = 13.82 cm2

This seems like quite a lot – is it? Check the fractional change in surface area

∆ Surface Area
Surface Area

=
13.82

6(33.2)2
= 0.2%

so actually it’s quite small.
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22.19(b)

We know that the volume will change by

∆V = 3αV ∆T

∆V = (3)(19× 10−6)(33.23)(55)
∆V = 114.72 cm3

Check the fractional change in volume

∆V

V
=

114.72
(33.2)3

= 0.31%

Again, quite a small change.

HRK 22.22

The length of the portion of the rod that is being heated, will change like

∆L = αL∆T.

As the length increases the radioactive source moves by the same distance ∆L. We want the
rate of change of displacement of the source to be 96 nm/s i.e.

∆L

second
= 96× 10−9 m/s.

αL∆T

second
= 96× 10−9 m/s.

∆T

second
=

96× 10−9 m/s

αL
∆T

second
=

96× 10−9 m/s

(23× 10−6K−1)(1.8× 10−2m)
∆T

second
= 0.2318 K/s

HRK 22.30

∆A = Af −Ai

∆A = (a + ∆a)(b + ∆b)− ab

∆A = ab + a∆b + b∆a + ∆a∆b− ab

∆A = a∆b + b∆a + ∆a∆b︸ ︷︷ ︸
≈0

∆A = a∆b + b∆a

∆A = a(αb∆T ) + b∆(αa∆T ) using ∆b = αb∆T etc.
∆A = 2(ab)(α∆T )
∆A = 2αA∆T
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HRK 22.31

∆V = Vf − Vi

∆V = (a + ∆a)(b + ∆b)(c + ∆c)− abc

∆V = abc + a∆bc + b∆ac + ∆a∆bc− abc

+ ab∆c + a∆b∆c + b∆a∆c + ∆a∆b∆c− ab∆c

∆V = ab∆c + a∆bc + ∆abc + a∆b∆c + ∆ab∆c + a∆b∆c + ∆a∆b∆c︸ ︷︷ ︸
≈0

∆V = ab∆c + a∆bc + ∆abc

∆V = ab(αc∆T ) + a(αb∆T )c + (αa∆T )bc using ∆b = αb∆T etc.
∆V = 3(abc)(α∆T )
∆V = 3αV ∆T

HRK 22.39

22.39(a)

The cylinder is rotating, and not acted on by any external torques so that the angular momentum
Lz is constant.

22.39(b)

The expansion causes a redistribution of mass in the cylinder, so although Lz is constant, the
moment of inertia I and the radius of the cylinder r change.

Lz = Iiωi = Ifωf (initial, f inal)

⇒ Ii

If
=

ωf

ωi

Recall from your study of rotation of rigid bodies that I = 1
2Mr2 so

Ii ∝ r2
i and If ∝ r2

f

⇒ Ii

If
=

r2
i

r2
f

Since we are that told the radius increased by 0.18%, that means

ri

rf
=

1
1.0018

⇒ Ii

If
=

(
1

1.0018

)2

=
ωf

ωi

Now we know enough to calculate the percentage change in angular velocity ∆ω
ωi

:

ωf

ωi
=

(
1

1.0018

)2

ωf

ωi
= 0.9964

ωf

ωi
= (1− .0036)

which implies a decrease of 0.36%.
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22.39(c)

Recall that rotational kinetic energy is given by

Krot =
1
2
Iω2 =

1
2
Lω

where we use the second form because we know that L does not change during the expansion. To
calculate the percentage change in rotational kinetic energy we use

∆Krot

Krot
i

=
( 1

2L(∆ω)
1
2L(ωi)

)

∆Krot

Krot
i

=
(

∆ω

ωi

)

∆Krot

Krot
i

= −0.0036

Since we already calculated the value for ∆ω
ω in part (b).

HRK 22.41

Method 1

From chapter 15 we had

P = 2π

√
I

Mgd

⇒ P = kI
1
2 d−

1
2

where in the second form we just group all the constants into one constant k.
From the previous question we know that expansion/contraction will affect the moment of

Inertia I. We also know it will affect the distance from center-of-mass to pivot point d. What is
the combined effect of these two processes?

δP =
∂P

∂I
δI +

∂P

∂d
δd

δP =
(

k

2

)
I−

1
2 d−

1
2 δI +

(
−k

2

)
I−

1
2 d−

3
2 δd

⇒ δP

P
=

(
k
2

)
I−

1
2 d−

1
2 δI +

(
−k

2

)
I−

1
2 d−

3
2 δd

kI
1
2 d−

1
2

δP

P
=

1
2

δI

I
− 1

2
δd

d

Now concentrate on the change in moment of inertia

I =
∑

i

mir
2
i

δI = 2
∑

miriδri

δI = 2
∑

mir
2
i
δri

ri
(ri are lines which expand/contract)

δI = 2
∑

mir
2
i (α∆T )

δI = 2I(α∆T )
δI

I
= 2(α∆T )
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δP

P
=

1
2

δI

I
− 1

2
δd

d
δP

P
=

1
2
(2α∆T )− 1

2
δd

d
δP

P
= α∆T − 1

2
α∆T (using

δd

d
= α∆T )

δP

P
=

1
2
α∆T

All that is left is to plug in numbers

∆P

P
=

α∆T

2
∆P

P
=

19× 10−6(−20)
2

∆P

P
= −1.9× 10−4

If P is 1 hour then the clock’s period changes (decreases actually) by 1.9× 10−4 times 1 hour.

∆P = (1.9× 10−4)(3600) = 0.684 s

Method 2

Recall, the period P for a physical pendulum can be written as

P = 2π

√
L

g

where L is a length involving the moment of inertia (I), mass (M) and distance (d) from center-
of-mass to pivot

L =
I

Md
.

∆P =
∂P

∂L
∆L

∆P =
∂

∂L

(
2π

√
L

g

)
∆L

∆P =
(

π

√
1

Lg

)
∆L

∆P

P
=

(
π√
Lg

)
∆L

( √
g

2π
√

L

)

⇒ ∆P

P
=

∆L

2L

Finally, substitute the familiar expression for ∆L
L = α∆T to get

∆P

P
=

α∆T

2

∆P =
1
2
αP∆T

which is the expression you are asked to derive in question 40.
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All that is left is to plug in numbers
∆P

P
=

α∆T

2
∆P

P
=

19× 10−6(−20)
2

∆P

P
= −1.9× 10−4

If P is 1 hour then the clock’s period changes (decreases actually) by 1.9× 10−4 times 1 hour.

∆P = (1.9× 10−4)(3600) = 0.684 s

Multiple Integral Problems

Q. 1

As suggested in the question, we need to find the equation of a line (i.e. (x(y): x as a function
of y) for each of the two lines that intersect to form the apex of the triangle. The line on the left
goes from (x = −a, y = 0) to (x = 0, y = c). The line on the right goes from (x = b, y = 0) to
(x = 0, y = c).

left: x(y) =
a

c
y − a

right: x(y) = −b

c
y + b

This tells us our limits of integration

A =
∫ ∫

dxdy

A =
∫ [∫ right

left
dx

]
dy

A =
∫ [∫ − b

c y+b

a
c y−a

dx

]
dy

A =
∫ [

x
]− b

c y+b
a
c y−a

]
dy

A =
∫ [

−b

c
y + b− a

c
y + a

]
dy

A =
∫ [

−b

c
y + b− a

c
y + a

]
dy

A =
∫ [

(a + b)− (a + b)
c

y

]
dy

The quantity in the square brackets is the length of a horizontal line inside the triangle, at a height
y above the base. Integrate this quantity over y values from the bottom to the top of the triangle
to get the area.

A =
∫ c

0

(
(a + b)− (a + b)

c
y

)
dy

A = (a + b)y − (a + b)
2c

y2
]c

0

A = (a + b)c− (a + b)
2c

c2

A =
(a + b)c

2
which is your normal, half-base-times-height expression.
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Q. 2

We will do this two ways. If the density was uniform, we could find the mass M by multiplying ρ
and V . Since the density varies with x and y, we must integrate ρ(x, y) over the area of the plate.
Since the expression for the density does not depend on t, we do not need to integrate over z – we
merely need to multiply the thickness t by the mass for each infinitesimal slice in the x− y plane.

We don’t need to integrate over the vertical coordinate z, but we can, as ultimately it amounts
to multiplying by t anyway.

Method 1 (Double Integral):

M =
(∫ ∫

ρ(x, y) dxdy

)
× t

M =

(∫ y=b

y=0

∫ x=a

x=0
(ρ0 + ρ1xy) dxdy

)
× t

M =

(∫ y=b

y=0

[∫ x=a

x=0
(ρ0 + ρ1xy) dx

]
dy

)
× t

M =

(∫ y=b

y=0

[(
ρ0x + ρ1

x2y

2

) ]a

0

]
dy

)
× t

M =

(∫ y=b

y=0

[(
ρ0a + ρ1

a2y

2

)]
dy

)
× t

Now that we have integrated over x move on to y

M =

([∫ y=b

y=0

(
ρ0a + ρ1

a2y

2

)
dy

])
× t

M =
([(

ρ0ay + ρ1
a2y2

4

) ]b

0

])
× t

M =
([(

ρ0ab + ρ1
a2b2

4

)])
× t

M =
(

ρ0abt + ρ1
a2b2t

4

)

Method 2 (Triple Integral):

Integrate the density over the volume to get mass

M =
∫ ∫ ∫

ρ(x, y) dxdydz

M =
∫ z=t

z=0

∫ y=b

y=0

∫ x=a

x=0
(ρ0 + ρ1xy) dxdydz

M =
∫ z=t

z=0

∫ y=b

y=0

[∫ x=a

x=0
(ρ0 + ρ1xy) dx

]
dydz

M =
∫ z=t

z=0

∫ y=b

y=0

[(
ρ0x + ρ1

x2y

2

) ]a

0

]
dydz

M =
∫ z=t

z=0

∫ y=b

y=0

[(
ρ0a + ρ1

a2y

2

)]
dydz
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Now that we have integrated over x move on to y

M =
∫ z=t

z=0

[∫ y=b

y=0

(
ρ0a + ρ1

a2y

2

)
dy

]
dz

M =
∫ z=t

z=0

[(
ρ0ay + ρ1

a2y2

4

) ]b

0

]
dz

M =
∫ z=t

z=0

[(
ρ0ab + ρ1

a2b2

4

)]
dz

Finally, integrate over z

M =
∫ z=t

z=0

(
ρ0ab + ρ1

a2b2

4

)
dz

M =
(

ρ0abz + ρ1
a2b2z

4

) ]t

0

M =
(

ρ0abt + ρ1
a2b2t

4

)

Units of ρ1

We can examine the units of this quantity to see what units ρ1 has

[M ] = [ρ0][abt] + [ρ1][
a2b2t

4
]

[kg] = [
kg

m3
][m3] + [ρ1][m5]

⇒ [ρ1] =
kg

m5

These units are equivalent to density over area.

Q. 3

Q. 3 (Cartesian)

In Cartesian co-ordinates the equation of a circle is x2 + y2 = R2. Similar to the triangle in the
first question, we can get the x coordinate of the boundary for a given value of y. It’s a little bit
simpler to just concentrate on one quarter of the circle (say, the positive quadrant x ≥ 0, y ≥ 0)
and realize that the area of the circle is four time the area of this region. With this region in mind,
the left boundary is given by x = 0 and the right boundary is given by x(y) =

√
R2 − y2.

A =
∫ ∫

dxdy

A =
∫ [∫ right

left
dx

]
dy

A =
∫ [∫ x=

√
R2−y2

x=0
dx

]
dy

A =
∫ [

x
]x=
√

R2−y2

x=0

]
dy

A =
∫ [√

R2 − y2
]
dy
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Now integrate form the bottom of the quadrant y = 0 to the top y = R

A =
∫ R

0

√
R2 − y2 dy (use a trig substitution y = R sin θ)

A =
∫ R

0

√
R2(1− sin2 θ) dy (and noting that dy = R cos θdθ)

A =
∫ θ=π/2

θ=0
(R cos θ)R cos θdθ ( changing the limits too)

A = R2

∫ θ=π/2

θ=0
cos2 θdθ

A =
πR2

4
(recall that integrating cos2 θ over a full cycle gives a value of 2π)

Finally, the area of a circle is 4 times the area of a quadrant so

Acircle = πR2

Q. 3 (Polar)

Once we write the correct expression for an area element in polar coordinates, it is simply a matter
of integrating over an angle of 2π and from r = 0 to r = R.

A =
∫

dA

A =
∫ ∫

rdrdφ (Area element in polar coordinates)

A =
∫ 2π

0

[∫ R

0
rdr

]
dφ

A =
∫ 2π

0

[
r2

2
]R

0

]
dφ

A =
∫ 2π

0

R2

2
dφ

A = 2π
R2

2
A = πR2

Q. 4

Q. 4 (a)

If density was constant then we would have M = ρV . Since ρ is a function of r and φ we must
integrate over those coordinates, and finally multiply by the thickness t. As we discussed in Q.2,
we could just as easily integrate over the z coordinate too, instead of multiplying by the thickness
– either way it amounts to the same thing. The nice thing about doing it with a triple integral is
that we can see how we would do the problem if ρ happened to be a function of z too i.e. if we had
ρ(r,φ, z).

HW5 - Page 11 of 13



Phys 22: Homework 5 Solutions

M =
∫

V
ρdV

M =
∫ z=t

z=0

∫ 2π

0

∫ R

0
ρ(r,φ) rdrdφdz

M =
∫ z=t

z=0

∫ 2π

0

[∫ R

0

(
ρ0 + ρ1r

2 sin(φ/2)
)
rdr

]
dφdz

M =
∫ z=t

z=0

∫ 2π

0

[∫ R

0

(
ρ0r + ρ1r

3 sin(φ/2)
)
dr

]
dφdz

M =
∫ z=t

z=0

∫ 2π

0

[(
ρ0

r2

2
+ ρ1

r4

4
sin(φ/2)

) ]R

0

]
dφdz

M =
∫ z=t

z=0

∫ 2π

0

[(
ρ0

R2

2
+ ρ1

R4

4
sin(φ/2)

)]
dφdz

M =
∫ z=t

z=0

[∫ 2π

0

(
ρ0

R2

2
+ ρ1

R4

4
sin(φ/2)

)
dφ

]
dz

M =
∫ z=t

z=0

[(
ρ0

R2

2
φ + ρ1

R4

4
(−2 cos(φ/2))

) ]2π

0

]
dz

M =
∫ z=t

z=0

[(
ρ0

R2

2
2π + ρ1

R4

4
(−2 cos(π))

)
−

(
0 + ρ1

R4

4
(−2 cos(0))

)]
dz

M =
∫ z=t

z=0

[(
ρ0πR2 + ρ1

R4

2

)
−

(
0− ρ1

R4

2

)]
dz

M =
∫ z=t

z=0

[
ρ0πR2 + ρ1R

4
]
dz (remember this last integration is equivalent to multiplying by t)

M = ρ0πR2z + ρ1R
4z

]t

0

M = ρ0πR2t + ρ1R
4t

You can see that the units work out if ρ1 has units of density/area as before.

Q. 4 (b)

I =
∫

dI =
∫

r2 dm =
∫

V
r2ρ dV
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I =
∫ z=t

z=0

∫ 2π

0

∫ R

0
r2ρ(r,φ) rdrdφdz

I =
∫ z=t

z=0

∫ 2π

0

[∫ R

0
r2

(
ρ0 + ρ1r

2 sin(φ/2)
)
rdr

]
dφdz

I =
∫ z=t

z=0

∫ 2π

0

[∫ R

0

(
ρ0r

3 + ρ1r
5 sin(φ/2)

)
dr

]
dφdz

I =
∫ z=t

z=0

∫ 2π

0

[(
ρ0

r4

4
+ ρ1

r6

6
sin(φ/2)

) ]R

0

]
dφdz

I =
∫ z=t

z=0

∫ 2π

0

[(
ρ0

R4

4
+ ρ1

R6

6
sin(φ/2)

)]
dφdz

I =
∫ z=t

z=0

[∫ 2π

0

(
ρ0

R4

4
+ ρ1

R6

6
sin(φ/2)

)
dφ

]
dz

I =
∫ z=t

z=0

[(
ρ0

R4

4
φ + ρ1

R6

6
(−2 cos(φ/2))

) ]2π

0

]
dz

I =
∫ z=t

z=0

[(
ρ0

R4

4
2π + ρ1

R6

6
(−2 cos(π))

)
−

(
0 + ρ1

R6

6
(−2 cos(0))

)]
dz

I =
∫ z=t

z=0

[(
ρ0π

R4

2
+ ρ1

R6

3

)
−

(
0− ρ1

R6

3

)]
dz

I =
∫ z=t

z=0

[
ρ0π

R4

2
+ ρ1

2R6

3

]
dz

I =
1
2
ρ0πR4z +

2
3
ρ1R

6z
]t

0

I =
1
2
ρ0πR4t +

2
3
ρ1R

6t

Q. 4 (c)

Divide I of part (b) by M of part (a) to get R2
G

R2
G =

1
2ρ0πR4t + 2

3ρ1R6t

ρ0πR2t + ρ1R4t

R2
G = R2

( 1
2ρ0πR2t + 2

3ρ1R4t

ρ0πR2t + ρ1R4t

)

HW5 - Page 13 of 13


