
These problems will serve the purpose of letting you carry out some statistical 
physics calculations for yourself.  Hopefully you will realize how powerful 
these methods can be once you get over your natural fear of all those 
integrals! 
 
Problem 1. 
 
One very commonly encountered probability density is the Gaussian or 
normal distribution given by 
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Suppose we are measuring the x-position of a particle and the results scatter 
around according to a Gaussian distribution, with any value of x between 
negative infinity and positive infinity being possible, but those near where the 
distribution is maximum (i.e. near zero) being the most likely.  Remember 
what w(x)  actually means.  The probability of finding the particle to lie 
between position x and position x + dx  is just given by P(x, x + dx) = w(x)dx . 

 
(a.) To become familiar with this function, calculate the value of the 
normalization constant C .  If you look up the integral you will find that 
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(b.)  Show that the average value of x  is 0, i.e x = 0 , as you would expect. 

(c.)  Show that x2 = !
2 .  The fact that x
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useful.  You can get this from the fact that e
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$  by taking the 

derivative of both sides with respect to a, which brings down a factor of x2  
inside the integral, which is a nifty trick! 
 
(d.)  Show that the root-mean-square spread in the measured values of x will 
just equal ! .  Root-mean-square spread means the square root of the average 
of the quantity (x ! x )

2 , so in this case you already know the answer!  This 
number measures how much you should expect results for x to bounce around 
from one measurement to the next. 
 



Problem 2.   
 
Probably the most fundamental and useful result from all of statistical physics 
is that the probability of finding a system in a particular state (call it state # i) 

is proportional to e
!
Ei

kBT , where E
i
 is the energy of the system when it is in 

state i.   That is to say that the probability of finding the system in a particular 

state is given by P(state # i) = C e
!
Ei

kBT .   This theorem applies to any system 
that is in thermal equilibrium at temperature T.  Such a system might be taken 
to be a single molecule among many in a container held at fixed temperature, 
or it might be taken to be the entire container of gas, or some fraction of it. 
 
Of course, to find the actual probability we must impose the requirement that 
the sum of the probabilities for all possible states must be exactly 1.000, 
because the system must be in one of its states.  It is this requirement that 
fixes the value of the constant C. 
 
For quantum systems the idea of a state is naturally well-defined.  For 
example, a one-dimensional harmonic oscillator has states that are defined by 
a single integer, n.  When the oscillator is in state # n, it has energy 
 
E
n
= (n +1 / 2)!! , where !  is the natural angular frequency of the 

oscillator, and  ! is Planck’s constant divided by 2! , which is an exceedingly 
small number (1.05 !10"34  Joule seconds).  The fact that  !  is so small 
explains why we never notice that we can’t give a harmonic oscillator 
whatever energy we like, but that actually we can only change its energy in 
increments of 

 
!! .  The lowest possible energy an oscillator can have is not 

zero as you might have expected but is instead equal to half the energy 
difference between levels.   
 
(a.)  Using the fact that the oscillator must be in one of its states, i.e. the sum 
of all the probabilities must be exactly 1.000, show that the probability of 
finding an oscillator (that is in thermal equilibrium at temperature T) to be in 

state # n is given by 
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kBT .  (Hint:  You should be trying to 

sum a geometric series of the form 1+ x + x2 + ...., where x < 1 to find the 
normalization constant C, which is all I am asking for.) 
 



(b.)  Using the result of part (a.) find the average energy the oscillator has at 

temperature T.   (You should get 
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careful!) You will find it useful to know that ne
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are mathematically inclined, you can prove this by taking the derivative of 
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# , with respect to x, which sum you already figured out how to 

calculate in part (a.) 
 
(c.)  Now let’s try some numbers in our results.  Consider diatomic hydrogen, 
as an oscillator (the two atoms can oscillate back and forth toward and away 
from each other).  The natural angular frequency of this oscillation depends 
on the mass of the two atoms, and the effective spring constant of their 
interaction potential, and is about 8.0 !1014  radians/second for diatomic 
hydrogen.  How hot do you have to get a sample of molecular hydrogen in 
order for only half the molecules to remain in the lowest vibrational  state? 
 
Problem 3. 
 
Now let’s examine the harmonic oscillator using classical physics, which you 
know and (hopefully) love!  The one-dimensional oscillator can now have the 
spring (of spring constant k) extended by an amount x, and the point mass (of 
mass m) can be moving in either direction with velocity 

 
v
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= !x .  The state of 

the oscillator is now not so well-defined as was our quantum oscillator, and 
we have to use a probability density that describes the chance of finding the 
position of the mass to be in the range of positions from x to x + dx while at 
the same time having velocity in the range v
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joint probability density.)  Now the famous theorem gives us this probability 

density as being w(x,v) = C e
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(a.)  Show that the constant C is equal to 
k m

2!k
B
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 s/m2.  

 



(b.)  Find the average energy of the oscillator.  You should get the result you 

expect from equi-partition, i.e. 
k
B
T

2
 for potential energy and the same for 

kinetic energy.  (Hint:  Don’t be discouraged by the integrals, they are just the 
Gaussian ones you used in the first problem, but you will have to be very 
careful with your algebra.) 
 
 
 


