
Physics 220: Problem Set 1 - solution

1. Kardar, Chapter 1, Problem 5.

(a) The critical point is determined by choosing dP/dn = d2P/dn2 = 0. One obtains nc = b/c
and kBTc = b2/(2c). Then plugging back into P (n), one obtains Pc = b3/6c2 and finally
kBTcnc/Pc = 3.

(b) We use

κT = −V −1 ∂V
∂P

∣∣∣∣
T

=

[
n
∂P

∂n

∣∣∣∣
T

]−1
=
[
n(kBT − bn+ cn2/2)

]−1
. (1)

Then clearly for n = nc, one has κT ∼ [nckB(T − Tc)]−1 near Tc.

(c) Here we just set T = Tc, and notice that P − Pc = c
6(n− nc)3.

(d) We know that
∫ n+
n−

dP/n = 0. Writing dP = ∂P
∂n

∣∣∣
T
dn, we just integrate∫ n+

n−
dn
P ′(n)

n
= 0. (2)

Doing the integral, and using n± = nc(1± δ), one obtains the equation

δ =
T

2Tc
ln

(
1 + δ

1− δ

)
≈ T

Tc

(
δ − 1

3
δ3 + · · ·

)
. (3)

Then near the critical point, δ ≈
√

3|t|, with t = (T − Tc)/Tc < 0.

(e) Once again we must solve p′(v) = p′′(v) = 0. This gives vc = 2b and kBTc = a/(4b). The
critical pressure is then pc = p(vc) = a/(4b2e2). The ratio becomes pcvc/(kBTc) = 2/e2 ≈
0.27.

(f) Use κT = −V −1 ∂V
∂P

∣∣∣
T

= − [vp′(v)]−1, and evaluate at v = vc. One obtains, near the critical

point,

κT ≈
2b2e2

at
=

1

2pct
=

be2

2kB(T − Tc)
, (4)

with t = (T − Tc)/Tc.
(g) Finally, Taylor expand p(v) ≈ pc + 1

6p
′′′(vc)(v − vc)3. One finds

p− pc = − a

48b5e2
(v − vc)3 = − pc

12b3
(v − vc)3 = −2pc

3

(
v

vc
− 1

)3

. (5)

2. Coupled orders: Two different order parameters (which we will denote m and n) may occur
in the same system, for instance magnetism and superconductivity, or ferroelectricity and
magnetism. If they are completely distinct, i.e. characterize different broken symmetries, then
the free energy for the system takes the generic form

F =

∫
ddx

[
r1m

2 + r2n
2 +

u1
2
m4 +

u2
2
n4 + vm2n2

]
. (6)

Here we neglect gradients and will just perform a saddle point analysis. Assume u1, u2 > 0 and
v2 < u1u2. The parameters r1 and r2 may take either sign, and can be tuned independently
by varying two external parameters, such as temperature and pressure.
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(a) Draw the phase diagram in the r1 − r2 plane when the order parameters are uncoupled,
v = 0.

Here we simply have m 6= 0 if and only if r1 < 0 and similary n 6= 0 if and only if r2 < 0. So
the diagram looks like this:

Figure 1: Phase diagram for v = 0.

(b) Now consider v 6= 0. Find the optimal free energy for the four possible states (local
minima) of the system: m = n = 0, m 6= 0, n = 0, m = 0, n 6= 0, and m,n 6= 0. What are
the conditions on r1, r2 such that the latter 3 local minima exist?

• The free energy per unit volume when m = n = 0 is f00 = 0.

• When n = 0, we have the usual LG form for m, and so, as in class, fm0 = −r21/(2u1).
This exists if r1 < 0.

• f0n = −r22/(2u2), for r2 < 0.

• To minimize over both m and n simultaneously, it is easiest to just treat m2 ≡ m2 and
n2 ≡ n2 as variables, in which case F becomes a quadratic function, and is easy to
minimize. Differentiating with respect to m2 and n2 gives:

m2 = m2 =
vr2 − r1u2
u1u2 − v2

, n2 = n2 =
vr1 − r2u1
u1u2 − v2

. (7)

Note that these minima exist only if m2, n2 > 0. Plugging this back into the free energy
gives

fmn = −u1r
2
2 + u2r

2
1 − 2vr1r2

2(u1u2 − v2)
. (8)

(c) By comparing these four free energies, find the phase diagram for v > 0.

For v > 0, it is easy to see that when r1 > 0, m must vanish, since all terms in F are
monotonically increasing functions of m. Similarly for r2 > 0, n must vanish. Thus in the
three quadrants where at least one of r1 or r2 is positive, the phase diagram must be unchanged
from the v = 0 case. In the quadrant with r1 < 0 and r2 < 0, we expect a change, and since
v > 0, the order parameters “dislike” one another and the region of the (M,N) phase will
be decreased. To have both non-zero, we need the numerators in Eq. (7) to be positive (the
denominators are always positive by our assumption in the problem set), which then forces
u1/v < r1/r2 < v/u2. In this range, one can check that fmn < fm0, f0n. So:

(d) Repeat for v < 0.

In this case, we expect that the order parameters “like” one another, so that the domain of the
(M,N) phase extends outside the lower left quadrant. Consider the case r1 < 0 but r2 > 0.
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Figure 2: Phase diagram for v > 0.

Then definitely m 6= 0 but n may vanish. Indeed you can see that m2 in Eq. (7) is always
positive under this condition. The solution for n exists when r2 < vr1/u1. Once again when
this condition is satisfied, the (M,N) solution has lower energy. So the diagram looks like:

Figure 3: Phase diagram for v < 0.

3. Kardar, Chapter 3, Problem 7.

(a) We are adding this term to the Landau theory. Transforming to Fourier space, one has∫
ddxddx′

~m(x) · ~m(x′)

|x− x′|d+σ
=

∫
ddq

(2π)d
K(q)~m(q) · ~m(−q), (9)

where

K(q) =

∫
ddx

eiq·x

|x|d+σ
. (10)

We need the small q behavior of K(q). By rotational symmetry, K(q) is a function of q2 only.
We assume σ > 0, so the integral converges in the limit q → 0. If one näıvely Taylor expands
it about q = 0, then the first correction would be O(q2). This diverges for 0 < σ < 2, but
converges if σ > 2. Thus

K(q) ≈
{

K(0) +Aqσ 0 < σ < 2,
K(0) +Aq2 + · · ·+Bqσ σ > 2.

(11)

There is always a quadratic term so the long-range interaction has no special effect for σ > 2.
It is dominant for σ < 2.
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(b) Bascially we repeat the study in class of the effects of Goldstone fluctuations on the order
parameter, but with q2 replaced by qσ everywhere. One finds that the phase fluctuations are
proportional to 〈

(θ(x)− θ(0))2
〉
∼
∫

ddq

(2π)d
1− eiq·x

|q|σ
. (12)

This diverges as x→∞ for d < dlc = σ.

(c) Similarly, we repeat the argument given in class, in which we examined the corrections to the
saddle point specific heat. Replacing q2 by qσ, we find

δc ∝
∫ ∫

ddq

(2π)d
1

(|q|σ + t)2
, (13)

taking for instance t > 0. This diverges as t → 0 for d < duc = 2σ, in which case it
overwhelms the mean field specific heat jump.
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