
Physics 220: Problem Set 3
due May 19, 2011.

1. Kardar, Chapter 6, Problem 3. The solution is in the book and so will not be graded.

2. Kardar, Chapter 6, Problem 6.

(a) We write the Boltzmann weight in the XY model as

e−βH =
∏
i

eK~si·~si+1 =
∏
i

eK cos(θi−θi+1) ≡ 〈θi+1|T̂ |θi〉. (1)

Therefore 〈θ|T̂ |θ′〉 = eK cos(θ−θ′). To diagonalize it we must solve∫ 2π

0

dθ′

2π
eK cos(θ−θ′)fm(θ′) = λmfm(θ). (2)

Writing fm(θ) = eimθ, and changing variables to θ′ → θ − θ′, we indeed see that this is an
eigenstate with

λm =

∫ 2π

0
dθ′eK cos θ′ cosmθ′ = 2πIm(K), (3)

where Im(z) is the modified Bessel function.

(b) Up to normalization, the partition function is then Z = λN0 , where N is the number of spins
and λ0 = 2πI0(K) is the maximum eigenvalue of T̂ . Therefore the free energy per site is

βf = − lnZ/N = − lnλ0 = const− ln I0(K). (4)

At low temperature, K � 1, and we can approximate the integral in Eq. (3) for m = 0 by
the saddle point at θ′ = 0:

λ0 ≈
∫ π

−π
dθeK(1−θ2/2) ≈ eK

∫ ∞
−∞

e−Kθ
2/2 =

√
2π

K
eK . (5)

Writing K = J/(kBT ), we have

f ≈ −J − kBT ln

√
2πkBT

J
. (6)

The second term reflects the presence of small fluctuations of the angles of |θ| ∼
√
kBT/J

at low temperature. These fluctuations can be arbitrarily small because we treat the spins
classically.

(c) To obtain the correlation length, we need the ratio of the two largest eigenvalues of the transfer
matrix,

ξ = − 1

ln(λ1/λ0)
. (7)

At low temperature we apply the saddle point approximation to λ1:

λ1 ≈ eK
∫ ∞
−∞

e−Kθ
2/2+imθ =

√
2π

K
eKe−m

2/(2K), (8)

so we find ξ ∼ 2K = 2J/(kBT ). Note the power-law divergence of the correlation at low
temperature, which is characteristic of 1d systems with continuous symmetry, and very different
from what we saw in the 1d Ising chain.
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3. High temperature expansion for the O(n) model on the honeycomb lattice: Consider
the partition function defined by

Z =
∏
i

∫
[d~si]

∏
〈ij〉

[1 + nt~si · ~sj ] , (9)

where ~si are n-component spins of unit length |~si| = 1 and t > 0. The integrals are defined to
be uniform over the n-dimensional sphere, i.e.

∫
[d~si] =

∫
ds1i · · · dsni δ(~si ·~si− 1). Take the sites

to reside on a honeycomb lattice, which is the two-dimensional lattice composed of hexagons
sharing sides (the links), three of which intersect at each vertex i.

(a) Construct a high temperature expansion for the partition function. What are the diagrams
that appear and what is the weight for each diagram?

As usual, we construct the high temperature expansion by multiplying out the factors in the
product in Eq. (9) to obtain a sum of terms, and then carrying out the integrals over the ~si.
Each term may be representated by coloring those bonds in which the nt~si ·~sj factor appears.
In each such term, a spin may appear zero, one, two, or three times on each site. The cases
where the spin appears one or three times vanish by symmetry. Thus the only terms which
survive are those in which each site is covered by zero or two bonds. This implies that the
colored bonds form closed loops – these are the diagrams. Due to the trivalent nature of the
lattice, they are non-intersecting.

Now we need to determine the weight of each diagram. If the spin appears zero times, the
integral gives unity. If a spin appears twice, the integral is of the form∫

[d~si]s
a
i s
b
i =

δab

n

∫
[d~si]|~si|2 =

δab

n
. (10)

Here and below we absorb a factor of Sn into the measure of integration, which anyway just
appears as a prefactor in the partition function. For each closed loop of k bonds, we have k
sites. This comes with an explicit factor of (nt)k from the expansion of the product, and in
addition we obtain a factor of 1/nk(δabδbcδcd · · · δQa), where a, b, c, · · · , Q are dummy spin
indices for the k sites around the loop. Contracting all the delta functions we are left with
1/nkδaa = n/nk = n1−k for each loop. Thus the weight of each diagram is given by one such
factor for each loop, multiplied by the explicit (nt)k factor for each loop, which gives

W = tNbondsnNloops . (11)

(b) Construct an expansion for the spin-spin correlation function, Cij = 〈~si · ~sj〉. Show that,
in the limit of n → 0, this gives just a sum over configurations of a single self-avoiding
polymer.

Now we insert two extra factors sai and saj in the partition function in Eq. (9) (and divide by
Z). Since we must still have an even number of total factors of spins on each site, we now
get (in the numerator) diagrams which contain one or three colored bonds ending at sites i
and j, and zero or two elsewhere. If there is one bond ending at sites i and j, we have a
connected path ending at i and j. One can show that the diagrams with three bonds ending
at i or j are negligible as n→ 0. To see this, we consider the integral∫

[d~si]s
a
i s
b
is
c
is
d
i =

1

n2 + 2n

(
δabδcd + δacδbd + δadδbc

)
, (12)
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which gives the factor associated with such a site. Note that although it involves three bonds,
it only scales as 1/n for n ∼ 0. As a consequence, diagrams involving this factor are always
proportional to at least one power of n.

Thus we can restrict, in the n→ 0 limit, to diagrams involving one connected path from i to
j, and in principle some additional loops. All paths are still non-intersecting. The weights for
the loops is calculated as above. For the path, we need to recount. If the path contains k
links, it has k + 1 sites including i and j. It therefore comes with a power of (nt)k from the
explicit factor, and a factor of 1/nk+1 from the integrals in Eq. (10), and one factor of n from
the contraction of all the spin indices in the path. Thus the correlation function is given by

Cij =

∑
path + loops t

NbondsnNloops∑
loops t

NbondsnNloops
. (13)

In the limit n→ 0, only diagrams with no loops contribute, and Cij is indeed given by the sum
of configurations of a single self-avoiding polymer (i.e. no intersections) weighted by tNbonds .

4. Kardar, Chapter 7, Problem 11.

(a) We consider the “change of variables” from si to bij . Is it really one to one? If we fix one spin,
say s1, then all other spins can be deduced from the bij by adding them up, e.g. s2 = s1+b21.
More generally, the difference si − sj is determined by a “line sum” from i to j. However,
not all choices of bij are consistent, because we can choose different paths. All paths will be
consistent if the loop around one path vanishes. That is, Sp = bij + bjk + bkl + bli = 0, where
i, j, k, l are the 4 sites on the plaquette, which is also clearly seen by algebra. So, we can
change variables from the full set of si to say s1 and the bij , provided we fix all Sp = 0.

Thus
Z = q

∑
{bij}

∏
p

δ[Sp]modq

∏
〈ij〉

eJ(|bij |). (14)

the factor of q comes from the sum over the spin s1, and can be neglected in the thermodynamic
limit.

(b) Using the representation given in the text, we have

Z = q
∑
{bij}

∑
{np}

∏
p

1

q
e2πinpSp/q

∏
〈ij〉

eJ(|bij |) (15)

= q1−N
∑
{bij}

∑
{np}

∏
〈ij〉

eJ(|bij |)+2πibij(na(ij)−nb(ij))/q, (16)

where we have grouped all the terms into those associated with one ij bond. Here sites a(ij)
and b(ij) are those associated with the two plaquettes bordering the link ij. These share a
link 〈ab〉 of the dual lattice. Now we can carry out the sum over bij independently on each
link to obtain

Z = q1−N
∑
{na}

∏
〈ab〉

λ(na − nb), (17)

where

λ(n) =
q∑
b=1

e
J(q)+ 2πib

q
n
. (18)
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In obtaining this we have relabeled ij links by their dual ab counterparts (which cross them),
and taken into account bij = −bji to obtain the minus sign inside λ.

(c) For the Potts model, we have J(b) = Kδmodq
b,0 . Then

λ(n) =
q∑
b=1

eKδ
modq
b,0

+2πibn/q = eK − 1 + qδmodq
n,0 . (19)

We can also write this as λ(n) = eK̃δ
modq
n,0 +g, to obtain the dual coupling K̃. Equating these

two forms, we find

eK̃ =
eK − 1 + q

eK − 1
. (20)

At the critical point, we expect K̃ = K. Solving this equation we obtain

Kc = ln(1 +
√
q). (21)

(d) For the anisotropic Potts model, we consider couplings Kx and Ky on the horizontal and
vertical bonds. Each horizontal bond on the direct lattice is associated with a vertical one
on the dual lattice (which crosses the direct one), and vice-versa. So we have two relations
similar to Eq. (20):

eK̃x =
eKy − 1 + q

eKy − 1
eK̃y =

eKx − 1 + q

eKx − 1
. (22)

Let us assume that there is one single-valued curve of critical points in the Kx −Ky plane,
i.e. Kx = f(Ky). Duality implies that g(Ky) = f(g(Kx)) is also critical, where g(K) =
ln[(eK + q − 1)/(eK − 1)] is the function appearing in the duality relation. Rewriting this we
have g(Kx) = f−1(g(Ky)), where f−1 is the inverse function to f . Now one can show that
g(g(K)) = K (which is why this is a duality!), so acting on both sides of this relation with
g gives Kx = g(f−1(g(Ky))). By our assumption that the critical curve is single valued, the
right hand side must be equal to f(Ky). Hence we have

f(K) = g(f−1(g(K))). (23)

This is solved by f(K) = f−1(K) = g(K). (I am not sure how to prove this is unique). But
accepting that it is, we see that the critical line is Kx = g(Ky).
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