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axis anisotropy due to crystal field effects from
the distorted CoO6 local environment (Fig. 1B).
Large single crystals can be grown (17), which is
an essential precondition for measurement of the
crucial spin dynamics with neutron scattering.

CoNb2O6 orders magnetically at low temper-
atures below TN1 = 2.95 K, stabilized by weak
interchain couplings. The chains order ferromag-
netically along their length with magnetic mo-
ments pointing along the local Ising direction,
contained in the crystal (ac) plane (18). To tune to
the critical point, we apply an external magnetic
field along the b axis, transverse to the local Ising
axis. Figure 1C shows that the external field sup-
presses the long-range 3D magnetic order favored
by the Ising exchange in a continuous phase tran-
sition at a critical field BC = 5.5 T.

Expected excitations for the model in Eq. 1
consist of (i) pairs of kinks, with the cartoon
representation j↑↑↓↓z:::〉, below BC, and (ii) spin-
flip quasiparticles j→→←→x:::〉 above BC. The
kinks interpolate between the two degenerate
ground states with spontaneous magnetization
along the +z or –z axis, respectively. Neutrons
scatter by creating a pair of kinks (Fig. 2A). The
results in Fig. 2, B and C, show that in the
ordered phase below BC the spectrum is a bow
tie–shaped continuum with strongly dispersive
boundaries and large bandwidth at the zone center
(L = 0), which we attribute to the expected two-
kink states. This continuum increases in bandwidth
and lowers its gap with increasing field, as the
applied transverse field provides matrix elements
for the kinks to hop, directly tuning their kinetic

energy. Above BC a very different spectrum
emerges (Fig. 2E), dominated by a single sharp
mode. This is precisely the signature of a quan-
tum paramagnetic phase. In this phase the
spontaneous ferromagnetic correlations are absent,
and there are no longer two equivalent ground
states that could support kinks. Instead, excita-
tions can be understood in terms of single spin
reversals opposite to the applied field that cost
Zeeman energy in increasing field. The funda-
mental change in the nature of quasiparticles
observed here (compare Fig. 2, C and E) does not
occur in higher-dimensional realizations of the
quantum Ising model. The kinks are a crucial
aspect of the physics in one dimension, and their
spectrum of confinement bound states near the
transition field will be directly related to the low-
energy symmetry of the critical point.

The very strong dimensionality effects in 3D
systems stabilize sharp spin-flip quasiparticles in
both the ordered and paramagnetic phases, as in-
deed observed experimentally in the 3D dipolar-
coupled ferromagnet LiHoF4 (19, 20). In con-
trast, weak additional perturbations in the 1D
Ising model, in particular a small longitudinal
field −hzSiSzi , should lead to a rich structure of
bound states (6, 7, 9). Such a longitudinal field, in
fact, arises naturally in the case of a quasi-1D
magnet: In the 3D magnetically ordered phase at
low temperature, the weak couplings between the
magnetic chains can be replaced in a first approx-
imation by a local, effective longitudinal mean
field (21), which scales with the magnitude of the
ordered moment 〈Sz〉 [hz = SdJd 〈Sz〉 where the
sum extends over all interchain bonds with ex-
change energy Jd]. If the 1D Ising chain is pre-
cisely at its critical point (h = hC), then the bound
states stabilized by the additional longitudinal field
hz morph into the “quantum resonances” that are a
characteristic fingerprint of the emergent symmetries
near the quantum critical point. Nearly two dec-
ades ago, Zamolodchikov (2) proposed precisely

Fig. 1. (A) Phase dia-
gram of the Ising chain
in transverse field (Eq.
1). Spin excitations are
pairs of domain-wall qua-
siparticles (kinks) in the
ordered phase below hC
and spin-flip quasiparti-
cles in the paramagnet-
ic phase above hC. The
dashed line shows the
spin gap. (B) CoNb2O6
contains zigzag ferro-
magnetic Ising chains.
(C) Intensity of the 3D
magnetic Bragg peak
as a function of applied
field observed by neu-
tron diffraction (27).
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Fig. 2. (A) Cartoon of a
neutron spin-flip scatter-
ing that creates a pair of
independently propagat-
ing kinks in a ferromag-
netically ordered chain.
(B to E) Spin excitations
in CoNb2O6 near the crit-
ical field as a function
of wave vector along the
chain (in rlu units of 2p/c)
and energy (18). In the
ordered phase [(B) and
(C)], excitations form a
continuumdue to scatter-
ing by pairs of kinks [as
illustrated in (A)]; in the
paramagnetic phase (E),
a single dominant sharp
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mode occurs, due to scattering by a spin-flip quasiparticle.
Near the critical field (D), the two types of spectra tend to
merge into one another. Intensities in (E) are multiplied
by 1/3 to make them comparable to the other panels.
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continuum broken into many 
small dispersion curves sharply peaked dispersion



Excitations

• From scaling: expected excitation gap 
except at QCP

• what is the nature of the excitations?

h?

E

hc
?

� = |h? � hc
?|

?

FM PM



FM phase

• Domain walls

• Hopping

ΔE=J/2 (h? = 0)

✏dw(k) ⇠ J/2� h? cos k

Sz



PM phase

• J=0: ground state is spins polarized along x

• Excitations are single spin flips

• Hopping

✏ = h?

✏sf (k) ⇠ h? � J
2 cos k



Local vs Non-local

• Domain wall is non-local: a semi-infinite number 
of spins must be flipped to generate it from 
the ground state

• The misaligned spin in the x-polarized state is 
local: only one spin needs to be flipped to 
generate it

• A neutron can excite a single spin flip, but 
not a single domain wall



Scattering Intensity

• Recall

• In the paramagnet: neutron creates one 
spin flip:

E = Ein-Eout

k=kin-kout

ΔS=1

measure 
A(k,E) ⇠

X

n

| n|2�(E � ✏n(k))

ω=ε(k)
neutron

K,Ω 

K-k,Ω -ω

k,ω
spin flip S=1



Scattering Intensity

• Recall

• In the ferromagnet: neutron creates two 
domain walls:

E = Ein-Eout

k=kin-kout

ΔS=1

measure 
A(k,E) ⇠

X

n

| n|2�(E � ✏n(k))

neutron

soliton S=1/2

K,Ω 

K-k,Ω -ω

k,ω
spin flip S=1

k-k’,ω-ω’

k’,ω’

ω=ε(k’)+ε(k-k’)

A(k,!) ⇠
Z

dk0 f(k0)�(! � ✏(k0)� ✏(k � k0))

2-particle continuum
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axis anisotropy due to crystal field effects from
the distorted CoO6 local environment (Fig. 1B).
Large single crystals can be grown (17), which is
an essential precondition for measurement of the
crucial spin dynamics with neutron scattering.

CoNb2O6 orders magnetically at low temper-
atures below TN1 = 2.95 K, stabilized by weak
interchain couplings. The chains order ferromag-
netically along their length with magnetic mo-
ments pointing along the local Ising direction,
contained in the crystal (ac) plane (18). To tune to
the critical point, we apply an external magnetic
field along the b axis, transverse to the local Ising
axis. Figure 1C shows that the external field sup-
presses the long-range 3D magnetic order favored
by the Ising exchange in a continuous phase tran-
sition at a critical field BC = 5.5 T.

Expected excitations for the model in Eq. 1
consist of (i) pairs of kinks, with the cartoon
representation j↑↑↓↓z:::〉, below BC, and (ii) spin-
flip quasiparticles j→→←→x:::〉 above BC. The
kinks interpolate between the two degenerate
ground states with spontaneous magnetization
along the +z or –z axis, respectively. Neutrons
scatter by creating a pair of kinks (Fig. 2A). The
results in Fig. 2, B and C, show that in the
ordered phase below BC the spectrum is a bow
tie–shaped continuum with strongly dispersive
boundaries and large bandwidth at the zone center
(L = 0), which we attribute to the expected two-
kink states. This continuum increases in bandwidth
and lowers its gap with increasing field, as the
applied transverse field provides matrix elements
for the kinks to hop, directly tuning their kinetic

energy. Above BC a very different spectrum
emerges (Fig. 2E), dominated by a single sharp
mode. This is precisely the signature of a quan-
tum paramagnetic phase. In this phase the
spontaneous ferromagnetic correlations are absent,
and there are no longer two equivalent ground
states that could support kinks. Instead, excita-
tions can be understood in terms of single spin
reversals opposite to the applied field that cost
Zeeman energy in increasing field. The funda-
mental change in the nature of quasiparticles
observed here (compare Fig. 2, C and E) does not
occur in higher-dimensional realizations of the
quantum Ising model. The kinks are a crucial
aspect of the physics in one dimension, and their
spectrum of confinement bound states near the
transition field will be directly related to the low-
energy symmetry of the critical point.

The very strong dimensionality effects in 3D
systems stabilize sharp spin-flip quasiparticles in
both the ordered and paramagnetic phases, as in-
deed observed experimentally in the 3D dipolar-
coupled ferromagnet LiHoF4 (19, 20). In con-
trast, weak additional perturbations in the 1D
Ising model, in particular a small longitudinal
field −hzSiSzi , should lead to a rich structure of
bound states (6, 7, 9). Such a longitudinal field, in
fact, arises naturally in the case of a quasi-1D
magnet: In the 3D magnetically ordered phase at
low temperature, the weak couplings between the
magnetic chains can be replaced in a first approx-
imation by a local, effective longitudinal mean
field (21), which scales with the magnitude of the
ordered moment 〈Sz〉 [hz = SdJd 〈Sz〉 where the
sum extends over all interchain bonds with ex-
change energy Jd]. If the 1D Ising chain is pre-
cisely at its critical point (h = hC), then the bound
states stabilized by the additional longitudinal field
hz morph into the “quantum resonances” that are a
characteristic fingerprint of the emergent symmetries
near the quantum critical point. Nearly two dec-
ades ago, Zamolodchikov (2) proposed precisely

Fig. 1. (A) Phase dia-
gram of the Ising chain
in transverse field (Eq.
1). Spin excitations are
pairs of domain-wall qua-
siparticles (kinks) in the
ordered phase below hC
and spin-flip quasiparti-
cles in the paramagnet-
ic phase above hC. The
dashed line shows the
spin gap. (B) CoNb2O6
contains zigzag ferro-
magnetic Ising chains.
(C) Intensity of the 3D
magnetic Bragg peak
as a function of applied
field observed by neu-
tron diffraction (27).
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Fig. 2. (A) Cartoon of a
neutron spin-flip scatter-
ing that creates a pair of
independently propagat-
ing kinks in a ferromag-
netically ordered chain.
(B to E) Spin excitations
in CoNb2O6 near the crit-
ical field as a function
of wave vector along the
chain (in rlu units of 2p/c)
and energy (18). In the
ordered phase [(B) and
(C)], excitations form a
continuumdue to scatter-
ing by pairs of kinks [as
illustrated in (A)]; in the
paramagnetic phase (E),
a single dominant sharp
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mode occurs, due to scattering by a spin-flip quasiparticle.
Near the critical field (D), the two types of spectra tend to
merge into one another. Intensities in (E) are multiplied
by 1/3 to make them comparable to the other panels.
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2 soliton continuum single spin flip
?? why the fine structure ??



Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’
Does very small J’ 

have an effect?



Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n
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Suppose chains are 

ferromagnetic



Fine structure

• This is due to three dimensional coupling 
between the Ising chains
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Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X
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J’

J’

O(J’) energy cost per 
misaligned bond: 

infinite in 
thermodynamic limit!



Fine structure

• This is due to three dimensional coupling 
between the Ising chains

H 0 = �J 0
X

n

X

hiji

Sz
i,nS

z
j,n

J’

J’

pair of domain walls 
separated by x on the 
same chain costs an 

energy ∝ J’ |x|:
linear confinement



Confinement

• Mean field

• Confining potential

• Two particle quantum mechanics

H 0 ! �hk
X

i,n

Sz
i,n

V (x) = �|x| � = hkm

hk / J 0hSz
i,ni = J 0m

He↵ = 2✏dw � 1

2µ

@2

@x2
1

� 1

2µ

@2

@x2
1

+ �|x1 � x2|



Confinement

• Relative coordinate

• Standard problem in WKB theory: Airy 
functions

• zj = 2.33, 4.08, 6.78.. zeros of Airy function

• apart from zj, get this from scaling...

He↵ = 2✏dw � 1

µ

@2

@x2
+ �|x|

En = 2✏dw + zj(�
2/µ)2/3



Experiment

• Airy function levels are very beautifully 
seen!

eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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eight “meson” bound states (the kinks playing the
role of quarks), with energies in specific ratios
given by a representation of the E8 exceptional
Lie group (2). Before discussing the results near
the QPT, we first develop a more sophisticated
model of the magnetism in CoNb2O6 including
confinement effects at zero field, where conven-
tional perturbation theories are found to hold.

The zero-field data in Fig. 3A reveal a gapped
continuum scattering at the ferromagnetic zone
center (L= 0) due to kink pairs, which are allowed
to propagate even in the absence of an external
field. This is caused by sub-leading terms in the
spin Hamiltonian. Upon cooling to the lowest
temperature of 40 mK, deep in the magnetically
ordered phase, the continuum splits into a sequence

of sharp modes (Fig. 3B). At least five modes can
be clearly observed (Fig. 3E), and they exist over a
wide range of wave vectors and have a quadratic
dispersion (open symbols in Fig. 3D). These data
demonstrate the physics of kink confinement under
a linear attractive interaction (6–9). In the ordered
phase, kink propagation upsets the bonds with
the neighboring chains (Fig. 3G) and therefore
requires an energy cost V(x) that grows linearly
with the kink separation x, V(x) = l|x|, where the
“string tension” l is proportional to the ordered
momentmagnitude 〈Sz〉 and the interchain coupling
strength [l = 2hz〈Sz〉/c̃, where hz = SdJd 〈Sz〉 is the
longitudinal mean field of the interchain couplings
and c̃ = c/2 is the lattice spacing along the chain].

The essential physics of confinement is ap-
parent in the limit of small l for two kinks near
the band minimum, where the one-kink dispersion
is quadratic: e(k) = mo + ħ2k2/(2m). In this case,
the Schrödinger’s equation for the relative motion
of two kinks in their center-of-mass frame is

–
ℏ2

m
d2ϕ
dx2

þ ljxjϕ ¼ m – 2moð Þϕ ð2Þ

(6–9, 22), which has only bound-state solutions
with energies (also called masses)

mj ¼ 2moþ zjl2=3
ℏ2

m

! "1=3

j ¼ 1, 2, 3, :::

ð3Þ

The bound states are predicted to occur above
the threshold 2mo for creating two free kinks in a
specific sequence given by the prefactors zn, the
negative zeros of the Airy function Ai(–zn) = 0, zj =
2.33, 4.08, 5.52, 6.78, 7.94, etc. (18). The very
nontrivial sequencing of the spacing between
levels at the zone center agrees well with the
measured energies of all five observed bound
states (Fig. 3H), indicating that the weak
confinement limit captures the essential physics.

A full modeling of the data throughout the
Brillouin zone can be obtained (18) by consid-
ering an extension of Eq. 2 to finite wave vectors
and adding a short-range interaction between kinks,
responsible for stabilizing the observed bound state
near the zone boundary L = –1. Interestingly, this
is a kinetic bound state; that is, it is stabilized by
virtue of the extra kinetic energy gained by two
kinks if they hop together as a result of their short-
range interaction, as opposed to the Zeeman ladder
of confinement bound states (near L = 0), stabi-
lized by the potential energy V(x). The good agree-
ment with the dispersion relations of all the bound
states observed (Fig. 3D), as well as the overall
intensity distribution (compare Fig. 3, B and F),
shows that an effective model of kinks with a con-
finement interaction can quantitatively describe the
complete spin dynamics.

Having established the behavior at zero field,
we now consider the influence of the QPTat high
field. Figure 4C shows that the excitation gap
decreases upon approaching the critical field (as
quantum tunneling lowers the energy of the kink
quasiparticles), then increases again above BC in
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Fig. 3. Zero-field spin excitations in CoNb2O6. (A) In the 1D phase above TN1, a broad continuum occurs near
the zone center (L = 0) due to scattering by pairs of unbound kinks. (B) The continuum splits into a Zeeman
ladder of two-kink bound states deep in the ordered phase. (C and D) Model calculations (18) for hz = 0 and
0.02J to compare with data in (A) and (B), respectively. In (C) the thick dashed line is the kinetic two-kink bound
state stable only outside the two-kink continuum (bounded by the dashed-dotted lines). Open symbols in (C)
and (D) are peak positions from (A) and (B), respectively. (E) Energy scan at the zone center observing five
sharp modes [red and blue circles are data from (B) and (A), respectively; solid line is a fit to Gaussians]. (F)
Dynamical correlations Sxx(k,w) (18) convolved with the instrumental resolution to compare with data in (B).
(G) In the ordered phase, kink separation costs energy as it breaks interchain bonds J', leading to an effective
linear “string tension” that confines kinks into bound states. (H) Observed and calculated bound-state energies.
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Field evolution?

• Number of bound states evolves with h⟂

• Precisely at h⟂=h⟂
c, there is an exact 

solution

• Scaling

h?hc
?FM PM

hk

1 N≫1
2 3

✏n ⇠ cn(hk/v)
8/15

the paramagnetic phase as a result of the increase
in Zeeman energy cost for spin-flip quasiparticles.
In a quasi-1D system such as CoNb2O6 with finite
interchain couplings, a complete gap softening is
only expected (23) at the location of the 3Dmag-
netic long-range order Bragg peaks, which occur at
a finite interchain wave vector q┴ that minimizes
the Fourier transform of the antiferromagnetic inter-
chain couplings; the measurements shown in Fig.
4C were in a scattering plane where no magnetic
Bragg peaks occur, so an incomplete gap softening
would be expected here, as indeed was observed.

For the critical Ising chain, a gapless spectrum
of critical kinks is predicted (Fig. 4F). Adding a
finite longitudinal field hz generates a gap and sta-
bilizes bound states (Fig. 4G). In the scaling limit
sufficiently close to the quantum critical point (i.e.,
hz << J, h = hC), the spectrum is predicted to have
eight particles with energies in specific ratios (given
by a representation of the E8 Lie group) with the
first mass atm1/J =C(hz/J )

8/15,C ≈ 1.59 (2). The
predicted spectrum for such an off-critical Ising

chain to be observed by neutron scattering is illus-
trated in Fig. 4E for the dominant dynamical
correlations Szz(k = 0,w) for which quantitative
calculations are available (7): Two prominent
sharp peaks due to the first two particles m1 and
m2 are expected at low energies below the onset
of the continuum of twom1 particles (24).

The neutron data taken just below the critical
field (Fig. 4, A and B) are indeed consistent with
this highly nontrivial prediction of two prominent
peaks at low energies, which we identify with the
first two particlesm1 andm2 of the off-critical Ising
model. Figure 4D shows how the ratio of the ener-
gies of those peaks varies with increasing field and
approaches closely (near 5 T just below the 3D
critical field of 5.5 T) the golden ratiom2/m1 = (1 +
ffiffiffi

5
p

)/2 = 1.618 predicted for the E8 masses. We
identify the field where the closest agreement with
the E8 mass ratio is observed as the field B1D

C
where the 1D chains would have been critical in
the absence of interchain couplings (25). Indeed,
it is in this regime (21) that the special quantum

critical symmetry theory would be expected to
apply.

Our results show that the exploration of con-
tinuous quantum phase transitions can open up
avenues to experimentally realize otherwise in-
accessible (1, 26) correlated quantum states of
matter with complex symmetries and dynamics.
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Fig. 5. Masses of the three lighest particles in the Ising field theory (1.1). The solid lines are
the plots of the dimensionless ratios Mi/|h|8/15 (i=1, 2, 3) versus the parameter (3.19). The
dashed lines represent the corresponding large-|g| expansions, Eqs. (5.2) and (5.3) (with all
terms explicitly written in these Eqs. included).

becomes negative, until finally at g < g2 (g2 % − 2.09, see Section 6 later)
only one particle remains stable. As g Q − . its mass M1 approaches |m|,3

3 The numerical value of the constant a in Eq. (5.3) comes from our estimate

a % s̄2(247/9 `3 − 23/2+14/3p)

of leading ( ’ h2) perturbative mass correction. The approximation used in this estimate is
similar to that proposed in ref. 37. We will present this calculation elsewhere.

M1=|m| (1+a/(−g)
15
4 +O((−g)−15

2 )); a % 10.75. (5.3)

Although a detailed discussion of the mass spectrum is outside the scope
of this paper (we intend to present it separately), we show in Fig. 5 the g
dependence of the first few meson masses obtained using the TFFSA.

The mesons described above are excitations over the stable vacuum of
the system (which is unique for h ] 0). If m > 0 and h is sufficiently small,
the system exhibits also an unstable ‘‘false vacuum,’’ a global resonance
state whose (complex) energy is an intensive quantity, i.e.,

Emeta=R Fmeta(m, h), (5.4)

where R Q . is the spatial size of the system. The corresponding energy
density Fmeta is a complex-valued quantity, and its imaginary part is inter-
preted as the decay probability density (the probability per unit volume
and unit time) of the false vacuum. According to standard arguments (see
refs. 39–41) the resonance energy density Fmeta(m, h) coincides with the
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