Degeneracy

- Ideally: frustration induces ground state degeneracy, and spins fluctuate amongst those ground states down to low temperature
- e.g. triangular lattice Ising antiferromagnet

I frustrated bond per triangle

Wannier (1950):

 $\Omega = e^{S/k_B} \qquad S \approx 0.34Nk_B$

- Dual representation
 - honeycomb lattice

- Dual representation
 - focus on the frustrated bonds

- Dual representation
 - color "dimers" corresponding to frustrated bonds
 - "hard core" dimer covering

- Dual representation
 - A 2:1 mapping from Ising ground states to dimer coverings

Dimer states

- First exercise: can we understand Wannier's result?
 - count the dimer coverings

Dimer states

- each has 3 configurations
- this choice fully determines the dimer covering
- But we have to make sure the Y⁻¹ sites are singly covered. Make a crude approximation:
 - Prob(dimer) = I Prob(no dimer) = I/3
 - $Prob(good Y^{-1}) = 2/3 * 2/3 * 1/3 * 3 = 4/9$
- Hence

$$\Omega \approx 3^{N} \left(\frac{4}{9}\right)^{N} = e^{N \ln(4/3)} \qquad \begin{array}{l} \mathsf{S} \approx \mathbf{0.29} \ \mathsf{N} \ \mathsf{k}_{\mathsf{B}} \\ \\ \mathsf{Wannier} \ \mathbf{S} \approx \mathbf{0.34} \ \mathsf{N} \ \mathsf{k}_{\mathsf{B}} \end{array}$$

Spin (and water) Ice

- This simple NN AF Ising model is rather idealized
 - You may expect that there are always perturbations that split this degeneracy and change the physics
- BUT...turns out that something similar happens in spin ice, which really seems to be an almost ideally simple material - by accident!

Water ice

 Common "hexagonal" ice: tetrahedrally coordinated network of O atoms - a wurtzite lattice

 Must be two protons in each H₂O molecule - but they are not ordered

Ice entropy

• Giauque 1930's measured the "entropy deficit" by integrating C/T from low T and comparing to high T spectroscopic measurements

160

240

CALCULATION OF ENTROPY OF WATER

$0-10^{\circ}$ K., Debye function $h\nu/k = 192$	0.022
10-273.10°K., graphical	9.081
Fusion 1435.7/273.10	5.257
273.10-298.10°K., graphical	1.580
Vaporization 10499/298.10	35.220
Correction for gas imperfection	0.002
Compression <i>R</i> In 2.3756/760	-6.886

Cal./deg./mole 44.28 ± 0.05

cal./deg./mole.	The difference between		een	the			
spectroscopic a	nd cal	lorimetric	values	is	0.82		
cal./deg./mole.							

Pauling argument

 Pauling made a simple "mean field" estimate of the entropy due to randomness of the protons, which turns out to be quite accurate

$$\Omega = e^{S/k_B} =$$

each bond O constraints

 $S = k_B \ln(3/2) = 0.81 \text{Cal/deg} \cdot \text{mole}$ c.f. $S_{\text{exp}} = 0.82 \pm 0.05 \text{Cal/deg} \cdot \text{mole}$

 $\binom{4}{2} = 6$

allowed configurations each O

Classical realization: spin ice

 Rare earth pyrochlores Ho₂Ti₂O₇, Dy₂Ti₂O₇: spins form *Ising doublets*, behaving like classical vectors of fixed length, oriented along *local* easy axes

