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Fig. 2. - Excited state of the domino model. Excitation (a) has
lower energy than excitation (b). This produces an effective ferro-
magnetic coupling between A chains if JAA &#x3E; 1 JBB 1.

energy 4 1 JBB 1 and their number is v, which leads
to the approximate partition function of the B chain :

Hence

One can notice that the partition function per spin
of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
temperature

as could be expected.
Taking advantage once more of the low tempera-

ture limit, an alternative form of (3 . 5) is :

where

so that the effective Hamiltonian :Ieeff defined by
(3.4) is seen to be a sum of interactions - 2 J’ S.f Sf’

between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
is so simple because ZF/ZAF is expressible as a v

power.
Thus, eliminating B spins amounts to creating an

effective horizontal interaction J’ between spins
located on neighbouring A chains. Another ef’ect,
which is derived in Appendix A, is a renormalization
of the intra-chain interaction JAA which should be
replaced by (JAA + bJ AA) with

Therefore, the system of A spins reduces at low
temperature to a rectangular Ising model with inter-
actions J’and J" = JAp + ÔJAA between nearest

neighbours. Its average magnetization MA per site
is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
magnetic at low temperature T, and mA takes the
limit value 1 when T goes to zero. Since mA is zero
at T = 0 it may be helpful to consider the effect of
the stage at which the thermodynamic limit is carried
out. What we have proved in this section is :

However it can easily be checked that the limits
cannot be interchanged, in contrast with the non-
frustrated case JAA, JBB &#x3E; 0 :

in agreement with section 2. , 

As a concluding remark to this section, one may
note that the average magnetization mB per site of a B
chain can be deduced from (3.6) : in the low tempera-
ture limit each site of the chain undergoes a uniform
applied field 4 JAB and one finds :

Comparison with (3.9) shows that the net magne-
AMA-t-Wp tization per site m =MA + MB may have two types of
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B partition function

• We can place the domain wall in N’/2 
places

• This prefers ferromagnetic ordering
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ZB ≈ ZB0

�
1 +

N �

2
e−β∆E

�
≈ ZB0e

N�
2 e−β∆E

P (++)

P (+−)
≈ e

N�
2 e−2β(|JBB |−JAB)

2βJ � =
1

2
e−2β(|JBB |−JAB)



Order?

• Effective rectangular lattice

• Orders if 

1265

Fig. 2. - Excited state of the domino model. Excitation (a) has
lower energy than excitation (b). This produces an effective ferro-
magnetic coupling between A chains if JAA &#x3E; 1 JBB 1.

energy 4 1 JBB 1 and their number is v, which leads
to the approximate partition function of the B chain :

Hence

One can notice that the partition function per spin
of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
temperature

as could be expected.
Taking advantage once more of the low tempera-

ture limit, an alternative form of (3 . 5) is :

where

so that the effective Hamiltonian :Ieeff defined by
(3.4) is seen to be a sum of interactions - 2 J’ S.f Sf’

between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
is so simple because ZF/ZAF is expressible as a v

power.
Thus, eliminating B spins amounts to creating an

effective horizontal interaction J’ between spins
located on neighbouring A chains. Another ef’ect,
which is derived in Appendix A, is a renormalization
of the intra-chain interaction JAA which should be
replaced by (JAA + bJ AA) with

Therefore, the system of A spins reduces at low
temperature to a rectangular Ising model with inter-
actions J’and J" = JAp + ÔJAA between nearest

neighbours. Its average magnetization MA per site
is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
magnetic at low temperature T, and mA takes the
limit value 1 when T goes to zero. Since mA is zero
at T = 0 it may be helpful to consider the effect of
the stage at which the thermodynamic limit is carried
out. What we have proved in this section is :

However it can easily be checked that the limits
cannot be interchanged, in contrast with the non-
frustrated case JAA, JBB &#x3E; 0 :

in agreement with section 2. , 

As a concluding remark to this section, one may
note that the average magnetization mB per site of a B
chain can be deduced from (3.6) : in the low tempera-
ture limit each site of the chain undergoes a uniform
applied field 4 JAB and one finds :

Comparison with (3.9) shows that the net magne-
AMA-t-Wp tization per site m =MA + MB may have two types of

LE JOURNAL DE PHYSIQUE. 2014 T. 41, N° 11, NOVEMBRE 1980

1265

Fig. 2. - Excited state of the domino model. Excitation (a) has
lower energy than excitation (b). This produces an effective ferro-
magnetic coupling between A chains if JAA &#x3E; 1 JBB 1.

energy 4 1 JBB 1 and their number is v, which leads
to the approximate partition function of the B chain :

Hence

One can notice that the partition function per spin
of the infinite Ising chain with antiferromagnetic
exchange 2 JBB between neighbouring spins, in the

presence of a uniform applied field H, is given by

and that, to first order in exponential terms at low
temperature

as could be expected.
Taking advantage once more of the low tempera-

ture limit, an alternative form of (3 . 5) is :

where

so that the effective Hamiltonian :Ieeff defined by
(3.4) is seen to be a sum of interactions - 2 J’ S.f Sf’

between facing spins of two neighbouring A columns,
which is justified only at low temperature. This result
is so simple because ZF/ZAF is expressible as a v

power.
Thus, eliminating B spins amounts to creating an

effective horizontal interaction J’ between spins
located on neighbouring A chains. Another ef’ect,
which is derived in Appendix A, is a renormalization
of the intra-chain interaction JAA which should be
replaced by (JAA + bJ AA) with

Therefore, the system of A spins reduces at low
temperature to a rectangular Ising model with inter-
actions J’and J" = JAp + ÔJAA between nearest

neighbours. Its average magnetization MA per site
is given by the standard formula [7] :

Formula (3.9) shows that the A system is ferro-
magnetic at low temperature T, and mA takes the
limit value 1 when T goes to zero. Since mA is zero
at T = 0 it may be helpful to consider the effect of
the stage at which the thermodynamic limit is carried
out. What we have proved in this section is :

However it can easily be checked that the limits
cannot be interchanged, in contrast with the non-
frustrated case JAA, JBB &#x3E; 0 :

in agreement with section 2. , 

As a concluding remark to this section, one may
note that the average magnetization mB per site of a B
chain can be deduced from (3.6) : in the low tempera-
ture limit each site of the chain undergoes a uniform
applied field 4 JAB and one finds :

Comparison with (3.9) shows that the net magne-
AMA-t-Wp tization per site m =MA + MB may have two types of

LE JOURNAL DE PHYSIQUE. 2014 T. 41, N° 11, NOVEMBRE 1980

JAA J’

J �ξA ∼ kBT
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low T

but correlation length 
of A chains is growing 

very fast



Order?

• Estimate

• 1d Ising

• Entropy

• Together 

ξA ∼ e2βJAA
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e−2β(|JBB |−JAB)

βJ �ξA ∼ e−2β(|JBB |−JAB |)e2βJAA

� 1 JAA > |JBB | − JAB

Thus the A spins are ferromagnetically ordered!



Continuous Spins

• Actual strictly Ising systems are rather rare 
in magnets, but similar phenomena can 
occur for continuous spins

• Example: frustrated square lattice “XY” AF - 
spins are unit vectors in the plane
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In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.
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Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '
There is a large class of such systems: many spinels;

all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,
Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux
per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.
Not surprisingly, perturbations —thermal Auctuations,

quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.
In this Letter I argue that, in exchange-coupled sys-

tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '
In the rest of the Letter, I will outline the general ar-

guments, and display the specific calculations for a 2D
XYsystem with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "
Model system. —Let us take 4'Y spins on a square lat-

tice (lattice constant =1) with Hamiltonian=
2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest

(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8,—8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2 ~

is independent of p.
This model might be realized in a two-layer square ar-

ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J& is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & ——,
~ J& ~
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Thermal fluctuations

• Consider expansion around an arbitrary 
ground state
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Thermal fluctuations

• Consider expansion around an arbitrary 
ground state

VOLUME 62, NUMBER 17 PHYSICAL REVIEW LETTERS 24 APRIL 1989

Ordering Due to Disorder in a Frustrated Vector Antiferromagnet

Christopher L. Henley
Department of Physics, Cornell University, Ithaca, New York 14853

and Department of Physics, Boston University, Boston, Massachusetts 02215t'
(Received 22 August 1988)

In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.

PACS numbers: 75.40.Cx, 64.60.Cn, 75.25.+z, 75.50.Kj

Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '
There is a large class of such systems: many spinels;

all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,
Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux
per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.
Not surprisingly, perturbations —thermal Auctuations,

quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.
In this Letter I argue that, in exchange-coupled sys-

tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '
In the rest of the Letter, I will outline the general ar-

guments, and display the specific calculations for a 2D
XYsystem with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "
Model system. —Let us take 4'Y spins on a square lat-

tice (lattice constant =1) with Hamiltonian=
2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest

(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8,—8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2 ~

is independent of p.
This model might be realized in a two-layer square ar-

ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J& is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & ——,
~ J& ~

.

2056 1989 The American Physical Society

0

π

ϕ

ϕ+π ϕ+π

ϕ

ϕ+π π

π

π

00

ϕ+π

ϕ+π ϕ+π

H ≈ J1

2

�

xy

cosφ
�
(δθxy − δθx+1,y)

2 − (δθxy − δθx,y+1)
2
�

−J2
2

�

xy

�
(δθxy − δθx+1,y+1)

2 + (δθxy − δθx+1,y−1)
2
�



Thermal fluctuations

• Consider expansion around an arbitrary 
ground state

VOLUME 62, NUMBER 17 PHYSICAL REVIEW LETTERS 24 APRIL 1989

Ordering Due to Disorder in a Frustrated Vector Antiferromagnet

Christopher L. Henley
Department of Physics, Cornell University, Ithaca, New York 14853

and Department of Physics, Boston University, Boston, Massachusetts 02215t'
(Received 22 August 1988)

In many continuous spin systems, competing interactions give nontrivial degeneracies of the classical
ground states. Degeneracy-breaking free-energy terms arise from thermal (or quantum) Iluctuations,
which select for collinear states, and from dilution, which selects for "anticollinear" (yet long-range or-
dered) states. They are explicitly computed for an XY square-lattice antiferromagnet dominated by
second-neighbor antiferromagnetic exchange. The predicted phase diagram agrees qualitatively with
simulations.

PACS numbers: 75.40.Cx, 64.60.Cn, 75.25.+z, 75.50.Kj

Many periodic vector spin systems with competing ex-
change couplings have nonunique (classical) antiferro-
magnetic ground states: These form a continuous mani-
fold of degenerate states including not only the states
trivially related by the global rotational symmetry, but
additional sets of states related by applying different ro-
tations to the various antiferromagnetic sublattices. '
There is a large class of such systems: many spinels;

all face-centered-cubic (fcc) antiferromagnets including
type-I systems' (e.g. , y-Mn), type-II systems (e.g.,
MnO), type-III systems (e.g. , Cd~ Mn Te for larger
x), ' and possibly Cu nuclear spins; triangular antifer-
romagnets (possibly stacked) ' bcc type-II (e.g. ,
Ca3Fe2Ge30~2 garnet) ' dipolar-coupled spins on a
honeycomb lattice;' ' and fully frustrated cubic sys-
tems. ' In addition, they may be realized in certain su-
perconducting arrays at particular rational values of Aux
per plaquette.
When diluted by substituting nonmagnetic impurities,

such systems are supposed to become spin glasses: e.g.,
Cd] —~Mn~ Te, a diluted magnetic semiconductor '

where the Mn ions form a diluted fcc lattice with well
understood antiferromagnetic exchange constants. ' Ex-
perimentally, at p=0.4 this system is spin-glass-like'
while at p =0.7 it shows strong (but still local) antifer-
romagnetic order. ' ' Part of the motivation of this
work is to distinguish the spin glass from other phases
with random-field-like disorder which might be present
near p =1.
Not surprisingly, perturbations —thermal Auctuations,

quantum Auctuations, or dilution —lift these degenera-
cies and select specific states, reducing the continuous
degeneracy to a discrete one. ' ' I will call this "order-
ing due to disorder" ' by analogy to the Ising case.
In this Letter I argue that, in exchange-coupled sys-

tems, thermal and quantum disorder favor collinear
states, wherein spins are aligned parallel or antiparallel
to a single direction (which itself remains free to rotate);
but random dilution favors the least collinear states,
which I will call "anticollinear. " In addition, random di-

lution often makes effective "random exchange fields"
coupling to the discrete (but not the rotational) sym-
metries like a random field. These effects all compete,
yielding two or more antiferromagnetic phases. '
In the rest of the Letter, I will outline the general ar-

guments, and display the specific calculations for a 2D
XYsystem with second-neighbor exchange, ' the simplest
possible model with both rotational symmetry and non-
trivial continuous degeneracy. The rich phase diagram
predicted for this case is consistent with Monte Carlo re-
sults. "
Model system. —Let us take 4'Y spins on a square lat-

tice (lattice constant =1) with Hamiltonian=
2 g;IJ~Icos(8; —81), where JJ =J~ (J2) for nearest

(second-nearest) neighbors. If f Jq [/f J2 [ (2, the sys-
tem in its ground state breaks up into two square
(J2XJ2) sublattices, a and b, each ordered antifer-
romagnetically (Fig. 1). To label the ground states,
choose one reference spin from each sublattice, say at
[0,0] and [0,1] with angles 8, and 8b. Then p—:8,—8b
parametrizes a nontrivial "degeneracy, " since the
ground-state energy Ep= 2N

~
J2 ~

is independent of p.
This model might be realized in a two-layer square ar-

ray of superconducting islands with one quantum of Aux
per cell, in two layers of MnTe in CdTe (fabricable by
molecular-beam epitaxy), or in two adjacent square
Cu02 layers centered on each other (as in some high-T,
superconductors), where J& is a small interlayer ex-

FIG. l. Ground state on square lattice with J2 & ——,
~ J& ~

.
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δθxy =
1√
N

�

k

eik·rδθk

H ≈ J1

2
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k

2 cosφ(cos ky − cos kx)|δθk|2

−J2
2

�

k

[4− 2 cos(kx + ky)− 2 cos(kx − ky)]] |δθk|2



Thermal Fluctuations

• Collecting terms

• Gaussian integral

δH ≈ 1

2

�

k

Ak(φ)|δθk|2

Ak(φ) = 4J2(1− cos kx cos ky)− 2J1 cosφ(cos kx − cos ky)

Z ≈ e−βE0

�
[
�

k

dδθk]e
−δH ∼ e−βE0

�

k

1√
Ak

I covered up to and including this page!!!



Entropy

• Free energy

F = −kBT lnZ ≈ E0 +
kBT

2

�

k

lnAk

≡ E0 − TS0

S0 = −N
kB
2

�
d2k

(2π)2
lnAk

indep. of ϕ
lnAk = ln[4J2(1− cos kx cos ky)] + ln[1− J1 cosφ

2J2

cos kx − cos ky
1− cos kx cos ky

]

more entropy if 
Ak is smaller



Entropy
• Up to a constant

• This is an increasing function of |X|, so minimized 
when ϕ=0 or π: collinear state

• See this, e.g. by expanding in X using            ln
(1-ε) = -ε -ε2+...

S0(φ) = const− NkB
2

�
d2k

(2π)2
ln

�
1−X

cos kx − cos ky
1− cos kx cos ky

�

X =
J1 cosφ

2J2



Collinear states

• Why collinear states?

• Think about each sublattice as an 
antiferromagnet in a fluctuating field due to 
the other sublattice

• An antiferromagnet likes to “flop” normal 
to an applied field

• The fluctuating field from A sublattice on 
the B spins is normal to the A spins

H



Collinear states

• So...the normal to A spins should be normal 
to B spins, i.e. A and B should be collinear!

• It has been suggested (Henley) that this is 
rather general.



Quantum Fluctuations

• At T=0, we can imagine quantum zero point 
motions of the spins plays the role of thermal 
fluctuations

• Simple idea: quantize the normal mode 
frequencies corresponding to the modes δθk:

• This corresponds to the semi-classical “1/S” 
or spin-wave expansion

�ωk =
�

Ak/m



Zero point energy

• Harmonic oscillators

• The zero point energy is again minimized if 
Ak is smaller -

• one can check that this is again ϕ=0,π

E0−pt =
�

k

�ωk

2
∼ 1√

2m

�

k

�
Ak



Seeing ObD
• In models, this is a generic phenomena: small 

fluctuations break “accidental” degeneracies

• But...many other perturbations also remove the 
accidental degeneracies

• e.g. explicit small J’ interaction

• How can you ever really know - in an 
experiment -  if order is due to disorder or 
just some interaction you missed?

• Lucile will tell you Thursday!


