
Physics 223B: Homework 1 - solutions

1. Layers: Suppose n two-dimensional topological insulators are stacked atop one another.
Assuming electrons can tunnel between adjacent layers, and disorder is present, for which
n can you guarantee the existence of a conducting channel at the boundary/edge? Why?

The answer is that a conducting channel – a helical edge – is guaranteed when n is odd. There
are several ways to see this. One is to realize that any finite stack of 2d layers is just another
2d system (one can think of the layers as just orbitals within a unit cell). Consequently one can
just consider band inversions at each 2d TRIM. The total inversions just add, so that, since
by assumption each layer as an odd number of band inversions, if we add up an odd number
of these, we get another odd number, so that the result is still topologically non-trivial. If the
number of layers is even, then the Z2 index will be even, and there is no protection. One can
also think of just the edge channels, and realize that one cannot fully gap the odd number of
channels without breaking time-reversal.

2. 3d Dirac Symmetries: In class, we used time-reversal and inversion symmetry to derive
the general form for the effective Hamiltonian near a point in which odd and even parity
bands exchange. We argued that it took the form of the Dirac Hamiltonian:

H =
3∑

µ=1

vµkµΓµ +mΓ4. (1)

The matrices Γa (a = 1 · · · 5), Γa,b = − i
2 [Γa,Γb] (the brackets indicate commutator, and

a < b = 1 · · · 5), and the identity form a set of 16 linearly independent matrices that span
the full space of all possible 4×4 matrices. Please determine the transformation properties
of all these matrices under time-reversal and inversion symmetries.

Obviously the identity is invariant under both symmetries. Since the Hamiltonian itself is
inversion (P) and time-reversal (T) invariant, we can deduce the transformations from it. Γ4

enters H directly, and hence must be even under both P and T (in fact, we can regard Γ4 as
the parity operator P). Since kµ is odd under both P and T, Γ1,Γ2,Γ3 are odd under both
P and T as well. Now the Γ matrices satisfy Γ1Γ2Γ3Γ4Γ5 = −1 Note: to get this right, you
must use the definitions I gave in class for the Euclidean gamma matrices. This implies Γ5

must be odd under both P and T as well. This also follows from the identification of Γ4 with
parity. A compact form of this given by defining ε4 = 1 and εa = −1 for a 6= 4. Then under P
or T, we have Γa → εaΓa. These relations can also be determined from the explicit matrices
given in class.

Now we can consider the Γa,b = − i
2 [Γa,Γb]. Under parity, we just get P : Γa,b → εaεbΓa,b.

Under time reversal, which is anti-unitary, there is an extra minus sign due to the complex
conjugation: T : Γa,b → −εaεbΓa,b. Note that the opposite sign under T and P immediately
implies that none of the Γa,b are invariant under both P and T.

3. Weyl semimetal: Consider the 3d Dirac Hamiltonian with the coordinates rescaled so
that the velocity is uniform:

H = v
3∑

µ=1

kµΓµ +mΓ4. (2)
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Imagine a perturbation is applied of the form

H ′ = bΓ1,2. (3)

This corresponds to the formation of a certain type of magnetic order with strength pro-
portional to b.

(a) Find the energies of the combined Hamiltonian H + H ′. I trust you can do this, by
hand or by mathematica. I used mathematica. One finds:

Es,s′ = s

√
m2 + b2 + v2|k|2 + 2bs′

√
m2 + v2k2z , (4)

with s, s′ = ±1 giving four solutions.

(b) What is the condition that there are states at zero energy? Where do those states
occur in momentum space (it should correspond to some discrete points ~k = ~Ki).
Obviously if E+,s′ = 0 then also E−,s′ = 0. And this can happen only if s′ = −1
obviously. Then the inside of the square root should vanish. We can rewrite the square
of the energy as

E2
s,− = v2(k2x + k2y) + (

√
m2 + v2k2z − b)2. (5)

For this to vanish, since all terms are positive semi-definite, each must vanish separately.
Thus we need kx = ky = 0 and k2z = (b2 −m2)/v2. This can only occur if b > m. Then
the zeros occur at

~K± = (0, 0,±
√
b2 −m2

v
). (6)

(c) In the case in which there are zero energy states, find the dispersion of the excitations
around the “nodal” points, i.e. find the energy spectrum for the low energy states to
linear order in ~q = ~k − ~Ki. Let kx = qx, ky = qy and kz = K± + qz. We have then

E2
s,− = v2(q2x + q2y) + (

√
b2 + 2v2K±qz − b)2

≈ v2(q2x + q2y) + (b+ v2K±qz/b− b)2

= v2(q2x + q2y) +
v4K2

±
b2

q2z (7)

= v2(q2x + q2y) + v2
b2 −m2

b2
q2z . (8)

So we see that the low energy states disperse as

E± ≈ ±
√
v2(q2x + q2y) + v2zq

2
z , (9)

with vz = v
√
b2 −m2/b. There are two low energy bands which touch at the “Weyl

points” and disperse linearly in all directions away from the touching. The Dirac point
has split into two Weyl points!
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