
Physics 223b: Problem Set 3
due 10am, February 11, 2014 in Prof. Balents’ mailbox at the KITP

1. EuO: Europium oxide is a black, ferromagnetic insulator with the “rock salt” structure,
i.e. with Eu and O occupying the two interpenetrating fcc sublattices of a simple cubic
lattice. One expects the Eu atoms to be in a Eu2+ state.

(a) Show that Hunds rules predict the total angular momentum J = S for the Europium
atom. What is S? Eu2+ loses its two 6s electrons, so it has 7 4f electrons, i.e. the
configuration [Xe]4f7. This exactly half-fills the 4f shell, so we follow Hund’s first rule
and get S=7/2, and L=0 since we have one electron in every orbital.

(b) The Eu spins interact via ferromagnetic exchange interactions J1 = 2.4K between
true nearest neighbors, and J2 = 0.48K between second neighbors (i.e. between Eu
atoms separated by an O atom along one of the principle axes of the conventional
simple cubic lattice). Apply MFT to estimate the Curie point Tc of EuO. Compare to
the true Tc = 69.4K. We must determine the effective field on a site. Since we consider
a ferromagnet, the average spin on all sites is the same, 〈~Si〉 = ~m independent of i. Then
the field on a given site is given by J1 ~m times the number of nearest neighbors plus J2 ~m
times the number of second neighbors, i.e.

~h = (z1J1 + z2J2) ~m, (1)

where z1 = 12 and z2 = 6 are the number of first and second neighbors. The magnitude
of the magnetization m is just given by the usual Brillouin function,

m = SBS(βSh), (2)

so we have the self-consistent equation

h = (z1J1 + z2J2)SBS(βSh). (3)

As in class, the solution with h 6= 0 first appears for this equation at T = Tc. This
corresponds to the condition of equality of slopes of the left and right hand side of
Eq. (3). Using the slope of the Brillouin function, we then get

1 = (z1J1 + z2J2)
S(S + 1)

3kBTc
⇒ TMF

c = (z1J1 + z2J2)
S(S + 1)

3kB
. (4)

Now we take J1 = 2.4K and J2 = 0.48K and we obtain TMF
c = 166K. Unfortunately,

I made a mistake in the convention for the exchange constants, and gave values 2 times
too large in the homework. It should have been J1 = 1.2K and J2 = 0.24K, which would
give TMF

c = 83.2K, which is 20 percent larger than the experimental T expt
c = 69.4K.

An overestimate of this amount is typical for mean field theory.

2. Antiferromagnet in a field: Consider the antiferromagnetic spin Hamiltonian on the
square lattice:

H = J
∑
〈ij〉

~Si · ~Sj − h
∑
i

Szi , (5)

where J > 0 is the exchange coupling between nearest-neighbor spins, and h is an external
magnetic field (measured in energy units) which couples to the spins through the Zeeman
interaction.
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(a) In the classical limit, you may treat ~Si as a vector of length S. Describe (by a few
sketches, no need for extensive quantitative calculations) the classical ground state
spin configuration as a function of 0 < h/J < ∞. Show that for h > hsat = 8JS,
the spins are “saturated”, i.e. fully aligned along the z axis. At zero field, h = 0,

h=0
spin(axis(is(arbitrary

h(small

h

h(larger h(large

the spins are just antiparallel on the two sublattices. When we turn on a weak field, the
best configuration is just to make the spins mostly antiparallel but “canted” a bit in the
direction of the field. So one still has the two sublattice structure. In the figure, I have
drawn the spins on the two sublattices, which simply tilt more and more toward the field
direction with increasing field.

For large enough field, we expect the spins to have fully aligned along the field (z) axis.
To work out how large this field is, let us consider the spins to be canted slightly away, and
see if this raises or lowers the energy. Take Szi = S

√
1− u2, Sxi = ±Su, with opposite

signs for Sxi on the two sublattices. Then the energy per site is

E/N = 2JS2
[
(1− u2)− u2

]
− hS

√
1− u2 ≈ 2JS2 + (

hS

2
− 4JS2)u2, (6)

where we expanded to quadratic order in u. We see that the energy has a minimum at
u = 0 when h > 8JS. Thus they are saturated (fully aligned) in this case.
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(b) Sketch the magnetization (average values of Sz) versus h/J .

h

Sz

S

8JS

Without any further calculation, we know that Sz = 0 for h = 0 and reaches S for
h ≥ 8JS. Nearly any sketch that does this is ok. But let’s go ahead and get the exact
classical form. If we take the energy in Eq. (6) (without the expansion), we can minimize
it with respect to u to get

u = ±

√
1− h

8JS
, (7)

for h < 8JS. Plugging this back into the formula Szi =
√

1− u2, we find simply
Szi = h/(8J) for h < 8JS and Szi = S for h > 8JS. This is just a “ramp”.

(c) Now let us treat the problem quantum mechanically, with each ~Si as a spin operator
of spin S. For large values of h/J , we may again assume the ground state is the fully
aligned one. Calculate the excitation energy of single magnons above this state. From
this calculation, predict the saturation field hsat expected in the quantum model, and
compare to the classical limit.

We consider the single spin-flip state, |i〉 = S−i |FM〉, where |FM〉 = ⊗i|Szi = S〉. As
in class, if we let H act on |i〉, we get

H|i〉 = (EFM − JSz + h)|i〉+ JS
∑
j nn i

|j〉, (8)

where EFM is total energy of the |FM〉 state. Note the change of sign of the exchange
terms relative to what we wrote in class for the ferromagnet (because here the exchange
is antiferromagnetic) and the extract −h term in the energy due to the field. From this,
taking a plane-wave state, we get the excitation energy ε(k) = E − EFM ,

ε(k) = h− JSz + 2JS
d∑

α=1

cos kα. (9)
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For the square lattice d = 2, z = 4, and the energy is minimized when kα = π, so

ε(π, π) = h− 4JS − 4JS = h− 8JS. (10)

This means the excitation energy is positive for h > hsat = 8JS, exactly the same as in
the classical limit.
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