
Physics 223b: Problem Set 5
due March 12, 2014 in class, or by email the same day.

1. Field and energy of vortices: Let us consider the Ginzburg-Landau free energy, in the
limit in which we assume ψ(x) =

√
n∗se

iθ with constant n∗s = ns/2:

F =

∫
d3x

{
h̄2ns
8m
|~∇θ − 2e

h̄c
~A|2 +

|~∇× ~A|2

8π

}
. (1)

(a) Requiring that the free energy is stationary with respect to variations of ~A, derive
the partial differential equation for the vector potential ~A:

~∇× ~∇× ~A =
1

λ2

(
ϕ0

2π
~∇θ − ~A

)
, (2)

where ϕ0 = hc/2e is the superconducting flux quantum.

By factoring out the 2e/h̄c factor, we can rewrite the free energy as

F =

∫
d3x

{
1

8πλ2
|ϕ0

2π
~∇θ − ~A|2 +

|~∇× ~A|2

8π

}
. (3)

Now let ~A→ ~A+ δ ~A, and isolate the terms linear in δ ~A:

δF =

∫
d3x

{
− 1

4πλ2

(
ϕ0

2π
~∇θ − ~A

)
· ~δA+

1

4π

(
~∇× ~∇× ~A

)
· δ ~A

}
. (4)

Requiring that this vanishes for arbitrary δ ~A gives the desired result.

(b) Now use this result to simplify the free energy to

F =

∫
d3x

{
1

8π

(
| ~B|2 + λ2|~∇× ~B|2

)}
. (5)

Introduce first ~B = ~∇× ~A. Then Eq. (2) can be rewritten as

ϕ0

2π
~∇θ − ~A = λ2~∇× ~B. (6)

Substituting this into the first term in Eq. (3) and also using ~∇× ~A = ~B in the second
term gives the result directly. Incidentally, no integration by parts is needed. My mistake:
that was the previous part!

(c) Now taking the curl of Eq. (2) above, show that

~B + λ2~∇× ~∇× ~B = ~f(x), (7)

where näıvely ~f(x) = 0. It can, however, contain delta-function contributions due to
the presence of vortices, at the center of which |ψ| → 0 and our initial assumptions
broke down.
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Directly taking the curl of Eq. (2), multiplying by λ2 and using ~∇× ~A = ~B, we get

~B + λ2~∇× ~∇× ~B =
ϕ0

2π
~∇× ~∇θ. (8)

The right hand side is ~f(x) which looks like it should vanish, but does not if θ is not
single-valued.

(d) Show that for a single vortex line running alone the line x = y = 0, if we take
~f(x) = f0ẑδ(x)δ(y), then f0 = hc/2e = ϕ0 is required.

Well we can just see that ~f = 0 everywhere except x = y = 0 where it is singular, and may
contain some delta-function part. To get it, we integral

∫
ẑ · ~fdx dy in a neighborhood

containing x = y = 0. By Stoke’s theorem, this gives ϕ0

2π

∮
~∇θ · d~̀ around the origin

which is just equal to ϕ0, independent of the contour. From this we deduce the result
quoted.

(e) From the above, find the magnetic field distribution around the vortex, i.e. calculate
B(r) = | ~B(x)|, where r =

√
x2 + y2 is the distance from the vortex line. Show that

B(r) =
ϕ0

2πλ2
K0(r/λ), (9)

where K0(x) is the modified Bessel function. Sketch this field distribution. What
happens at r = 0?

So using ~∇ · ~B = 0 and Bx = By = 0 and Bz = B by symmetry, Eq. (7) becomes

B − λ2∇2B = ϕ0δ(x)δ(y). (10)

We can solve this by Fourier transformation. We immediately obtain

B(x, y, z) =

∫
dkxdky
(2π)2

ϕ0

1 + λ2(k2
x + k2

y)
ei(kxx+kyy). (11)

The solution obviously has B(x, y, z) = B(r =
√
x2 + y2) with radial symmetry, and

simplifying by choosing x = r, y = 0 and letting kµ → kµ/λ, we have

B(r) =
ϕ0

4π2λ2

∫
dkxdky

1

1 + k2
x + k2

y

eikxr/λ, (12)

and doing the ky integral gives

B(r) =
ϕ0

4πλ2

∫ ∞
−∞

dkx
1√

1 + k2
x

eikxr/λ. (13)

The integral is now just twice (because it includes the positive and negative kx axis) a
standard representation for the modified Bessel function. This proves the result. Note
that the solution diverges at r = 0, but this just means that the assumption |ψ| is constant
breaks down.

(f) Now for two vortices with separation d, take ~f(x) = ϕ0ẑ (δ(x)δ(y) + δ(x− d)δ(y)),
and show that the free energy takes the form F = F0+U(d)L, where F0 is independent
of d, and L is the size of the system along the z axis. Show that

U(d) =
ϕ2

0

8π2λ2
K0(d/λ). (14)
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Since the equation for ~B is linear, we find the solution by simply superimposing the two
solutions for the individual delta-function sources. Hence we immediately obtain that

B(x, y, z) = B1 +B2 ≡
ϕ0

2πλ2
[K0(r1/λ) +K0(r2/λ)] , (15)

where r1 =
√
x2 + y2 and r2 =

√
(x− d)2 + y2. Now to evaluate the energy it is

convenient to write the free energy in Eq. (5) by integration by parts as

F =
1

8π

∫
d3x

{(
~B + λ2~∇× ~∇× ~B

)
· ~B
}
. (16)

Now write B = B1 +B2 and keep only the cross terms, since the terms involving either
B1 or B2 alone do not depend upon the separation of the vortices. Then we see that

F = const +
1

8π

∫
d3x

{(
~B1 + λ2~∇× ~∇× ~B1

)
· ~B2 + (1↔ 2)

}
. (17)

Now since B1 and B2 are independently solutions of Eq. (7), we can replace this by

F = const +
1

8π

∫
d3x {ϕ0δ(x)δ(y)B2(x, y) + ϕ0δ(x− d)δ(y)B1(x, y)} . (18)

The two terms give equal contributions, and one obtains the desired result. Note that
there was a mistake in the answer given in the homework as stated. The corrected one
in this solution is right.

2. d-wave superconductors: The high-Tc cuprates are d-wave superconductors, with a
gap function ∆k ≈ ∆(cos(kxa)− cos(kya)) (a is the lattice spacing of the square lattice).
The vanishing of ∆k for |kx| = |ky| leads to various anomalies in their low-temperature
behavior. In this problem, model the electronic spectrum as a simple quadratic band
εk = k2/2m, with µ = εF = k2

F /2m and kF /m ≡ vF . Treat the problem as completely
two dimensional. You may treat ∆ as some experimentally-determined quantity: do not
try to work out any self-consistent BCS theory.

(a) Sketch the quasiparticle density of states g(ω), for energies 0 < ω < 4∆ � εF (You
can get a feeling for the shape of the DOS drawing contours of constant energy in
~k-space. But I suppose many of you will find a way to do it with Mathematica!).
Find an analytical form for its behavior for ω � ∆.

So in class we showed that the quasiparticle energies take the form Ek =
√

(εk − µ)2 + |∆k|2.
This means Ek can be small only when both εk − µ and |∆k| are small. This hap-
pens only in the vicinity of the nodal points where kx = ±ky crosses the Fermi sur-
face. Let’s look near one of these crossings, letting kx = 1/sqrt2(kF + k1 + k2) and
ky = 1/sqrt2(kF + k1 − k2), with k1 and k2 small. If we look at the states near these
points, we can approximate εk−µ ≈ vFk1) and ∆k ≈ −

√
2|∆| sin(kFa/

√
2)k2a ≡ v∆k2,

with v∆ ≡ −
√

2|∆| sin(kFa/
√

2)a. Hence near this node, we have

Ek ≈
√
v2
Fk

2
1 + v2

∆k
2
2. (19)

Thus equal energy contours are ellipses centered around the node. The area inside such
an ellipse is given by π times the product of its two radii, i.e. πE2/(vF v∆). The total
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number of states with less than energy E is proportional to this area, and so the density
of states is proportional to the derivative of this cumulative density of states, hence at low
energy, g(ω) ∼ ω/(vF v∆) (you do not need to get the prefactor). Thus the low energy
density of states vanishes linearly on approaching zero energy.

At high energy, E � |∆|, it must become independent of the gap, since the energy itself
is independent of ∆ in this limit. There the density of states is constants, as it is for free
electrons in two dimensions.

E

g(E)

How do these connect? The total integral of the density of states must be unchanged by
superconductivity, since this is just the total volume of all k states. So the suppression
at small E must be compensated by an enhancement somewhere, which must occur at
an energy comparable to ∆. So putting this all together, we would expect something like
what is shown in the sketch. Actually the peak diverges, but you need a more detailed
analysis to see this.

(b) From this, find the leading term in the low-temperature behavior of the electronic
specific heat. Contrast it to the specific heat in a metal, a semiconductor, and an
s-wave superconductor.

Since the DOS is linear in energy, we can see that the internal energy 〈E〉 ∼
∫
dEEg(E)f(E) ∼

T 3 (f(E) is the Fermi function), and so C ∼ d〈E〉/dT ∼ T 2. In a metal, we have instead
C ∼ γT due to the constant density of states, while in a semiconductor and an s-wave
superconductor, the electronic specific heat C ∼ e−∆/kBT is exponentially suppressed
(because in both cases there is a quasiparticle gap).
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