
• Magnetism

• Always an interaction effect (otherwise all states doubly occupied or 
empty)

• Simplest to understand in very strongly interacting systems where 
electrons are localized - almost always this has at least some truth to it in 
practice

• Plan:

• Magnetism: atomic limit

• Exchange

• Ordering

• Collective modes - spin waves

• Frustrated magnets etc.

• Itinerant magnetism: Kondo, heavy fermions
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• We start with a picture of atomic magnetism: why 
should local moments form in “isolated” atoms

• By isolated we are thinking along the lines of the  
Mott picture/Hubbard model where Coulomb 
repulsion is large enough that hopping of electrons 
on/off the ion is a perturbation

• Our problem consists of a Hamiltonian with the 
Coulomb potential from the nucleus and electron 
kinetic energy, plus several perturbations: e-e 
interactions, potentials from other charges outside 
the atom, SOC, and hopping away from the atom

• We want to take that last effect as smaller than the 
e-e one.  

H = Hkin + V +H 0
C +H 0

SOC +H 0
hop
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• Hydrogen atom

• Level degeneracy: magnetism w/o kinetic 
energy cost

En = �Ry
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H = Hkin + V0 + Vcf +H 0
C +H 0

SOC +H 0
hop

V0 = �k/r
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• Due to screening by inner electrons, potential is not 
1/r, so degeneracy of different l states is lifted, and 
E2s<E2p,  E3s<E3p<E3d etc
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• 2L+1 degeneracy is required by spherical 
symmetry
• Generally d and f electrons are most 
isolated - more localized - from other atoms 
because they are “protected” inside higher 
shell s states
• Most magnetism involves transition metals 
or rare earths

H = Hkin + V0 + Vcf +H 0
C +H 0

SOC +H 0
hop

V0 = v(r)

4



• A partially filled shell has a lot of possible 
states

• Without considering interactions between 
electrons in these shells, all are degenerate

• Note: when # of electrons is odd, there is 
always at least a 2-fold Kramer’s 
degeneracy

etc.

S=5/2
S=3/2
S=1/2
S=1/2
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• Claim: there is a strong tendency for states with local 
moments to be selected

• General problem:

• Some set of orbital states a=1..p which are low energy

• Expand Coulomb in this basis c↵(r) =
X
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• Hartree-Fock (like) approximation:

• assume states are products of orbitals

• Then to first order in Coulomb, 
Hamiltonian must preserve set (ab...) 
of occupied orbitals
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c=b, d=a: “Hartree”
c=a, d=b: “Fock”
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• Some manipulations

• A useful identity c†a↵ca� =
na
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just classical electro-
static energy Fock = “exchange”
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“Hubbard U” : 
favors single 
occupancy

Favors aligning spins on different orbitals
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