For ions with spherical symmetry, have
“Hund’s rules”

In this case, total S, L commute with H
(neglecting SOC).

Hund’s rule 1: Maximize S

Hund'’s rule 2: Maximize L (after applying

1)
Hund’s rule 3: apply SOC



Hund’s rules

® Example: 2 electrons
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25+2*5%4/2=45 states



Hund’s rules

® Example: 2 electrons

® Rule |: maximize spin

® Forces S=|

® Reason: Pauli exclusion:
electrons are kept
further apart, which
minimizes |/r Coulomb

energy 3*5%4/2=30 states

n.b.$>=1,5=0 OK




Hund’s rules

® Example:2 electrons

® Rule |: maximize spin

o S=|

® Rule 2: maximize L

o [ =3

~ nb.L*=2,L=3 OK

n.b.$>=1,5=0 OK

® This is also to minimize
Coulomb repulsion but it
is less obvious! (2S+1)(2L+1)

One picture - but | am not sure it is the right one! =3*7=2| states
- is that electrons orbiting in the same direction
are less likely to meet



Hund 3

® Hund’s third rule includes the effect of spin-orbit
coupling

® AL - Simplies states with different ] =L + S
have different energy

® quantum mechanics: |L-S| <] < L+S
® Hund 3:
® For a less than half-filled shell, |]= |L-§|

® For a more than half-filled shell, ] = L+S

This is basically just SOC applied to holes



Hund’s rules

® Example: 2 electrons

® Rule |: maximize spin

o S5=|

S, n.b.L7=2,1=3 OK

® Rule 2: maximize L
o | =3
® Rule 3:] = [L-S|=2

n.b.$>=1,5=0 OK

2J+1=5 states

45 — 30 @ 21 — 5 states



Moments in solids

® Anionin a solid is subjected to crystal fields, which
lower the symmetry from spherical, and hence split the
atomic multiplets

® Typically this reduces the orbital angular momentum
which is possible

® an extreme case (low symmetry): effectively L=0
because no orbital degeneracy

® Those crystal fields may be comparable to the atomic
Coulomb energies, and hence compete with Hund’s
rules |+2. They are often larger than Hund 3.



Local moments

® How do we know local moments exist?
® Curie Susceptibility
® Electron spin resonance

® Specific heat (entropy)



Curie Susceptibility

® Magnetic moment in general is proportional

to spin
P spin S quantum spin

—
— quBS/ﬁ 52=S(S+|)h2

g-facto r/ \

Bohr magneton

(could be a tensor) eh o4
g = 2 for pure spin KB = . = 9.3 x107%J/T
oment ¢ = 0.671K/T

® Magnetic dipole interaction

H=—-—un-H



Compare with metals

Curie Law Pauli paramagnetism

Y = V(QM4B)2D(€F)

basically kT — &k

Much larger susceptibility than delocalized
electrons



Magnetic cooling

® The large susceptibility of free spins at low
temperature means they are easily aligned
by small magnetic fields

® This alignment corresponds to a drastic
reduction of entropy. One can use this
control over entropy to remove entropy
from another system, thereby cooling it.



Magnetic Cooling

T T;, Hi

—

lower H




Magnetic Cooling

® A— B:isothermal step -
raise field, lower entropy

® B— C:adiabatic step -
lower field, same
entropy: lower
temperature

® For paramagnetic spins, S Ty T T
= S(H/T)

® Hence H|/T=Hy/T;



Exchange

® How do spins interact?

® Magnetostatic dipole-dipole coupling

Hgq= _4l7j_23 3(m - r)(m’ -r)—m-m’]
® This is rather weak, = |K for even large
spins

® FElectrostatic interaction usually dominates,
just as it does inside atoms

® |ndirectly leads to spin coupling through
Pauli principle



e

,L{;a; s, o i ins l TP § trg éﬁ%y&m%

Mok b eloaed. (37 (o o 00

T s de & oL

s _lidy © Mok A e (St

5 Clo dnsl, Sy

w@i Hoodi 04

dee L G

i‘i e

o i L\g .

! }f’* e Wichee -~ 2*}%%.,

77




“'iﬁt}

¢
H
] *ér%{fu

0

PH'P =0

-4

i%@iﬁ? 4 e

I's
L
7

Co

s

-5

e
e

e,




PIALCY S Ao & ‘¥ JOC Céin. L&

e o s el TI» DT Al
| y ( \j\;\' M @\) V%MH& &ga,z,».va'\



