Physics of the Diffuse Universe

Professor Crystal L. Martin UC Santa Barbara

Winter 2014

ISM/IGM Physics -- C. L. Martin

"I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars."

-- Sir Arthur Eddington (Stars & Atoms, 1928)

Outline for Week 2 & 3

- T & ρ diagnostics (cont'd)
- Spectroscopic Notation
 - Selection rules
 - Spacing of molecular lines
- Radiative Transfer
 - Definitions (Rybicki & Lightman)
 - Interstellar/Intergalactic Absorption (Spitzer)
 - Radio Astronomy (DS ch 4; Spitzer; Dyson & Williams)
- Main concepts/tools
 - Statistical Equilibrium
 - Equation of Radiative Transfer

Atomic Spectra

- Governed by rules of quantum mechanics
 - Wave function of individual electrons (in a spherically symmetric potential) $\Psi(r,\theta,\phi) = R_{nl}(r) \Theta_{lm}(\theta) \Phi_{m}(\phi)$
 - Principal n = 1, 2, 3, ...
 - Electron spin s = 1/2
 - Angular momentum l = 0, 1, 2, ..., (n-1)
 - Magnetic m = -l, -(l-1), ..., 0, ..., (l-1), l

Spectroscopic Notation

- Notation for ions
- Electron configuration
- Spectroscopic term
- Pauli exclusion principle
 - One active electron (e.g., Mg II, Na I)
 - Two electrons with LS coupling (e.g., Mg I)
 - Heavier ions can have JJ coupling
 - Real coupling usually intermediate to these limiting cases

Temperature diagnostics via p^2 and p^4 ions

- Three (five) Level Atom describes many of the strong lines in spectra of ionized nebulae (and late-type galaxies) used to infer physical conditions.
- The states have different spin-orbit interactions but the same principle quantum number, so these are forbidden lines
- $E_{32} \sim E_{21}$ and Low Density [BB]
- $F_{32}/F_{21} = E_{32}/E_{21} * A_{32}/(A_{32} + A_{31}) * \Omega_{12}/\Omega_{12} * exp(-E_{32}/kT)$

Density diagnostics via p³ ions

- E₃₂ << E₂₁
- LDL -- all collisional excitations result in radiative decays
- [BB] $F_{31}/F_{21} = \Omega_{13}/\Omega_{12}$
- See sum rule for collision strengths
- HDL -- Radiative decay rate matters because collision deexcitation may occur
- [BB] $F_{31}/F_{21} = A_{13}/A_{12} * g_3/g$
- At what densities is the line ratio a good indicator of the electron density? [BB]

Infrared Line Diagnostics

- Transitions between fine-structure levels of p² and p⁴ ions are dominant coolants of gas at 100 – 3000 K. See DS Table 3.3.
- E.g., [CII] 158 um; [OIII] 88.36, 51.81 um
- Atmospheric water vapor blocks 25-300 um
- Infrared Space Observatory (ISO)
- Spitzer IRS
- Herschel
- Sofia
- ALMA (these lines for high redshift galaxies)

Terms for ns and np Subshells

E config.	Terms	Examples
ns ¹	² S _{1/2}	H I, He II, C IV, N V, O VI
ns ²	¹ S ₀	He I, C III, N IV, O V
np ¹	² P _{1/2, 3/2}	C II, N III, O IV
np²	³ P _{0,1,2} ¹ D ₂ ¹ S ₀	C I, N II, O III, Ne V, S III
np³	⁴ S _{3/2} ² D _{3/2/,5/2} ² P _{1/2,3/2}	N I, O II, Ne IV, S II, Ar IV
np ⁴	³ P _{2,1,0} ¹ D ₂ ¹ S ₀	O I, Ne III, Mg V, Ar III
np⁵	² P _{3/2,1/2}	Ne II, Na III, Mg IV, Ar IV
np ⁶	¹ S ₀	Ne I, Na II, Mg III, Ar III

Addendum (T & n diagnostics)

- HII regions: T and density diagnostics
 - -Real ISM is clumpy; measure $n_{e,c}$
 - Emission measure ~ $\langle n_e^2 \rangle$ * length
 - Define a volume filling factor for the clumps such that $\langle n_e^2 \rangle \sim f^* n_{e,c}^2$
- f ~ 0.01 to 0.1 typically

Resonance Lines

- Electric dipole transition selection rules
 - Only 1 electron involved in the transition
 - Initial and final states have different parity
 - Emitted photon carries 1 unit of angular momentum, so $\Delta l = +/-1$
 - Electron spin does not change
 - Change in the total angular momentum of the active electron is $\Delta J = +/-1$, 0 (with J=0 to J=0 forbidden)
- Statistical weight of any level is g = 2J + 1

Selection Rules

		Electric dipole (E1)	Magnetic dipole (M1)	Electric quadrupole (E2)	Maq quadru
Rigorous rules	(1)	$\begin{array}{c} \Delta J=0,\pm 1\\ (J=0\not\!$		$\Delta J = 0, \pm 1, \exists$ $(J = 0 \not\leftrightarrow 0, 1; \ \frac{1}{2}.$	
	(2)	$\Delta M_J = 0, \pm 1$		$\Delta M_J = 0, \pm 1,$	
	(3)	$\pi_{\rm f} = -\pi_{\rm i}$	π	$_{\rm f} = \pi_{\rm i}$	$=\pi_{i}$
1 S coupling	(4)	One electron jump $\Delta l = \pm 1$	No electron jump $\Delta I = 0,$ $\Delta n = 0$	None or one electron jump $\Delta I = 0, \pm 2$	One ele ∆/
Lo couping	(5)	$\begin{aligned} & \text{If } \Delta S = 0 \\ \Delta L = 0, \pm 1 \\ (L = 0 \not\leftrightarrow 0) \end{aligned}$	$\begin{array}{c} \mathrm{lf}\Delta S=0\\ \Delta L=0 \end{array}$	If $\Delta S = 0$ $\Delta L = 0, \pm 1, \pm$	
Intermediate coupling	(6)	If $\Delta S = \pm 1$ $\Delta L = 0, \pm 1, \pm 2$		If $\Delta S = \pm 1$ $\Delta L = 0, \pm 1,$ $\pm 2, \pm 3$ $(L = 0 \not\leftrightarrow 0)$	$ \begin{array}{c} \operatorname{If} \Delta \\ \Delta L = \\ (L = \end{array} $

Intercombination or Semiforbidden Lines

- Departure from pure LS coupling means that electric quadrupole transitions between states of different multiplicity can occur
- But at much lower probability, A ~ 10^2 to 10^3 s⁻¹
- At typical ISM density and temperature, these transitions are still more probable than a collision with another atom.
- Example: CIII]

Forbidden Lines

- Magnetic dipole transitions
- A of 1 to 10⁻⁴ s⁻¹
- How long do electons involved in forbidden transitions rest in their excited states?
- Clearly the densities must be very low indeed for the atom to avoid a collision on this timescale.
- The emitted photon is very unlikely to be reabsorbed by another ion. Why?
- Forbidden line photons usually escape from a nebula, so they are very important coolants.
- Examples [OIII] 4959, 5007; [OII] 3726,29,

- What makes ${}^{1}D_{2} \rightarrow {}^{3}P_{2}$ forbidden?

Pure Recombination Lines

- Recombination of an ion and electron forms an ion an excited state.
- The electron cascades through many possible energy levels back down to the ground state
- Why is this more complicated than the twolevel resonance line transitions?
- Calculation of the cascade process requires precision; See [DS] 2.1.2 for the QM approach.
- Hydrogen recombination spectrum [BB]

Winter 2014

Molecular Spectra

- Rotating Molecules
- Vibrating Molecules
- Ro-Vibrational Spectra
- Electronic Molecular Spectra

Rotating Molecules

- Quantized rotational energy levels related to the moments of inertia of the molecules along the various axes of symmetry
- Example: Linear (Diatomic) molecules
 - Roughly a rigid rotator with constant spacing between atoms
 - Solutions quantized in the z component of the angular momentum, m_j, and the rotational quantum number, J, analogous to "l" in one electron atoms [BB]
 - E_J ~ J(J+1)
 - Lines are linearly spaced

Molecular Hydrogen

- Does H2 radiate strongly?
- To produce electric dipole line emission in these rotational transitions requires a heterogeneous linear molecule like CO.
- Transitions occur via electric quadrupole interaction. The least energetic transition is J=0 to J=2
- Lifetimes of excited states are much, much longer than for the ions, e.g., about 1000 years for the J=2 level.
- Hence the rotational levels are populated by collisions

Winter 2014

Vibrating Molecules

- Equilibrium distance r₀ at potential minimum, I.e., repulsion of the nuclei vs. attractive force of the bond [BB]
- Stretching
- 1 frequency!
- Higher E

Fig. 2.6. The Morse potential for H_2 . The actual potential inferred from detailed spectroscopy is the solid curve, the Morse potential is given by the dashed curve.

Diffuse Universe -- U. L. Mar III

Ro-vibrational levels

Fig. 2.7. Rotational-vibrational levels. Within each vibrational level of a diatomic molecule, a series of rotational levels occur, here magnified by a factor of several hundred for illustrative purposes. Transitions within the rotational levels (a.) produce a microwave spectrum with a spacing of 2B in energy. Transitions between rotational levels across vibrational levels, (b.), produce an infrared line at ω_0 that is split into rotational series spectral lines (*P*- and *R*- branches) that are also separated by an energy of 2B. If $\Delta J = 0$ is permitted by out-of-line bending vibrations, a series of lines called the Q branch can appear at ω_0 with zero spacing because the energy differences for $\Delta J = 0$ are constant.

Fig. 2.9. Fortrat diagram for a Rotational-vibrational-electronic spectrum.

Winter 2014

Electronic Transitions

Fig. 2.8. Rotational-vibrational-electronic transitions. Transitions between electronic states are essentially instantaneous compared to vibrational or rotational **insections**, and therefore are vertical transitions with no change in the separation **in the** atoms. Transitions are possible between different ν levels, with transition **probabilities** determined by the overlap of the vibrational wave functions. The line **intensities** are determined by the level populations and the transition probabilities. **Each** vibrational-electronic transition is also split by rotational levels, resulting in **provib**-electronic spectrum with P-, Q- and R- rotational branches.

17 25=0 17 25=0	27170=70 0=70	
	$\mathcal{O} = \mathcal{U} \nabla$ $\mathcal{O} = \mathcal{U} \nabla$	
しってなりって	$\nabla 2 = c \neq 1$	
- Ferbidden Transitions	(IM) Jodia 243420M	
	$Q = S \nabla$	
140 040	77=07175	
	DN arbitrary	
ne party change	220=82	
140 3,43,040	25 I = 0 = I = 5	
	5 ± 1 ± 0 = MD	
E2) - Intercombingtion Trans.	Electric Guadrupole (е о_

(* Level pepulations determine relative intensities 12= FI by are all equal wi spacing that decreases as I increased Linearly spaced spectrum <= 541112 Sunts, Sunts 3 units =3 Δ $= \frac{T z^{48}}{27} (1+1) =$ $= (2+i)(2+5-2)\frac{8^{\mu}sI}{\gamma_s}$ $C^{\circ} = VE = [(2+1)(2+5) - 2(2+1)] \frac{8^{45}}{12}$ Redictive transitions change & J by ± 1, $\frac{8^{4}}{1} = 2(2+1) \frac{8^{4}}{5}$ (>) \$ _ = - = - 2 P (>) \$ _ = - w = - (>) \$ _ = P \(>) \$ I = ML JN 604,0 $\frac{1}{2} = \frac{1}{2} = \frac{1}$ Passible ratational energy levels in rigid ratator Relecules 6

- 6 10K 2=1
- @ 100K 2= H

1

2=13

$$B = 22h = 110, 204, 338 \times 10^{6} H_{2} (663 \times 10^{-27})$$

$$B = 22h = 110, 204, 338 \times 10^{6} H_{2} (663 \times 10^{-27})$$

CO: J= 1-0 110, 204, 338 MH2

$$n = \overline{sg}(2+1)^{2} = c^{1}s$$

Can alse have an = ± 2, ± 3 ... but with decreasing P [1-m] m = $\Delta E = (2 + 1 + 5) - (2 + 1 + 5) = 3 \Delta$ Selection rule as = 1 => simple spectrum with I lime! $E^{2} = E^{2} = (n + T) m (2 + T) = (3 + T)$ Stinu -> At anothe an band strength PE curve re parabelie E= 22 (r-r)2- $\bigcirc < - \textcircled{}$ Harmanic mation of the two atoms U, brating Malecules DI