UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Physics 233

Exercise 2 (Due Wed. Jan 22)

Winter 2014

Three-Level Atom (An exercise introduced by Dopita & Sutherland):

An atom has three fine-structure states: 3P , 1S_0 (excitation energy 0.5 eV), and 1D_2 (excitation energy 1.2 eV). From the ground term, the total collision strength to both excited levels is 1.0. Three transition probabilities are $A({}^1S_0 - {}^3P_1) = 5 \text{ s}^{-1}$, $A({}^1D_2 - {}^3P_1) = 20 \text{ s}^{-1}$, and $A({}^1D_2 - {}^1S_0) = 10 \text{ s}^{-1}$. [Hint: You may use the result from quantum mechanics that $A({}^1S_0 - {}^3P_2) \approx A({}^1S_0 - {}^3P_1)$ and that $A({}^1D_2 - {}^3P_2) \approx A({}^1D_2 - {}^3P_1)$.

- 1. Assuming that the ground term splitting is negligible, what are the wavelengths of the forbidden lines produced by the atom?
 - 2. In this case, what is the critical density for each forbidden line?
- 3. Plot the flux ratio $F(^1D_2 {}^3P_{1,2})/F(^1S_0 {}^3P_{1,2})$ as a function of temperature for low densities and at the limit of high densities.