UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Physics

Physics 233

Exercise 4 (Due Wed. Feb. 19)

Winter 2014

Ionization Structure of a Hydrogen Nebula

Beginning with the ionization equilibrium equation, written in the on-the-spot approximation, show that the degree of ionization, $\chi \equiv n(H^+)/n(H)$, of a pure hydrogen gas cloud surrounding a star which radiates like a black body can be written as

$$\frac{\chi^2}{1-\chi} = \frac{2\pi}{c^2} \frac{R_*^2}{r^2} \frac{1}{n(H)\alpha_B(T_e)} \int_{\nu_0}^{\infty} \nu^2 (e^{h\nu/kT_*} - 1)^{-1} e^{-\tau_\nu} \sigma(\nu) d\nu$$

where

$$\tau_{\nu} = n(H)\sigma(\nu) \int_{R_*}^r (1-\chi)dr$$

This equation would be a simple quadratic to be solved for χ in terms of distance from the star, r, were it not for the dependence of optical depth on χ . In order to solve this ionization equation for a nebula, one must solve for χ in terms of r in discrete steps as follows.

Divide the H II region into about 100 concentric shells of width Δr . Assume that the ionization is constant within each of the shells, but that it changes from shell to shell. This assumption is not too bad, since χ changes slowly everywhere except near the transition region. Denote the inner radius of the i-th shell as r_i and the ionization of that shell as χ_i . Begin the calculation at the surface of the star, $r_1 = R_*$. In this shell, $\tau_{\nu} = 0$, and the integral can be evaluated easily by Gauss-Laguerre quadrature (for example). The ionization is then obtained by solving the quadratic equation for χ_1 .

In order to calculate χ_2 , you need to know $\tau_{\nu}(r_2)$; but this is

$$\tau_{\nu}(r_2) = n(H)\sigma(\nu)(1-\chi_1)\Delta r \; .$$

Use this in the integral, and evaluate it at r_2 by, for example, numerical quadrature. Then solve the quadratic equation again, for χ_2 . Repeat this procedure until $\chi \to 0$, i.e., solve for χ_i at each r_i by setting

$$\tau_{\nu}(r_i) = \sum_{j=1}^{i-1} n(H) \sigma(\nu) (1 - \chi_j) \Delta r$$

Write a program on the computer of your choice to determine $\chi(r)$ under the following conditions. Let $n(H) = 1 \text{ cm}^{-3}$, and

$$\alpha_B = \sum_{n=2}^{\infty} \langle \sigma_n^{rec} v \rangle = 2.6 \times 10^{-13} \text{cm}^3 \text{sec}^{-1}$$

as is true for H at $T_e = 10,000$ K. Take the absorption cross-section to be

$$\sigma(\nu) = 6.3 \times 10^{-18} \left(\frac{\nu_0}{\nu}\right)^3 \text{cm}^2$$
.

Evaluate the integral. Change variables so that the limits of integration go from $0 \to \infty$,

$$\int_0^\infty f(x)e^{-x}dx = \sum_i a_i f(x_i).$$

(You can then, for example, use Gaussian quadrature with an adequate number of points (say 8 or so); see for example Abromowitz and Stegun, p. 916, 923.)

Guess the step size to use in the problem, by calculating the expected size of the H II region using the analytical expression for the Stromgren radius derived in class:

$$R_S = 78 \text{ pc } n(H)^{-2/3} \left(\frac{R_*}{R_\odot}\right)^{2/3} \frac{F_1^{1/3}(x_1)}{x_1},$$

where $x_1 \equiv \frac{h\nu_0}{kT_*}$. Take a step size of about 1% R_S . Assume the star has $T_* = 40,000$ K, and $R_* = 10 R_{\odot}$. Print out (and plot) the following quantities at each $r_i : (1 - \chi_i), \chi_i$, and $\tau_{\nu_0}(r_i)$, the optical depth at the Lyman limit.

SUPPLEMENTARY INFORMATION The Integral $F_1(x_1)$

$T_*(^{\circ}K)$	x_1	$F_1(x_1)$
10,000	15.79	3.91×10^{-5}
$15,\!000$	10.53	3.58×10^{-3}
20,000	7.90	2.98×10^{-2}
$25,\!000$	6.32	9.85×10^{-2}
30,000	5.26	0.209
35,000	4.51	0.346
40,000	3.95	0.495
45,000	3.51	0.645
50,000	3.16	0.790
60,000	2.63	1.05
70,000	2.26	1.26
80,000	1.97	1.43
90,000	1.75	1.57
100,000	1.58	1.69