Physics CS 31 Fall 2014

Set #7 - for Wd Nov. 19

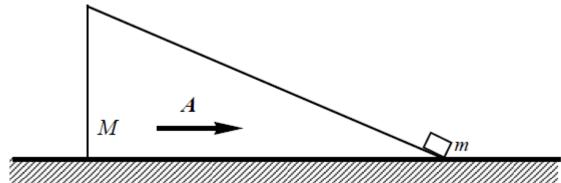
Read HR&K Ch. 11 - Sects. 11.1 - 11.6, Ch. 12 - Sects. 12.1 - 12.3, 12.5 - 12.6

Read K&K Ch. 3 (p. 89-106), Ch. 5 - Sects. 5.1 - 5.6, Note 5.2

Read Feynman Vol. 1 Ch. 13, Ch. 14

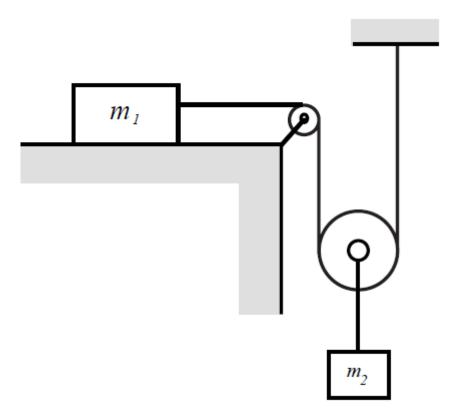
From HR&K:

Ch. 11 Exercise 6, 31. Problems 11, 14.


Ch. 12 Exercises 7, 18. Problems 4.

From K&K:

Ch. 3 Problems 3.8, 3.23, 3.25.


Ch. 2 Extra Credit 2.13

1. Find the time it takes the mass m to reach the top of the wedge of length l (slant), wedge angle θ and mass M, when a horizontal acceleration A is applied to the wedge as shown below. Neglect friction with any surface. What is the minimum acceleration A needed?

2. The engine of a racing car of mass m delivers a constant power P at full throttle. Assuming that friction is proportional to the velocity, find an expression for v(t) if the car accelerates from a standing start at full throttle. Does your solution behave correctly as $t \to \infty$?

- **3.** a) Evaluate the work done by the force $\vec{F}=(x^3+y^3)\hat{i}-2xzy^2\hat{j}+(x+y+z)\hat{k}$ along the path defined by $y=x^2,\ z=2$ and $0\leq x\leq 1$.
- b) Repeat for the force $\vec{F}=\theta\hat{\theta}$ along a counterclockwise circular path of unit radius centered at the origin.
- 4. In the system shown below the ropes and the pulleys are massless. There is no friction anywhere. Find the acceleration of each block.

