Read

HR&K, Vol. 2 Ch. 28

Purcell Ch. 3, Sec. 3.1 – 3.5

Ch. 10, Sec. 10.2 – 10.3

Feynman Vol. 2 Ch. 6, 8, 10

Solve

From HR&K

Ch. 28 Exercise 47, Problems 7, 11, 12

From Purcell

Ch. 2 Problems 2.18, 2.4, 2.19, 2.29

Ch. 3 Problems 3.4

Ch. 10 Problems 10.20, 10.34

Problem 1. Charge Q is located at distance a from the surface of an infinite conducting plane. Calculate charge density induced on the surface of the plane by the charge.

Problem 2. Use the method of images to find the force on a charge Q located at distances a and b from the semi-infinite conducting plates at right angles to each other.

Problem 3. Two large flat metal plates are held parallel to each other and separated by a distance d. They are connected together at their edge by a metal strip. A thin plastic sheet carrying a surface charge σ per unit area is placed

between the plates at a distance d/3 from the upper plate. Call E_1 and E_2 the electric field near the upper plate and lower plates, respectively. What are E_1 and E_2 ?

Problem 4 (Extra Credit). Find the electric potential as a function of distance away from a circular sheet of electric dipoles on the axis of the sheet. Assume that there are n small dipoles per unit area and that each dipole has dipole moment p and is pointing normal to the surface. Radius of the sheet is R. Express your answer as a function of distance from the center of the sheet. For the second pass discuss the value of the potential close and far from the sheet.