Purcell

Physics CS 34

HR&K, Vol. 2

•

Fall 2014

Feynman, Vol. 2
Solve

From HR&K

Ch. 31: Exercise 48; Problems 11

Ch. 31, 32, 33

Appendix G

Ch. 13

Ch. 6: Sec. 6.1 - 6.6

Ch. 5: Sec. 5.1 - 5.6, 5.8 - 5.9

Ch. 32: Problems 8, 11, 18, 19

From Purcell

Ch. 5: Problems 5.3, 5.10, 5.14 Ch. 6: Problems 6.30

Ch. 6: Problems 6.30 - Problem 1. A particle with charge +q and mass m starts from rest at the origin in the figure shown above. There is a uniform electric field \vec{E} in the +y-direction and a uniform magnetic field \vec{B} directed out of the page.

(a) Integrate the equations of motion and show that the path is a "cycloid" with equations:

where $\omega = \frac{qI}{m}$

 $x = \frac{E}{\omega R} \left[\omega t - \sin \omega t \right] \qquad y = \frac{E}{\omega R} \left[1 - \cos \omega t \right]$

- (b) Prove that the speed at any point is equal to $\sqrt{\frac{2qEy}{m}}$.
- (c) Applying Newton's second law at the top point and taking as a given that the radius of curvature here equals 2y, prove that the speed at this point is $\frac{2E}{B}$.

Problem 2. A point charge Q is moving at constant velocity \vec{v} . Calculate (*use the definition of flux*) the flux of the electric field set up by this charge through a sphere centered at the charge and radius r. Is Gauss' law the answer?

Extra Credit. As seen in class, the electric field set up by a charge moving with constant velocity is $\frac{1}{2}$

$$\vec{E} = k_C \frac{Q}{r^2} \frac{1 - \beta^2}{\left(1 - \beta^2 \sin^2 \theta\right)^{3/2}} \hat{r}.$$

- (a) Find the maximum and minimum values of the field and their direction at the distance R from the charge. Show that at low velocities we recover Coulomb's law.
- (b) Verify that at angles $\theta = 0^{\circ}$ and $\theta = 90^{\circ}$ this equation confirms conditions for x- and ycomponents that we derived for the electric field vector in the "lab" and "particle" frames.
- (c) Show that $\vec{\nabla} \times \vec{E} \neq \vec{0}$. That is, this field cannot be derived from an electrostatic potential alone.