Set #5 - for Thurs May 8

Read OhanianCh. 5, Ch. 6 Sects 6.1-6.3Read Feynman Vol. IIICh. 1, Ch.2, Ch. 3

From Ohanian:

Ch. 5 Problems 33, 35, 36, 37

1. At t = 0, the wavefunction of a free electron is described by the wavepacket:

$$\psi(x,0) = \begin{cases} C\cos(k_0x) & \text{if } |x| \le L, \\ 0 & \text{if } |x| > L \end{cases}$$

a) Find the normalization constant C.

- b) What is the probability of finding the electron in the region $0 \le x \le L$?
- c) Write $\psi(x,0) = \int_{-\infty}^{\infty} A(k) e^{ikx} dk$. Find the distribution function A(k). Sketch A(k).

2. <u>Spreading of a wavepacket</u> (I)

We have seen that a wavepacket can be written in the form

$$\psi(x,t) = \int_{-\infty}^{\infty} A(k) e^{i(kx - \omega t)} dk,$$

where ω depends on k. Consider a Gaussian wavepacket $A(k) = A_0 e^{-(\Delta x_0)^2 (k-k_0)^2}$ where Δx_0 is the initial spatial spread of the wavepacket. Calculate the wavefunction $\psi(x,t)$ from A(k) as follows:

(i) Write $\omega(k) = \omega_0 + v_g(k - k_0) + \alpha(k - k_0)^2$, where $\omega_0 \equiv \omega(k_0)$ and we neglect higher-order terms in the Taylor expansion of $\omega(k)$ (note that v_g is the group velocity);

(ii) change the integration variable $\tilde{k} = k - k_0$;

(iii) take the factor $e^{i(k_0x-\omega_0t)}$ outside the integral;

(iv) make the substitution $(\Delta x)^2 = (\Delta x_0)^2 + i\alpha t;$

(v) complete the square of the quadratic function of \tilde{k} (by adding and subtracting an appropriate term);

(vi) change the variable of integration to obtain an integral of the form $\int_{-\infty}^{\infty} e^{-a^2x^2} dx$ which has the value $\sqrt{\pi}/a$.

Your answer should be

$$\psi(x,t) = \frac{\pi^{\frac{1}{2}} A_0}{\Delta x} \ e^{\frac{-(x-v_g t)^2}{4(\Delta x)^2}} \ e^{i(k_0 x - \omega_0 t)}.$$

3. <u>Spreading of a wavepacket</u> (II)

a) Using the wavefunction in Problem 3, show that

$$|\psi(x,t)|^2 = \frac{\pi A_0^2}{(\Delta x_0)^2 [1 + \alpha^2 t^2 / (\Delta x_0)^4]^{\frac{1}{2}}} e^{-(x - v_g t)^2 / \left\{2(\Delta x_0)^2 [1 + \frac{\alpha^2 t^2}{(\Delta x_0)^4}]\right\}}$$

b) With what speed does the maximum of the function $|\psi(x,t)|^2$ move?

c) Sketch $|\psi(x,t)|^2$ at different times and discuss how its shape changes with time.

d) For non-relativistic matter waves, $\omega = \frac{\hbar k^2}{2m}$. What is the value of α in this case? What happens if α has the opposite sign? Does the wavefunction still spread? What if $\alpha = 0$?

4. Refer to the spreading wavepacket Problems 3 and 4. Use the $|\psi(x,t)|^2$ that you calculated and find the average of x:

$$x_{av} \equiv \langle x(t) \rangle = \frac{\int_{-\infty}^{\infty} x \ |\psi(x,t)|^2 \ dx}{\int_{-\infty}^{\infty} |\psi(x,t)|^2 \ dx}.$$

Interpret your result.

5. Find the standard deviation $\Delta x = \langle (x - \langle x \rangle) \rangle^{1/2}$. That is

$$(\Delta x)^{2} = \frac{\int_{-\infty}^{\infty} (x - x_{av}(t))^{2} |\psi(x, t)|^{2} dx}{\int_{-\infty}^{\infty} |\psi(x, t)|^{2} dx},$$

where $|\psi(x,t)|^2$ is the same as the above.

Likewise, find $\Delta k = \langle (k - \langle k \rangle)^2 \rangle^{\frac{1}{2}}$, where $\langle k \rangle = \frac{\int_{-\infty}^{\infty} k |A(k)|^2 dk}{\int_{-\infty}^{\infty} |A(k)|^2 dk}$.

Show the exact uncertainty relation:

$$\Delta x(t)\Delta p = \frac{\hbar}{2}\sqrt{1 + \frac{\alpha^2 t^2}{(\Delta x(0))^4}} \ge \frac{\hbar}{2}$$

6. Imagine that we chop a continuous laser beam (assumed to be monochromatic at $\lambda_0 = 632.8 \text{ nm}$) into 0.1 ns pulses using some sort of shutter. Compute the resultant uncertainty in the wavelength, $\Delta\lambda$ (linewidth). Compute the *bandwith* $\Delta\nu$ (uncertainty in the frequency). Compute the *coherence length* (= $c\Delta t$)