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A formulation of gquantum mechanics, which begins by postulating assertions for individual
physical systems, is given. The statistical predictions of quantum mechanics for infinite
ensembles are then derived from its assertions for individual systems. A discussion of the
meaning of the “state’ of an individual quantum mechanical system is given, and an appli-
cation is made to the clarification of some of the paradoxical features of the theory.

I. INTRODUCTION

Conventional exegeses of quantum mechanics
commonly begin with the fundamental assertions
that (1) the state of an individual physical system
can be characterized by a vector in Hilbert space
and that (2) to every physically realizable value
of a measurable quantity there corresponds a
subspace of this Hilbert space. It is further as-
serted that the empirical content of these as-
sumptions is that the absolute square of the
sealar product of the state vector with its projec-
tion on one of these subspaces gives the probability
that a measurement of the associated physical
quantity will have the value characteristic of the
subspace as a result.

In physics the assertion of a probability has an
empirical significance not for an individual
system in general, but only for an ensemble of
identical systems. In the latter case, the assertion
of a probability of the result of a measurement
can be translated into an assertion about the rela-
tive frequencies of the results of many identical
experiments performed on identical members of
the ensemble. In many branches of classical
physics, the empirical assertions about an en-
semble of systems do not enter the theory in a
fundamental way, but are deducible from the
assertions which can be made about its members.
This is not the case in the conventional formula-
tion of quantum mechanics described above.
There, because the probability interpretation of
the wave funetion is a fundamental assumption,
the predictions of the theory for ensembles of
identical systems are not deduced from its pre-
dictions for the individual systems. It is not neces-
sary, however, to formulate quantum mechanics in
this way.

* Supported in part by the National Science Foundation.

In this article we give an exposition of quantum
mechanies from the point of view of the individual
system. We begin with a careful definition of
what is meant by the words “the state of a sys-
tem,” proceed to a discussion of how the for-
malism of quantum mechanics deseribes in-
dividual systems, and finally derive the statistical
agsertions of quantum mechanies from its asser-
tions for individual systems. One of the main ad-
vantages of this procedure is that it leads to a
precise understanding of the character of a
physical state in quantum mechanics. This under-
standing leads to the resolution of many of the
seemingly paradoxical features of quantum me-
chanics although not in a way which will carry
the same degree of emotional appeal for all
persons.

The purpose of this review is not to present a
new theory of the foundation of quantum me-
chanics. Certainly many of the ideas adumbrated
here should have a familiar ring to readers of the
literature on this subject.! Neither is the purpose
of this paper to judge how adequately quantum
mechanies conforms to any previously conceived
philosophically, historically or esthetically based
standards for physical theory. The aim is to dis-
cuss precisely the empirical significance of the

1 Some useful papers in which other references are found
are: (a) A. Daneri, A. Loinger, and G. M. Prosperi, Nucl.
Phys. 83, 297 (1962); (b) B. d’Espagnat, Conceptions de la
physique coniemporaine (Hermann et Cie., Paris, 1965);
(e) J. M. Jauch, Foundations of Quantum Mechanics (Addi-
son—~Wesley Publ. Co., Reading, Mass. 1968); (d) J. M.
Jauch, Helv. Phys. Acta 37, 193 (1964); (e) J. M. Jauch, E.
P. Wigner, and M. M. Yanase, Nuovo Cimento 48, 144
(1967); (f) H. Margenau, Phil. Sci. 30, 1 (1963) and 80, 138
(1963); {g) E. P. Wigner, Am. J. Phys. 31, 6 (1963); (h)
E. P. Wigner, “Remarks on the Mind-Body Question”
in The Scientist Speculates, 1. J. Good, Ed. {Basic Books,
New York, 1962).
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terms involved in formulating a quantum-mechan-
ical theory (in particular the notion of state) in a
way which, at least to the author, leads clearly
to an understanding of the theory uncomplicated
by the conventional paradoxes.

II. THE STATE OF AN INDIVIDUAL SYSTEM

Often the result of a measurement on an in-
dividual physical system is expressed by a num-
ber. For the following analysis, however, it will be
useful to note that every measurement can be
resolved into a number of experiments called
propositions whose result is either that they are
true or false.? By way of example, one may take
a measurement of the angular momentum of an
atom which may be resolved into the proposi-
tions: “The angular momentum is 0,” “The
angular momentum is 2%,” ete. For every physical
system the set of all propositions exhausts all
possible measurements.

In classical physics, the state of an individual
system is known when it is known whether each
proposition is true or false. The state of an in-
diwvidual system <n classical physics 7s defined as
the list of all possible propositions together with
thetr truth values—irue or false. If a system is
asserted to be in a certain state, what is being
predicted is the result of all and any of the
measurements corresponding to the propositions.
The prediction can be verified or falsified by per-
forming the measurements and checking whether
the experimental truth values agree with those
in the predicted list.

Implicit in this classical definition of state is
the assumption that all propositions can be
measured together, so that together they all can
be asserted to be true or false. Whether this as-
sumption itself is correct 1s an empirical question
to be determined by an analysis of the measuring
process. In fact, it is known that the assumption
is not true. The empirical evidence for this is the
experimental verification of quantum mechanics
which predicts that noncommuting observables
cannot be simultaneously specified and that

t See, for example, G. Birkhoff and J. von Neumann,
Ann, Math 37, 835 (1936); G. W. Mackey, Mathematical
Foundations of Quantum Mechanics (W. A. Benjamin,
Inc., New York, 1963); J. M. Jauch, Foundations of Quan-
tum  Mechanics (Addison-Wesley Publ. Co., Reading,
Mass., 1968).
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therefore, by inference, they cannot be simul-
taneously measured.?

In quantum mechanics it is not possible to
assert the truth values of all propositions at once.
An individual system cannot be prepared in
such a way that all propositions are true or false.
Some propositions must necessarily be indefinite.
The state of an indwidual system in quantum
mechanics 18, therefore, defined as the list of all
propositions together with their truth values—tiue,
false, or indefinite. A knowledge of the state of a
quantum-mechanical system permits the predic-
tion of the results of only a very limited class of
experiments. These are the experiments which
have the truth values—itrue or false, a situation
which is abbreviated by saying that the corre-
sponding proposition is definite. About proposi-
tions labeled indefinite, no predictions at all can
be made for a single experiment on an individual
system.

A quantum-mechanical state can be specified
by listing all the true propositions. The value
false is then assigned to the negation of these and
the value indefinife to the remaining ones.

Not every assignment of truth wvalues corre-
sponds to a valid quantum-mechanical state. It
is a remarkable assertion of quantum mechanics
that for any physical system the set of proposi-
tions is isomorphic to the set of subspaces of some
Hilbert space. Since the state of a system can be
labeled by the true propositions, the states of a
system can also be put into correspondence with
certain subspaces of the Hilbert space.t It is a
further assertion of quantum mechanics that the

3 We are preserving here the fiction that to every
Hermitian operator there corresponds an experiment to
observe the corresponding quantity. In fact, experimental
arrangements are known for only a few of these quantities.
This remarkable circumstance seems to arise from the
fact that we are able to conceive of experimental arrange-
ments only in classical terms. The description of a quantum
mechanical state, however, requires many more numbers
than a corresponding classical state (for example, the
state of a spin-2 object in classical physics is deseribed by
two numbers while in quantum mechanics it is described
by nine), and there is a corresponding greater number of
“measurable’”’ quantities. The statements presented here
do not depend on the assumption that every operator
corresponds to an observable quantity, but lacking a pre-
cise criterion for which ones we present the results as if
the assumption were true.

¢+ We ignore here superselection rules.
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subspaces corresponding to states in which a maxi-
mum number of propositions are definite are all
one dimensional. These states are called pure, and
to every pure state there corresponds a ray in
the Hilbert space. This statement is equivalent
to one maintaining that the propositions which
correspond to different one-dimensional sub-
spaces cannot be simultaneously true.

A ray may, in turn, be labeled by one of its
vectors. One then concludes that to every pure
state there corresponds a vector in a Hilbert space
characteristic of the physical system. The vector
is a complete specification of the state because a
knowledge of it enables one to determine the
truth value of any proposition. A proposition is
true if the state vector is an eigenfunction of the
corresponding operator with eigenvalue 41 and
false if it is an eigenfunction with eigenvalue 0.
All other propositions are indefinite. In general,
a quantity is definite if the vector is an eigen-
funetion of the corresponding operator and the
definite value is the eigenvalue. Quantities for
which the vector is not an eigenfunction of the
corresponding operator are indefinite.

From the point of view taken here, the state
vector is simply a convenient shorthand for the
list, of all measurable propositions and their truth
values. The laws of quantum mechanies deter-
mine how the state vector and this list evolve in
time. A calculation of the state vector at a future
time enables predictions to be made of the results
of measurements on a single system of definite
quantities and no predictions for the indefinite
ones. The state vector is then a summary of that
information gained from past manipulations of the
individual system that can be used for making
predictions about which quantities are definite
at later times.?

III. STATISTICAL PREDICTIONS OF QUANTUM
MECHANICS DEDUCED FROM THE QUANTUM
MECHANICS OF INDIVIDUAL SYSTEMS

No mention of probability was made in the
discussion of quantum mechanics for individual
systems in the previous section. This is because
the assertion of a probability has an empirical
significance not for any individual experiment

5 The role of the wave function as a summary of the
past information relevant for future predictions is stated
especially clearly by E. . Wigner. See Ref. 1(g), 1(h).
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but only as a statement about the frequencies of
results of ensembles of experiments. In this sec-
tion we show how the probability interpretation
of the wave function results from an application
of the previous discussion to ensembles of identical
systems themselves considered as individual
systems.

For simplicity, individual systems are con-
sidered whose states are labeled by the discrete
eigenvalues a; of a single observable 4

Aliy=a:] ). (1

A general pure state® of a system can be denoted
by | s) and will always be taken to be normalized
to unity, {(s|s)=1. Suppose that we have N of
these systems, each identically prepared in a
state | s). We distinguish the various individual
systems by using a label o, | s, @), =1, -+, N.
The state vector for this ensemble of N identically
prepared systems is then

(M= 151)®152)® [53)®---® |5, N).
(2)

An infinite ensemble of identically prepared
systems in the state |s) is described by the
infinite product

[ ®)=)=151)®[52)® [53)® . (3)

The precise mathematical meaning of such infinite
products is given in the Appendix.

The result of a measurement of the quantity 4
cannot be predicted for any individual system of
these ensembles. The quantity A4 is not in general
definite in the state | s). While the results of a
measurement of A4 cannot be predicted for any
individual system, we now show that the fre-
quencies of the results can be predicted for infinite
ensembles of identically prepared systems. This
is done by demonstrating that the frequency of
occurrence of a gwen value ay, s a definite quaniity
for the infinite ensemble, itself considered as an
individual system, and further that the definite
value in the state defined in Eq. (3) is | (k| s) |2
In this way, the statistical predictions of quantum
mechanics will be recovered from the nonsta-
tistical assertions about individual systems.

To carry out this demonstration, the operator

§ The following discussion can be generalized to include
mixtures in a straightforward way.
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f* for the frequency of occurrence of the value a;
in an infinite ensemble of individual systems
must be constructed. The state vector of Eq. (3)
must then be shown to be an eigenvector of f*
with eigenvalue | (k| s) |2

Fl()=)=[kls) ] (9)=). (4)

The operator f* is defined by first constructing
the frequency operator fy* for finite ensembles of
N systems and then taking the limit as N—ow.
The operator fx* is easily defined on the Hilbert
space for N individual systems in the representa-
tion in which A is diagonal

b= Daesy |0, 1) [, 2)0 o+ [, N)

N
X AN 61i) Gy N | Gy, N—1 | -+ (i, 1]

=1

(5)
The number in brackets is just the fraction of the

states |¢;)+-- |iy) which are the state k. As
applied to | (s)=) we define fx* to be

(=)= (] (DY) ® [5, N+1)
®[s, N+2)®---, (6)

where the term in brackets is defined through
Eqs. (5) and (2)." The operator f* acting on
| (s)®) is then defined by

1 (5)=)= Tim | (). (7)
N>
The mathematical meaning and existence of this
limit are discussed in the Appendix. To show that
| (s)°) is an eigenfunction of f* with eigenvalue
| (k] s)]?is equivalent to a demonstration of

WL sy=) =1k [s) [ (s)=) ]
= Hm [[f5* [ (5)=)— [ (k1) ] ()) ]

N>

=0, (8)

where for any vector | V), ||| V)|E=(V]V).
In computing the norm in the second term of Eq.
(8) one sees from the definition of fx* acting on
| (s)*) [Eq. (6)] that the normalized states of
systems N+1, N+2, - .- contribute only factors

" We do not distinguish notationally fy* as defined on

the Hilbert space of N ensembles and as defined on the
Hilbert space of infinite ensembles.
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of unity to the norm so that
el )=y= 1 ]s) 2] (s)=) ]
= lim || fx*| (V)= [ F]s) 2] () |lw. (9)

N-ox
Here, we use a subscript N to indicate that the
norm is to be taken in the Hilbert space for
ensembles of N identical systems.

To show that the limit in Eq. (9) vanishes,
we write out the norm using the definition Eq.
(5) and the orthonormality of the states |7} to
find

N N
2020 (N28ei8ui) —2| (k[ s) 2 20 (N%84,)
i1 iy a,f=1 a=l1

F L) PTG ls) oo | v o)

The sum over 7;- - -7y may be done first using the
completeness of the states | 7) and the normaliza-
tion of | s). In doing this for the first term, one
arrives at a different answer if «=2 than if a8.
The remaining summands are independent of «
and B so that the sums over these quantities are
easily performed. The result is

L=y = 1kl ] (s)=) |2
= lm((1/N) | (k|s) [

N>

(10)

HINWN-1)/N]=1} [ (k[ s) [9)=0. (11)

This completes the demonstration. For an in-
finitely large ensemble the frequency of oceur-
rence of a value a, is a definite quantity with
value | (k|s) %

Not all of the statistical predictions of quantum
mechanies are for ensembles of individual systems,
but other statistical assertions can be derived
from these. By way of example, consider repeated
measurements of a quantity A on a single system
separated by a time interval Ai. Quantum me-
chanies predicts that the probability of a result
a,, succeeding a result a, is | Unn |2, where Uy, =
(m | exp(—<HAt) | n) and H is the Hamiltonian
for the system. Translated into empirical terms
this is an assertion that if in the sequence of
measurements of 4 the value a, occurs M times,
the number of succeeding measurements which
take the value a, will be M | Uy, I? in the limit
as M becomes arbitrarily large.
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A probability assertion of the above type can
be identified with an assertion about an ensemble
of systems in the following manner: Imagine an
apparatus which records the results of the meas-
urements. After every measurement which yields
the value a,, it records the value of the succeeding
measurement. If, at the end of the sequence of
measurements the value a,, occurred A times, it
has M variables which indicate the value of the
succeeding measurement. If we denote the state
of this apparatus in which these M variables
have the value a,,*-an, by |7+ ny) (where
the remaining variables have been suppressed),
then the laws of quantum mechanies tell us that
the state vector for the apparatus at the end of
the sequence of measurements is

Z Z;n m LTVLQm ea ]

Uy | Mae e emag ). (12)
niemgy
This state vector, however, has the same proper-
ties as that of Eq. (2), and the same argument can
be adduced to show that the frequency of occur-
rence of the value n among the n;- « +ny is definite
and given by | U,, |2 in the limit of infinite A7.
In this way, this type of statistical prediction of
quantum mechanies can also be deduced from the
quantum mechanics of individual systems.

The probability predictions of quantum me-
chanics, interpreted as predictions of the fre-
quencies of results of measurements on infinite
ensembles of identically prepared systems, are
thus seen not to enter into the theory in any
preferred way, but have the same status as any
other observable in the theory.®

IV. IS THE STATE AN OBJECTIVE PROPERTY
OF A SYSTEM?

In Sec. I, a definition of state was given for
classical and quantum-mechanical systems. We

8 Substantially the same analysis and econclusions as
are given in this section have been obtained independently
by R. N. Graham in a University of North Carolina
doctoral dissertation, preliminary versions of which were
prepared in the summer of 1967. The derivation of the
statistical predictions of quantum mechanics from its
assertions about individual systems has also been consid-
ered by H. Everett, Rev. Mod. Phys. 29, 454 (1957),
but from a rather different point of view than that given
here. Both Evereft’s theory and Graham’s work have
been reviewed by B. DeWitt in Battelle Recontres (W. A.
Benjamin, Inc., 1968). Appreciation is expressed to B.
DeWitt for helpful discussion and correspondence on
these points,
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now turn to the question of whether the state so
defined can be regarded as an objective property
of the system. It is just this point which seems
central in many of the difficult problems of inter-
pretation of quantum mechanics.

The state of the system will be called an objec-
tive property of the system if it can be deter-
mined by measurements on the system in com-
plete ignorance of its previous condition. More
precisely, the state will be called an objective prop-
erty «f an assertion of what the state is can be verified
by measurements on the individual system without
knowledge of the system’s previous history.

In classical physics the state 1s an objective
property of the physical system. IFor example,
for a single particle the state may be characterized
by the position x and the momentum p. To deter-
mine the state one has only to measure x and p.
Further, specification of the state is the same as
specifying the numbers x and p and can be verified
by measuring these quantities. Generally, a
classical state is an objective property because it
lists for all propositions the truth values, frue or
false, and can, therefore, be verified by comparing
this list with one obtained by measurements on
the individual system. The situation 18 quite
different in quantum mechanics.

In quantum mechanics there are no measure-
ments on an individual system which can deter-
mine its state. There are no measurements on an
individual system by which an assertion that the
state 1s described by a certain vector can be
verified. For example, if a single particle is as-
serted to be in 2 momentum eigenstate a measure-
ment of the momentum which yields the eigen-
value does not distinguish between this state and
one which the momentum is indefinite. A quan-
tum-mechanical state is, therefore, not an objec-
tive property of the individual system.

The fact that a quantum-mechanical state is
not an objective property of an individual system
does not imply that it cannot be known. If this
were 80, the idea of state would not be a very
useful one. A state is known when it is determined
how the system has been prepared. The assertion
that systems prepared in a certain way have a
characteristic state can be verified by measure-
ments on many systeras prepared in the same
way. In the same way the wave function of a
single system (or at least its absolute square) can
be determined by measurements of an ensemble
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of systems provided that it is known that they have
been identically prepared. In the absence of such
knowledge, the wave function cannot be deter-
mined from the frequencies of the various meas-
urement results. This is in contrast to the situa-
tion in classical physics where the state can be
determined without any information about the
past history of the system. In quantum me-
chanics, because the state cannot be determined
without some knowledge of how the system was
prepared, the state is not an objective property
of the system.

The fact revealed by the preceding analysis
should already have been clear from the definition
of quantum-mechanical state given in Sec. I. A
state is a list of all measureable propositions
together with the values true, false, or indefinite.
The property of a proposition being indefinite can
hardly be an objective property of the physical
system, but rather is a statement of the knowl-
edge of the observer about this proposition. The
state is not an objective property of an individual
system but is that information, obtained from a
knowledge of how the system was prepared, which
can be used for making predictions about future
measurements.

The state of a classical system is an objective
property of the system and therefore changes
only by dynamical laws. A quantum-mechanical
state being a summary of the observers’ informa-
tion about an individual physical system changes
both by dynamical laws, and whenever the ob-
server acquires new information about the
system through the process of measurement.
The existence of two laws for the evolution of the
state vector by the Schrédinger equation on the
one hand and by the process of measurement
(sometimes described as the ‘“reduction of the
wave packet’”) on the other, is a classic subject
for discussion in the quantum theory of measure-
ment. The situation becomes problematical only
if it is believed that the state vector is an objec-
tive property of the system. Then, the state
vector must be required to change only by dy-
namical law, and the problem must be faced of
justifying the second mode of evolution from the
first. If, however, the state of a system is defined
as a list of propositions together with their truth
values, it is not surprising that after a measure-
ment the state must be changed to be in accord
with the new information (if any) acquired
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about the state after the measurement and with
the old information lost because of the irreducible
disturbance of the system caused by the measure-
ment. The “reduction of the wave packet’” does
take place in the conseiousness of the observer,
not because of any unique physical process which
takes place there, but only because the state is a
construct of the observer and not an objective
property of the physical system.

In conclusion, we review how the understanding
of “‘state of a system’” resolves some of the so-
called ‘“‘paradoxes” of quantum mechanics. The
first we consider is one raised in the famous paper
of Einstein, Podolsky, and Rosen® phrased in a
slightly different language. We have two spin-i
particles known to be in a state of total angular
momentum zero. They scatter and separate. The
state vector for the combined system is

al T, 20480 LD T,2),

where | 7,7) and | |, ¢) are the states in which
the spin of particle ¢ is parallel or antiparallel to
some determined axis. In this state no definite pre-
diction can be made about the spin of either
particle, but only probability predictions for en-
sembles of identical scatterings. If a measure-
ment of the spin of particle one obtains the value
T, then the laws of quantum mechanics -assert
that the state immediately changes to

LT 2.

The spin of the second particle can now be pre-
dicted with certainty to be | .

The paradox arises by asking how a measure-
ment on the first particle can change the descrip-
tion of the state of the second (which might be
very far away from the first) from one in which
the spin is indefinite to one in which the spin is
definitely | . This can be a paradox, however,
only if the state is regarded as an objective prop-
erty of the physical system which can change
suddenly only by the result of a sudden inter-
action with another system. As regarded here,
however, a description of a state is a description
of the information possessed by the observer
about the system. A measurement of the spin of
particle one gives information about the spin of
particle two because of the special way the spins
are correlated in this experiment. This new in-

(13)

(14)

? A. Einstein, B. Podlsky, and N. Rosen, Phys. Rev. 47,
777 (1935).
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formation is summarized by associating the
vector | |, 2) with the second particle.

The second paradox we consider has been dis-
cussed by Wigner.®® Two friends are participating
in an experiment. The first friend makes a meas-
urement on an object which, let us say, has two
possible results, a and b. The second friend, some-
time after the measurement, asks the first about
the result and obtains an appropriate reply. Let
us suppose the vectors | a) and | b) deseribe the
state of the object in which the results of the
experiment are a and b, respectively, and that the
vectors | A) and | B) describe the state of the
first friend in which he gives, respectively, the
reply a or b to the question of the second. If the
state of the object before the measurement should
be summarized by the vector

ala)+B1b), (15)

then the second friend will describe the combined
system of object plus first friend by the vector

ala)| A)+610)|B). (16)

This will be the correct description from the
time of the measurement until the second friend
learns from the first the result of the measure-
ment at which point the state vector is changed
to either |a)| A) or |b) | B). If, however, the
first friend is asked how he described the object
between the time of the measurement and the
time he answers the question, he will reply with
either the vector | a) or | b). In his mind the result
of the measurement is already determined. If
one believes that the state vector is an objective
property of the object, one is forced to conclude
that the vector, which describes the system of
object and first friend after the measurement, is
then either |a) | A) or |b) | B) and not that of
Eq. (16) thus violating the linear laws of quantum
mechanics. The state is, however, not an objective
property of the system but a convenient short-
hand for the information assertable by each
friend. It is not inconsistent for the first friend
to describe the object by the state vectors | a) or
| b) at the same time as the second friend describes
the combined system by the vector of Eq. (16),
because each state vector represents correctly
the information each friend has as a consequence

it See Ref. 1h
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of his knowledge of how the state of the object
was prepared and (in the case of the first friend)
the result of his subsequent measurements.
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MATHEMATICAL APPENDIX

The argument used in Sec. I1I to show that the
frequency distribution of any observable is a
definite quantity in an infinite ensemble of
identically prepared systems, is here given in a
mathematically precise form. To accomplish this
the construction of the Hilbert space for the
infinite ensemble is first briefly reviewed following
the work of von Neumann.!' The operator fa* for
a finite ensemble is then defined on this Hilbert
space and the existence of the limit f* as N—
proved. The state vector representing an infinite
ensemble of identically prepared systems each in
state | s) is then shown to be an eigenfunction of
this operator with eigenvalue | (k| s) |2

The Hilbert space for an infinite ensemble of
systems is the infinite tensor product 3¢;®
JC® - - - of the Hilbert spaces 3¢, of the individual
physical systems. This infinite tensor produet is
denoted by 3C* and is precisely defined in the
following. IFor proof of any of the assertions used
in the construction of 3¢* below, the reader is
referred to the work of von Neumann, which we
follow.

From the Cartesian product 3C;X3CX ++«« of
the individual Hilbert spaces distinguish all those
sequences | s, 1)® |52, 2)® |83, 3)® -, | $,)EHe
for which the product of the length of the in-
dividual vectors,

TT 1 Gsay o] 80, @) 17,

a==]
converges or diverges to zero in the usual sense of
infinite products. The class of all such sequences
is denoted by €. A sealar product between any

uJ. yon Neumann, Compositio Math. 6, 1, (1939).
For a more recent treatment see M. A. Guichardet, Ann.
Sci. Be. Norm. Sup. 3¢ Serie, 83, 1 (1966).
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two elements of €, | S)=]5,1)Q [, 2)®@---
and | 8= | &/, 1)® | s/, 2)® - - - may be defined
by

(S18)= 1T sur | 5, @),

o=]1
if this product converges, and by
(8187)=0,

if it does not. Consider now the space @ of all
finite linear combinations of the elements of €. If
[ 8) and | §') are two elements of €’ with

IS>= Z)\,,[SI,), [ Spyee

p=1

and

Q
[ Sl>: Z Mg 1 SQ,>7 1 Sq,>6 ey

=1

then a scalar product may be defined on @ by

P @
<S [ 8= Z Z }‘p*l‘q<‘sp | 8.
p=1 gq=1
The space @’ is thus a linear vector space with a
Hermitian scalar product defined. It is not a
Hilbert space, however, because it is not complete;
i.e., any sequence | S,) with the property

lim |[[8u)— [ 8u) [l =0
(a Cauchy sequence) does not necessarily define
a unique Hmit | S) in @’ such that

lim [ | 8)— | 8.} || =0.
While the space @’ is not complete, it can be com-
pleted in the standard manner? by adjoining all
properly identified Cauchy sequences or by em-
bedding €’ in the space of all antilinear funectionals
on € and then adjoining the limit points in this
space as described by von Neumann.! Neither of
these procedures will be outlined here. The re-
sulting complete linear space is the Hilbert
space 3C®. This Hilbert space is not separable.
The space € is dense in 3= so that for every

12 See for example, A. E. Taylor, Introduction to Func-
tional Analysis (John Wiley & Sons, Inc., New York,
1958), Secs. 2.41 and 3.21,
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element | S)€ 3™ there is a sequence of elements
| Sn)€ € with

lim | S,)=| ).

n—>00

The scalar product in 3* is then given in terms
of the scalar product in @’ by

(818)=lim(S, [ 8."),

where
| 8= lim | S.’).

Having constructed the Hilbert space 3> we
begin the proof of the existence of f* by defining
a subspace § of 3¢® which contains the state
vectors of all: infinite ensembles of identically
prepared systems. Indeed, we define g to be the

smallest subspace of 3® containing all vectors
of the form

| (s)m>= |8; 1>® IS,2>® 1 8, 3>®"'r <S I S>:1'

Clearly, | (s)*) is contained in 3¢® since it is con-
tained in @©. g is then the set of all finite linear
combinations of vectors of this form together
with the limits of their Cauchy sequences. The
limits exist because J¢® is complete and g is then
a subspace.

The frequency operator fy* for finite ensembles
was defined on vectors of the form | (s)®) by
Egs. (5) and (6), and by linearity it can be ex-
tended to all finite linear combinations of vectors
of this form. The norm of fy* acting on | (s)=) is
given by a calculation similar to that of See. 111

i L (=) 11 = [ /" [ ()¥) [Pw
=1/N[| k|s) PH(N=1) [ k]s)[1]
<t ={l} (=) [~

Now, it is easily verified that f¥*| (s)®) is
orthogonal to fi* | (¢')=) if | s)= | &), for if we
take N2> M, then

()= 1wt | (=)= ()N | S | (8)V)w

X fI {s]¢)=0

a=N+1

as the last product always diverges to zero. It
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then follows Immediately that if {S) is any
finite linear combination of vectors of the form
| (s)=) that

v LS < S

Since the set of all finite linear combinations is
dense in g it follows that f¥* can be extended to
the whole of g by continuity and satisfies the
same bound. The operator f¥* is conveniently
extended to the whole Hilbert space 3> by
defining

I 8)=0,]8)¢g.

Having defined the operator f¥* on the whole
Hilbert space 3 we now consider the limit as
N—w. To show the existence of this limit we
first note that for N> M
LN ()= =T ] (s)=) |

= [ fwF 1 ()¥)=Tatt | ()¥) | 12w
= (M- =N k)P = (s) o]
(M =N) ] (s)=) |2
where the caleulation is made using the same
techniques as in Sec. III. If use is made of the

orthogonality between fv* | (s)*) and fi/* | (s')*)
the bound may be extended to all finite linear
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combinations of vectors of the form | (s)®) and
by continuity (since fx*—fu* is bounded) to the
whole of g. The bound also clearly holds for
vectors not in g, so we have it on the whole
Hilbert space. Thus, we have for any | S)c g™

lim || fw* | S)—far* 1 S) |

M N>

< Hm

M N>

(M~ — N-1)12

The sequence of operators fy* thus econverges
strongly to an operator f* defined on the complete
space 3= by

fE18)=lim fu* [ 8).

Noow

In particular, the calculation given in Sec. IIl
now goes over without reservation to show

@)= = [k is) ] (=) P
= Lm [[ fo* [ ()= [ (B {s) [] ()) [}2

N-w
=0
which implies

Fl(s)=r=1kis) P ()=



