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Abstract

Cold Atoms in Dynamic Quasiperiodic Optical Lattices

by

Peter Dotti

It is well known that quasiperiodicity in the Aubry-André-Harper (AAH) model produces

a localized phase of the system when the on-site potential term is sufficiently large. It is also

the generic experience of an experimentalist that externally applied time-periodic potentials

will add energy to a quantum system, resulting in heating. However, contrary to this intuition,

dynamic localization occurs in lattice potentials of particles exposed to a time-periodic force

of appropriate amplitude. The drive in this case reduces the rate of spreading and at certain

amplitudes arrests the spread of the particles entirely. This is well established theoretically and

has been observed experimentally.

In this thesis, we present results of experimental and theoretical investigation into the ef-

fects of a number of dynamic generalizations of the AAH model. We explore the effect of

applying a time-periodic external potential (chapter 5), as well as the effect of making the

potential term in the AAH model periodically pulsed, referred to as the kicked AAH model

(chapter 4), and the effect of periodically translating the potential in the AAH model relative to

the underlying tight-binding lattice in two different frequency regimes (chapter 4). We describe

the not obvious consequences of this incorporation of dynamics into experimental systems of

ultracold atoms in quasiperiodic potentials.
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4.2 Kicked Aubry-André-Harper Model . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Coherent Control of Localization . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Simultaneous Dynamic Localization and Aubry-André Localization 87
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CONTENTS

A Musing

The world is imbued with inexhaustible richness by the fact that elemental entities ubiqui-

tously coalesce into unfathomably permutable formations. Elements of nature, mathematics,

society, art, literature, technology, and thought itself are everywhere assembled into assem-

blies that are elements themselves in assemblies of greater complexity. Atoms aggregate into

molecules, molecules into the biochemistry of life, cells into beings, beings into communities;

this is but one branch of an incomprehensible tree illustrated in these words less deftly than a

painting of Monet might be illustrated with a stick in wave-muddied sand by a child before the

tide comes in.

Yet, humanity appears graced with understanding, some capacity to find order in the vast-

ness. Logic and mathematics, informed by investigation, seem to enable a grasp of the pat-

terned relationships between elements, time, and space. This process of making hypotheses

and finding evidence for them is the central procedure of science.

The atomic, molecular, and optical physicist artificially, but productively, conceptualizes

three isolated elements, namely, electrons, nuclei, and a rather wide band of electromagnetic

radiation. The behavior of these elements in time and space is contextualized most often in the

mathematics of the Schrödinger equation and the postulates of quantum mechanics to provide

an impressively accurate description of these elements’ behavior. Historically, study has cen-

tered on spectroscopic measurements of the electronic structure that naturally arise in atoms

and molecules, but more recently there has risen an exciting venture to precisely control en-

sembles of atoms in time and space to demonstrate what manifestations of quantum mechanics

may exist, proven by direct fabrication. What follows is the presentation of a small set of efforts

in this vein.
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Chapter 1

Introduction

As an introduction, we will present information on the concept of dynamic quantum systems

and the Aubry-André-Harper model. We have included a fair degree of historical connection

between problems and technical details that can be safely skimmed or ignored on a first read,

but we feel its inclusion in this thesis is important to give context for the work that is later

presented.

An Overview of Driven Systems

In this thesis, we will focus on quantum particles under the influence of an explicitly time-

varying potential, which will referred to as an “applied drive” to emphasize their controlled

external application. The time evolution of the particle state is described by the Schrödinger

equation, containing time dependent potential terms. In our study, the quantum particles are

84Sr atoms that have been cooled to extremely low temperatures so as to begin in the state of a

Bose-Einstein condensate when introduced into these time varying systems.

In the specific cases we consider, the time dependent potentials will be periodic in time.

We will observe in subsequent sections that previous theoretical analyses using Floquet theory

well describe these driven systems when the period of these potentials is appropriately small,
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Introduction Chapter 1

i.e., when the frequency is quite high. When we say the frequency is “high” we are comparing

it to the width of the energy spectrum of the model Hamiltonian, i.e., the difference in energy

between the highest Emax and lowest energy state Emin. To be precise then, the drive frequency ν

is high if hν ≫ Emax−Emin. Of course, it is often the case that there is no maximum energy state

of a quantum system, and that will technically be our case, but our approximate descriptions of

the system will have a well defined Emax. When higher energy states are physically occupied,

we will be able to disregard them as lost, but we will aspire to operate in regimes where these

states are not occupied on the time scale of our experiment. Our explorations will at times

extend beyond the relative familiarity of these high frequency regimes into the regime where

hν ≈ Emax − Emin, which reveal novel and previously unpredicted responses.

The details and concepts of Floquet theory are quite complicated and the models are inter-

esting to consider. However, we will not spend much time introducing them here. Instead, we

recommend the excellent resources in references [1, 2, 3, 4, 5] that already serve as introduction

to the subject and that are particularly well matched to the scope of this thesis.

The Aubry-André-Harper Model and the Hofstadter Butterfly

The focus of this thesis will be on time varying-versions of the Aubry-André-Harper model,

which, in the original static case, is given by the tight-binding Hamiltonian

HAAH = −J
∑

l

[
|l + 1⟩ ⟨l| + |l⟩ ⟨l + 1|

]
+ ∆

∑
l

cos
(
2πβ(l − δ)

)
|l⟩ ⟨l| (1.1)

where J, ∆, β, and δ are constant parameters of the system. A specific form of this Hamiltonian

was studied by Harper [6] and Hofstadter [7] in the context of crystals subject to magnetic fields

and later by Aubry and André [8] for different values of ∆. This model is directly realized in

our cold atom experiments using optical lattices, which is the context in which we will discuss

it for the most part. As is typical in tight-binding models, state |l⟩ represents the state localized

3



Introduction Chapter 1

on site number l, which has neighboring states |l + 1⟩ and |l − 1⟩.

The Aubry-André-Harper model gives rise to a striking dependence on the value of β. If β

is a rational number written as p/q, where p and q are integers, then the system is periodic in

space with period q. One can apply Bloch’s theorem and solve for the eigenstates and energies

to discover that there are q separate energy bands. The exact range of energies included in each

band and the gaps between will depend on J and ∆, or just ∆/J if we work in energy units of

J. In the limit J ≫ ∆ the gaps are small and grow as ∆ increases until ultimately, the potential

energy ∆ cos
(
2πβ(l−δ)

)
on site l dominates to determine q very narrow energy bands that look

more like energy levels.

This consideration then begs the question, what occurs when β cannot be written as p/q,

that is to say, when β is irrational? Naturally, there will no longer be any continuous bands,

rather as originally pointed out by Hofstadter [7], the energy spectrum will be like the Cantor

set, having infinitely many points but measure zero. (In fact, Hofstadter calls this “a Cantor

set.”) However, as with the Cantor set, there is still structure. Typically, there will be energy

gaps of varying widths. In these cases, the largest gaps will look like band gaps at some

resolution, and the distribution and scale of these gaps are related to the rational approximations

of β. This leads to a hierarchical structure of energy regions. (See for example, reference [9]

and the references therein.)

As alluded to before, there is a close relationship between the AAH model and crystals

subject to magnetic fields. We will set our goal here to describe the mathematical connection

between these two models. In short, the studies of Harper and Hofstadter find equation (1.1)

to arise in a process of separation of variables when solving the 2D tight-binding Hamiltonian

of a single particle in a square lattice in a uniform magnetic field B perpendicular to the lattice.

Toward a fuller illumination of this statement, let us describe the tight-binding basis on a square

4



Introduction Chapter 1

lattice with lattice spacing a as the set of states

{ |l,m⟩ | l,m ∈ Z }.

Here, |l,m⟩ is taken to be the state localized on the lattice site at coordinates x = la, y = ma.

We will describe the magnetic field as Bẑ = ∇ × A, taking A = Bxŷ after making a choice of

gauge for the magnetic vector potential A. With this model, Hofstadter describes the system

with the Hamiltonian

HHof = −J
∑
l,m

[
|l + 1,m⟩ ⟨l,m| + |l − 1,m⟩ ⟨l,m| +

e−i2παl |l,m + 1⟩ ⟨l,m| + ei2παl |l,m − 1⟩ ⟨l,m|
] (1.2)

where α ≡ Ba2/(hc/Q) for a particle with charge Q. In solid state systems, one is usually

concerned with the case of electrons in the lattice so that Q = −|e|, where e is the charge of the

electron.

We will not rigorously prove here how Hamiltonian (1.2) is derived from the consideration

of a 2D square lattice potential of charge particles in a magnetic field perpendicular to the

lattice. Instead, we offer motivation in parallel to Hofstadter’s explanation [7, 10]. Consider

that another way to write the 2D square lattice tight-binding Hamiltonian when B = 0 is

HSquare,TB = −J
[

eipxa/ℏ + e−ipxa/ℏ + eipya/ℏ + e−ipya/ℏ
]

(1.3)

where px = −iℏ∂/∂x and py = −iℏ∂/∂y are the x and y momentum operators. eipxa/ℏ is the

translation operator that translates a state one lattice site in the positive x direction, and one can

see that in this model that eipxa/ℏ =
∑

l,m |l + 1,m⟩ ⟨l,m| since it satisfies eipxa/ℏ |l,m⟩ = |l + 1,m⟩.

The other terms in equation (1.3) behave in an analogous manner. Thus, it is clear that, for the
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case A = 0, HSquare,TB |l,m⟩ = HHof |l,m⟩ for any l,m, hence, HSquare,TB = HHof.

We can then argue that a magnetic field applied to the 2D square lattice should amount to

altering HSquare,TB by replacing p with p − QA, as is done in the free space Hamiltonian when

a magnetic field is present. Making such a replacement in the case QA = QBxŷ transforms

HSquare,TB into HHof.

To see how considering the AAH Hamiltonian (1.1) follows from the model (1.2), Hofs-

tadter supposes as an ansatz that the eigenfunctions |ψ⟩ of the Hamiltonian take the form

|ψ⟩ =
∑

l

ei2πνmcl |l,m⟩

and concludes that the eigenvalue problem is equivalent to solving for the coefficients cl. This is

a valid approach, but we prefer to present a slightly different perspective to reach an equivalent

conclusion. That is, we would rather re-express Hamiltonian (1.2) in terms of a different basis

of states denoted |l ; ν⟩ related to the basis |l,m⟩ by the Fourier transform

|l,m⟩ =
∫ 1/2

−1/2
dν ei2πνm |l ; ν⟩

The new basis |l ; ν⟩ has the orthonormal property ⟨l ; ν | l′; ν′⟩ = δl,l′δ(ν − ν′), where the first

delta is the Kronecker delta and the second is the Dirac delta. By substitution of this expression

(and its hermitian conjugate) into (1.2), we can show that

HHof =

∫ 1/2

−1/2
dν (−J)

∑
l

[
|l + 1; ν⟩ ⟨l ; ν| + |l − 1; ν⟩ ⟨l ; ν| + 2 cos

(
2π(αl − ν)

)
|l ; ν⟩ ⟨l ; ν|

]
=

∫ 1/2

−1/2
dν HHof,ν

(1.4)

6
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where we have introduced the notation HHof,ν for the expression in the integral and will discuss

its relation to the AAH Hamiltonian momentarily.

From the form of equation (1.4), we conclude that the eigenstates are of the form

|ψ⟩ =
∑

l

cl |l ; ν⟩

One can then venture to solve for the energy spectrum, indexing the states with a new index µ

along with the index ν from the Fourier transform. This implies solving the equation

HHof |ψ⟩µ,ν = HHof,ν

∑
l

c(µ,ν)
l |l ; ν⟩ = Eµ,ν

∑
l

c(µ,ν)
l |l ; ν⟩ = Eµ,ν |ψ⟩µ,ν

which, is an eigenvalue problem to find eigenvalues Eµ,ν and coefficients c(µ,ν)
l that define the

eigenvectors in the |l ; ν⟩ basis. We note that the newly introduced µ must index an uncountably

infinite set, and we will discuss this more in a moment.

At this point, we can achieve our original goal and recognize how the Hofstadter energy

spectrum is related to the AAH Hamiltonian (1.1). Let us consider the AAH Hamiltonian for

the case

∆ = 2J, β = α, and δ = ν/β

Solving for the eigenstates |ψ⟩µ =
∑

l c(µ)
l |l⟩, that satisfy

HAAH |ψ⟩µ = Eµ |ψ⟩µ

is equivalent in this case to solving for the eigenenergies of HHof for eigenstates of the form

|ψ⟩µ,ν =
∑

l c(µ)
l |l ; ν⟩

HHof |ψ⟩µ,ν = HHof,ν |ψ⟩µ,ν = Eµ,ν |ψ⟩µ,ν

Therefore, the whole spectrum of HHof is obtained by finding the spectra of the AAH Hamil-
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tonian for all of the possible distinct values of δ, when ∆ = 2J. It is this mapping between the

problems that underlies the close relationship between the HHof and HAAH Hamiltonians.

As mentioned, we note that newly introduced µ must index an uncountably infinite set of

energies Eµ for the solution of the eigenvalue problems above. In the case that α is a rational

number, the HAAH (and HHof,ν) take the form of a periodic 1D lattice, and µ is quite naturally

substituted with a discrete band index n and a continuous quasimomentum q, i.e., we can make

the replacement µ→ n, q. The fact that quasimomentum is continuous preserves the cardinality

of the set of µ values. However, when α is irrational, which is the more relevant situation in

this thesis, there is not such an obvious labeling of states. The problem is similar to that of

indexing the Cantor set, but we will not present here a way to index the set of energies that

arise.

The Aubry-André-Harper Model More Generally

The AAH Hamiltonian has been studied more generally in the case that ∆ , 2J. This

was first explored by Aubry and André [8], and it was later more technically shown that when

β is an irrational number and ∆/J > 2, it typically arises (with exceptions to be discussed

momentarily) that the eigenstates will exponentially decay away from a lattice site |l⟩ with

some length scale [11]. In other words, in this case, the eigenstates will be localized at site |l⟩.

In contrast, when ∆/J < 2, all of the eigenstates are delocalized in that they have significant

occupation at points across the whole lattice.

The reason that ∆/J = 2 is the special value was originally given by Aubry and André [8].

They argued that when β is irrational, we can define a dual basis of states denoted by |kd⟩,

related to the original basis by

|l⟩ =
1
√
Γ

∑
k

e−i2πβ(kl−kδ−lδ) |kd⟩ (1.5)

8
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and likewise

|kd⟩ =
1
√
Γ

∑
l

ei2πβ(kl−kδ−lδ) |l⟩ (1.6)

where 1/
√
Γ gives a normalization factor. In the case that the lattice size is infinite the sums in

equations (1.5) and (1.6) are over all integers and there is no numerical value of Γ that satisfies

the normalization condition on |l⟩. However, this case is not dissimilar from what arise one

considers the unnormalized momentum basis in continuous space, and Aubry and André take

Γ = 1. Note that it is critical to the argument that β be irrational for an infinite number of lattice

sites. Otherwise, the relationship in equation (1.5) does not work, for if β = p/q for integers

p and q, then it would imply that the state |l = 0⟩ is the same state as |l = q⟩, and we cannot

consider equation (1.5) to be a proper basis transformation.

One can also consider cases in which the model is finite with N lattice sites with periodic

boundary conditions. This is important in numerical studies of the AAH model in finite sys-

tems. In these cases, the sums in equations (1.5) and (1.6) are from 1 to N, and we can take

Γ = N, to save the considerations of infinities in normalization. However, in this case we do

not want β to be irrational, but instead, we want β expressed as the irreducible fraction p/N.

Equivalently, we want integers p and N to be coprime. This should be sufficient to ensure that

a proper basis is defined. It is also worth noting that this transformation is very much like a

Fourier transformation on discretized space, and the normal Fourier transformation arises for

the special case β = 1/N. When β = p/N, the set of |k d⟩ basis vectors is still the Fourier basis,

but “reorganized” (except when p = 1,) which is relevant to the meaning of the tunneling terms

|(k + 1)d⟩ ⟨kd| that we will see in a moment.

In either case, we can make the substitution (1.5) and express the AAH Hamiltonian (1.1)

in this dual basis to find

HAAH =
∆

2

−∑
k

(
|(k + 1)d⟩ ⟨kd| + |kd⟩ ⟨(k + 1)d|

)
+

4J
∆

∑
k

cos(2πβ(k − δ)) |kd⟩ ⟨kd|

 (1.7)
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We see that the AAH Hamiltonian in this dual basis has the exact same form as in the

position basis (1.1), but with the replacements J → ∆/2 and ∆ → 2J. When ∆/J = 2, we

have the special case that the Hamiltonian in the position basis and the dual basis are exactly

equivalent.

A point made by Aubry and André is that, for an infinite lattice, if an eigenstate for a

specific pair of values J and ∆ in the basis dual basis |ψ⟩ =
∑

k fk |kd⟩ is localized in the sense

that
∑

k | fk|
2 < ∞ then it will be delocalized in the position basis so that writing |ψ⟩ =

∑
l cl |l⟩

gives
∑

l |cl|
2 = ∞, and vice versa. This fact suggests that if all states are localized in the

position basis when ∆/J > 2, then they will all be delocalized in the dual basis where the

corresponding 4J/∆ < 2, and if the opposite case of ∆/J < 2 is considered, then all of the

states should be localized in the dual basis and delocalized in the position basis. This reasoning

implies that if a transition between a localized and delocalized phase exists, it should occur at

∆ = 2J. (See discussion near equation 79 in reference [8].)

The exact nature of the eigenspectrum and corresponding localization properties of the

eigenfunctions were proven by Jitomirskaya [11]. The resulting statement is the following

theorem, which we rephrase slightly for the current context:

THEOREM: For all but an infinitesimal fraction of irrational values β ∈ R and δ ∈ R, the

Hamiltonian HAAH (1.1) has

1. For ∆/J > 2, a pure point spectrum with exponentially decaying eigenfunctions,

2. For ∆/J = 2, a purely singularly-continuous spectrum, and

3. For ∆/J < 2, a purely absolutely continuous spectrum.

Jitomirskaya further states a belief that point 2 is true for all irrational values of β and all

values of δ, and a belief that point 3 of the theorem is true for every value of β (including

rational values) and every value of δ, which suggests to us a very “Bloch wave-like” nature to

the resulting spectrum and solutions when ∆/J < 2 in all cases.
10
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The Aubry-André-Harper Model in Relation to the Anderson Model

The localized states of the AAH model are often compared to the localized states that occur

in the Anderson model [12] given by

HAnderson = −J
∑

l

[
|l + 1⟩ ⟨l| + |l⟩ ⟨l + 1|

]
+ ∆

∑
l

wl |l⟩ ⟨l| (1.8)

where wl is a random variable sampled uniformly from the range [−0.5, 0.5] as a function of l.

There are of course many realizations of Hamiltonian (1.8) depending on which random values

of wl you consider, but it is generically the case that all of the eigenstates are localized for every

value of |∆| > 0. The scale over which the eigenstates are localized naturally depends on the

magnitude of ∆, but they are localized nonetheless. And it perhaps goes without saying that,

given the random sampling of wl, the localization occurs for all but an infinitesimal fraction of

special cases, such as when wl = 0 for all values of l, but it is safe to ignore these improbable

cases.

Aubry and André took an interest in their namesake model because there is a transition

between a phase of localized eigenstates and delocalized eigenstates in the space of ∆ and J

values. The localization behavior is in many ways similar to the localization that occurs in

Anderson localization, and one can heuristically consider the AAH model with irrational β to

look somewhat like a random on-site potential. However, as is already apparent by the phase

transition at finite values of ∆, the fact that the on-site potential preserves a long scale order

realizes different behavior than truly random potentials in certain ways.

The Structure of This Thesis

In chapter 2, we discuss the design of “the strontium machine,” the apparatus that was

used to conduct the later discussed experiments. In chapter 3, we present a review on the

mathematical description of light and optical lattices along with a review of the mechanism

11
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of the optical dipole trap that underlies the optical lattice. In chapters 4 and 5, we present

recent research on dynamic versions of the AAH model. In chapter 6, we present designs for

optical lattice control schemes that could be used for novel study of time varying 2D optical

lattice potentials and bichromatic lattice potentials with relative phase control. We also include

a selection of technical appendices regarding machine designs and computational resources.

12



Chapter 2

Machine Design

The majority of the design of the strontium machine has been well documented in the PhD

theses of Shankari Rajagopal [13] and Ruwan Seneratne [14]. However, a number of upgrades

and changes have taken place in the meantime, which we aspire to illuminate in this section.

2.1 461 nm and 403 nm Laser System

Given their shared laser table and since the 403 nm laser frequency is referenced to the

461 nm laser, we will provide information regarding the 461 nm and 403 nm laser systems

together. A number of changes have been made to the setup over the years, and we will use

this section to provide a record of the changes. Section 5.1.4 of Shankari’s thesis [13] should

be referenced for complementary details.

A diagram of the optics in figure 2.1 serves as a visual overview of the laser optics. We

also present a laser frequency diagram for the 461 nm laser beams in figure 2.2 as an aid in

understanding the functions of the acousto-optic modulators (AOMs) depicted in figure 2.1.

The 461 nm laser is used for the first stages of optical cooling and trapping, as well as

absorption imaging in our experiments. The light is sourced from a commercial laser system

13
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(TOPTICA, Product ID: TA-SHG pro 14085) that utilizes second harmonic generation of an

amplified 922 nm laser beam. All 461 nm laser beams are near resonance with the broad

(30.5 MHz) linewidth 5s2 1S0 to the 5s5p 1P1 atomic transition of strontium. The laser’s fre-

quency is stabilized (“locked”) to a spectroscopy cell that is used as a reference, and one of the

main technical changes to the report in this thesis is the upgrade to the method of error signal

generation and an associated change to the electronics. This upgrade allowed for a dramatic

reduction in the amount of laser power required to generate a robust spectroscopy signal. In

fact, one is able to produce a robust error signal for locking even though the Doppler free ab-

sorption signal appears to have poor signal-to-noise ratio by eye at these low laser powers. The

details of this new setup are documented separately in appendix B.

The Zeeman slower [15, 16], utilizing a spin flip design, is the first stage of cooling. The

atomic source is an oven held at 510◦C with an effusive nozzle [17] held at 560◦C. Effective

slowing of the atomic beam exiting the oven requires the largest fraction of the 461 nm laser

power. The choice of frequency shifts depicted in figure 2.2 reflects this requirement; only one

AOM is needed to shift the frequency from the laser output to the desired frequency of the

Zeeman slower laser beam. If more AOMs were used to produced this beam from the laser, it

would lead to a large amount of wasted power due to finite AOM diffraction efficiency. A 10 m

long polarization maintaining (PM) optical fiber with protective end-caps for handling the high

power (Coastal Connections Model: P-FAnskFAnsk-3.8/125/3-10) carries the Zeeman slower

light from the laser table to the other optical table (“the machine table”) on which the vacuum

chamber sits near the Zeeman slower window. We input a beam of about 200mW into this fiber

with a coupling efficiency in the range 60-72% to produce a laser beam of about 120mW in

Zeeman slower. We allow the beam to diverge from the fiber before it is roughly collimated

by a 1 inch diameter lens with a 50mm focal length that is mounted in a translation stage. We

adjust the position of this collimating lens to optimize capture of atoms in our magneto-optical

trap (MOT), which occurs when the beam converges slightly as it travels through the chamber,
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slower section, and differential pumping tubes towards the oven. After this lens are two quarter

waveplates that are used to optimize the polarization of the slower for atom capture in the MOT,

which occurs for appropriate circular polarization in the Zeeman slower. The beam is finally

directed through the chamber with two 2 inch diameter mirrors.

The names MOT A, MOT B, and MOT C are used to denote the three laser beams of the

magneto-optical trap that operates on the 461 nm transition (the “blue MOT”). MOT A and

MOT B are directed through the chamber at 16 degrees relative to horizontal and are approxi-

mately, but not exactly, perpendicular to each other, a consequence of the cylindrical symmetry

of the chamber windows. MOT C is directed at 11 degrees relative to vertical (See [14], section

4.4.3). Each of the beams is retro-reflected through a quarter waveplate, and considering these

reflected beams as new beams, we have the six MOT beams. The MOT A and B beams are

attached to the chamber using a mounting scheme described in figure 5.8 of [13]. We note

that a practical drawback of this design is that adjusting the position of the collimating lens

with the lens tube rotates the fiber, and so necessitates rotating the quarter waveplate at the

same time. We would also comment that the arrangement of these MOT beams deviates quite

substantially from the prototypical MOT configuration. In particular, the laser beams are not

directed parallel to the magnetic field lines. This is a minor effect for the vertical beam, but

is considerable for the horizontal beams. Fortunately, the MOT still functions for these angles

and an analysis following, for example, reference [18] and the references therein, shows that

the MOT beams will still predominantly excite the appropriately trapping σ− transition with

a lesser amount exciting the π transition (which cools but does not trap the atoms) and a very

small (∼1%) excitation of the anti-trapping σ+ transition. On the laser table, the light for each

of the blue MOT beams is coupled into its own fiber, and at the atoms, there are approximately

6mW in MOT A, 6mW in MOT B, and 8mW in MOT C. MOT A and MOT B are limited to a

beam diameter of 0.5 inch due to the clear aperture size of the 1.33 inch CF flanges. MOT C is

approximately 1 inch in diameter.
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In a cooling procedure very similar to that described by Stellmer [19], the blue MOT is

operated continuously to cool and capture atoms from the Zeeman slower. The blue MOT is

operated without repump light so that a fraction of atoms decays to the long lived 5s5p 3P2 state

where they accumulate and remain magnetically trapped in the magnetic field of the blue MOT.

After operating the blue MOT for about 10 seconds, the trap is close to saturated by which we

mean that the loading rate is matched by the loss rate. It is at this point in the sequence that

the 403 nm laser is flashed on with a power between 1mW and 2mW to transfer atoms from

the 5s5p 3P2 back to the ground state, where they can be further cooled in the “red MOT,”

which is the MOT operating on the narrow 7.4kHz linewidth 5s2 1S0 to 5s5p 3P1 transition with

wavelength 689 nm.

The 403 nm laser is a commercial ECDL (Sacher Lasertechnik Group, Model: TEC 150,

SN: L-403-1115-01939), which repumps atoms from the long lived, magnetically trapped

5s5p 3P2 population using the transition between the 5s5p 3P2 and 5s6d 3D2 states. The 403 nm

laser is stabilized relative to the 461 nm laser using the detected transmission through a com-

mercial Fabry-Perot cavity (Thorlabs, Model: SA200-3B), whose length is repeatedly scanned

with a piezo. The transmission signal as a function of cavity length is detected, and the scan

range is set so that only one transmission peak for each of the lasers is observed. A program

written in LabVIEW (1) plots this transmission data as a function of the piezo voltage that con-

trols the cavity length, (2) detects the transmission peaks, and (3) implements a PID controller

with feedback to the 403 nm ECDL to maintain the peak separation as a function of the cavity

length over each scan. The PID setpoint for the transmission peak separation is adjusted to

maximize the fluorescence of a repumped blue MOT. This is lock is typically well maintained

over the course of a day except for the occasional need to adjust the scan range so that both

peaks are visible on the scan. However, the 403 nm laser mode hops somewhat frequently, par-

ticularly at the start of the day, and we recover a useable mode with a wavemeter as we change

the 403 nm laser diode temperature, ECDL grating piezo control voltage, and diode current to
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bring the laser back near resonance with the repump transition.

2.2 Application of Intercombination Light (“Shielding”)

During Magnetic Trap Loading

In June 2023, we implemented the method described in reference [20] to increase the num-

ber of atoms loaded into the combined populations of the blue MOT and magnetic trap. As

discussed in the reference, applying light that is near resonant with the 689 nm transition be-

tween the 5s2 1S0
(
|g⟩

)
state and 5s5p 3P1

(
|s⟩

)
state results in a fraction of the atoms popu-

lating the 5s5p 3P1
(
|s⟩

)
state at any one time where they are invulnerable to loss mechanisms

associated with the 5s5p 1P1
(
|e⟩

)
state. To achieve enhancement, we simply left the red MOT

beams (see section 2.3) on during the magnetic trap loading stage, discussed previously in sec-

tion 2.1, during which the blue MOT is continuously run to allow atoms to decay from the

5s5p 1P1
(
|e⟩

)
state into the long lived and magnetically trapped 5s5p 3P2 state. This impres-

sively enhanced the number of atoms in subsequent cooling stages by 10-20%. We found this

enhancement to be generally insensitive to the exact frequency of the 689 nm red MOT beams

which is not so surprising given the Doppler broadening that is a consequence of the relatively

high temperature of the atoms at this stage.

We note one open question for us regarding the mechanism involved here. In our machine,

we are intentionally populating the metastable 5s5p 3P2 state for holding in the magnetic trap,

and our understanding of reference [20] is that they consider this to be a loss mechanism for

their purposes. In contrast to their discussion, it would seem beneficial to maximally populate

the 5s5p 1P1
(
|e⟩

)
state, so as to most rapidly populate the metastable 5s5p 3P2; running the

689 nm laser for shielding would seem contrary to this purpose. Nonetheless, we do indeed

observe this beneficial 10-20% enhancement in our system when we run the 689 nm laser. We
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posit then that there is some other loss mechanism at play here that is partially mitigated by

populating the 5s5p 3P1
(
|s⟩

)
state. One possibility is that some population of the 5s5p 3P1

(
|s⟩

)
state reduces the optical density of the blue MOT, thereby increasing the maximum number of

atoms that can be held in the blue MOT. Another possibility is that some population of the

atoms are being captured by their interaction with the 689 nm beams and the magnetic fields

in a way that leaves them invulnerable to the loss mechanisms that typically limit the blue

MOT population. We are not sure which, if either, is a good explanation for the cause of our

enhancement. We emphasize that we are not refuting any of the claims in reference [20]. We

are just expressing our incomplete understanding of the exact mechanism of the enhancement

in our case.

2.3 689 nm Laser System

In this section, we discuss the production of 689 nm laser light for the narrow line red

MOT that operates on the 5s2 1S0 to 5s5p 3P1 transition with 7.4kHz linewidth. This is also

the same system for the light used in the shielding method previously described in section 2.2.

A diagram of the current laser table setup is shown in figure 2.3, and an associated frequency

diagram for the produced laser beams is given in figure 2.4

Our 689 nm laser is a commercial ECDL system (TOPTICA, Product ID: DL pro 020098).

We stabilize the laser’s frequency against slow drift using a spectroscopy cell, however, we

believe that our laser cooling is limited by the laser linewidth, as we have only ever been able

to cool to several µK and more typically we only reach higher than 10 µK, limited by the

trap depth of the optical dipole traps (ODTs) that we load into at the end of the red MOT, in

a manner similar to [19]. Narrowing the linewidth of the laser with fast feedback to a stable

cavity, as has been implemented previously by other groups, is a planned upgrade to improve

this. In any case, these temperatures are sufficient to create large BECs in our machine.
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Figure 2.3: Diagram of the optics used for the 689 nm laser. Bold numbers after the AOMs
indicate which diffraction orders are used.
Diagram Credit: Anna Dardia.

Our laser light undergoes two stages of amplification with tapered amplifiers (TAs) as

shown in figure 2.3. We use 690 nm TA chips produced by Eagleyard, and purchased from the

supplier XSoptix in a C-Mount package (XSoptix Product number: EYP-TPA-0690-00250-

2003-CMT02-0000). We currently use TA mounts constructed from designs presented in the

thesis of John F. Barry [21]. We have found that these tapered amplifiers seem to deteriorate

over the time scale of months, which we suspect is due to the challenges of fabricating gain

media at this wavelength. We try to limit the laser power out of the TAs to about 95mW each

to extend the lifetime, and as we observe the output power to nonetheless deteriorate over time,

we increase the TA current to compensate. This necessitates replacing a TA chip about every
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two years.

After the TAs and a double pass AOM (shown in figure 2.3) that is driven with constant

RF drive frequency and power, the beam passes through a single pass AOM and a fiber (the

“omnibus fiber”) used to clean up the laser mode and provide a static output laser mode. Use

of this fiber makes it so that only the single omnibus fiber instead of the three MOT beam

fibers needs to be recoupled when the TA mode changes or beam direction drift before the

omnibus fiber, which are a relatively common occurrences. The power of the beam exiting

the omnibus fiber is monitored with a photodiode, which is used to stabilize the power with

feedback to the single pass AOM’s radio frequency (RF) drive power. We do find that the

feedback is unable to keep up perfectly when the frequency of the single pass is modulated

with high amplitude during the first stages of the red MOT, but it does successfully stabilize as

the frequency modulation tapers off. This might be improved by modulating the double pass

AOM frequency instead, but we do not believe this is feasible in the current setup due to the

subsequent TA that would be sensitive to beam changes during the modulation.

The beam after the omnibus fiber is then split into the three MOT beams, denoted MOT X,

MOT Y, and MOT Z. These are brought to the chamber with PM fibers and are arranged in a

very similar manner as the blue MOT beams, where MOT X and MOT Y are approximately

in the horizontal plane, and MOT Z is approximately vertical. MOT X and MOT Y are oper-

ated with approximate equal max powers of 3mW. MOT Z is operated with a max power of

approximately 6.5mW.

The red MOT is operated in three stages that are roughly the same as those described by

Stellmer [19]. During the first stage (“RedMOT1”), to contain the relatively hot atoms in

the MOT, we intentionally broaden the frequency spectrum of the MOT beams. We do this by

modulating the frequency of the final single pass between approximately 73 MHz and 79 MHz.

This is accomplished by sending a control voltage signal to the frequency modulation input of

the RF driver (MOGLabs, Model: XRF421.) In the second stage (“RedMOT2”), the amplitude
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of the frequency modulation is tapered down nearer to resonance with the 689 nm transition.

Concurrently, the intensities of the MOT beams are reduced to mitigate power broadening of

the 689 nm transition that would limit the temperature, and the optical dipole traps are partially

ramped up. In the final stage (“RedMOT3”), the MOT beams’ frequency is held at roughly

half a linewidth detuning from the atomic transition. At the same time, the optical dipole traps

are ramped to final power and the red MOT beam powers are ramped to zero. Note that MOT

beam frequency is shifted in the RedMOT2 and RedMOT3 stages from the natural transition

frequency due to the A.C. Stark effect (see section 3.3) in the presence of the ODTs. We

experimentally adjust the final frequency to get atom count and temperature that optimizes

phase space density in the optical dipole trap.

Lastly, a beam with power between 6mW and 10mW is brought to the spectroscopy setup

with a PM fiber. The designs for the red spectroscopy cell used to stabilize the 689 nm laser

are discussed in section 2.5. The electronics and frequency stabilization scheme are discussed

in appendix C.

2.3.1 AOM Drivers

One important upgrade regarding the red MOT was made to the RF drivers that provide

radio frequency (RF) power to the AOMs. Previously, the sources of RF were open loop

voltage controlled oscillators (VCOs) from Mini-Circuits (Models: ZX95-100, ZX95-200+, or

ZX95-535). This RF signal was then sent through an RF switch (Mini-Circuits, Model: ZX80-

DR230+) and a variable voltage attenuator (VVA) (Mini-Circuits, Model: ZX73-2500+). And

finally, the signal was sent through an amplifier (Mini-Circuits, Model: ZHL-3A or ZHL-

2010+) sometimes also with a preamp before it (Mini-Circuits, ZX60-8008E). We used very

similar designs for the RF drivers in our 461 nm laser system and for power control of the

optical dipole traps (with additional amplification in that case), where they work quite robustly
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and are easy to tune.

The issue with this design in the red laser system is that the VCOs are typically not quite

stable to within a few kilohertz, which is necessary for laser cooling consistently on the 7.4 kHz

linewidth atomic transition linewidth. We identified that drift in the frequency results from

changes in the VCO temperature, and we attribute the issue predominantly to this.

Fortunately, RF stability to within 1 kHz is easily achieved when the frequency is refer-

enced to a standard temperature compensated crystal oscillator (TCXO). This is the frequency

reference in most commercial products, such as arbitrary waveform generators. For our pur-

poses, we replaced the RF source for the spectroscopy AOM and for the 175 MHz double pass

with commercial signal generators (RF-Consultant Robert Yarbrough, Model: TPI-1002-A).

The details for the RF driver used for the spectroscopy AOM are discussed in appendix C. The

final single pass AOM required a different RF source because, while the TPI-1002-A allows for

modulation of the frequency with an AC signal, it does not allow for DC shifts of the frequency

with the control voltage as we desired. In our case, we use a commercial RF driver from MOG

Laboratories (MOGLabs, Model: XRF421,) which allowed for easy implementation of the

modulation sequence.

2.4 Optical Dipole Traps and Optical Lattices

Recently, we changed how we generate the 1064 nm light for our experiments. We use

a fraction of the power from a new narrow linewidth seed laser (Coherent Model: Mephisto

200FC Laser System) that is amplified using a 50 W constant current amplifier (Toptica/Azurlight

Model: ALS-IR-1064-50-A-CC-SF.) Another general change is that we now use optical fibers

(Coastal Connection Model: P-FAknsFAkns-6c/125/3-5) designed for powers greater than 1 W

to transfer all of our 1064 nm laser beams from the surface of the laser table to the elevated

breadboard that is at the level of the vacuum chamber. All of the waveplates and polarizing

25



Machine Design Chapter 2

beam splitting cubes used to divide up the 1064 nm laser power as well as the AOMs for power

and frequency control of the 1064 nm light are on the laser table surface before the fibers bring

them up to the chamber level breadboard. This is helpful for ensuring beam mode quality and

minimizing drift.

We considered before this implementation that thermal lensing might potentially cause dis-

torted beam modes at the output fiber collimators. For this reason, we tested fiber collimators

from Schäfter+Kirchhoff (Model: 60SMS-1-4-12-37) and from Thorlabs (Model: PAF2-7C)

that we planned to use. We found no detectable beam mode change as a function of power

using either collimation package by measuring the collimated beam on a beam profiler (Cin-

ogy Technologies Model: CinCam CMOS 1201.) In these tests, we measured the beam at a

distance of roughly 20 cm away from each output collimator and observed the output beam

mode at output beam powers up to 5 W. The only change seen were small and due to sensor

effects when the profiler was set to different exposure times. From this, we concluded that any

thermal lensing using these types of collimators is negligible for our experiment. We note this

to be in contrast to significant thermal lensing observed with an isolator we tried from Thorlabs

(Model: IO-5-1064-VHP,) and on recommendation from Azurlight, we now use one from Co-

herent (PAVOS series 5 mm aperture 1045-1080 nm) that does not produce significant thermal

lensing.

2.5 Spectroscopy Cell for Red MOT 2022

We now discuss updated designs to the red spectroscopy cell. Our previous spectroscopy

cell designs are documented in Shankari Rajagopal’s thesis (Section 5.1.6, page 127, and figure

I.7, page 272 of reference [13].) The designs were based on those from Simon Stellmer’s the-

sis [19] with similar design principles, namely, making the spectroscopy cell long to reduce the

flux of strontium that reaches the viewports, using a buffer gas, and using large diameter pump
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and probe beams. Both viewports in our previous design were mounted with their surfaces

perpendicular to the axis of the roughly cylindrical spectroscopy cell. This made the windows

perpendicular to the beam path, which resulted in some undesirable interference between the

reflections from the viewports and the primary beams, but otherwise did not hinder function

greatly.

Over time, the functionality of the previous spectroscopy cell deteriorated. Some issues

were already discussed in [13]. Two major causes were definitively identified: (1) The buildup

of strontium on the viewports, and (2) the migration of strontium away from the center cup

and associated formation of an annular buildup that limited the usable beam size. Before

redesigning the spectroscopy cell, we reduced some of strontium layer that had deposited on

the windows using 532 nm laser pulses from a Continuum Minilite Q-switched Nd:YAG laser.

This technique was able to increase measured laser transmission from roughly 40% to roughly

70%.

The peak-to-peak width of our spectroscopy error signal was roughly 3 MHz. This was

determined by converting the ECDL piezo voltage (x-axis of our error signal) to laser fre-

quency of the 689 nm laser. One check of this conversion is given by Toptica’s test data that

states a 466 MHz shift in laser frequency per volt change in piezo voltage in the ECDL (i.e.,

466 MHz/V conversion factor.) Another check was done by measuring the piezo voltage of

the 88Sr Doppler free spectroscopy signal peak and the Doppler limited profile minimum. The

voltage difference was 0.213 V. The difference in laser frequency between these two features

correspond to 79.710 MHz, the frequency of the RF drive to our spectroscopy AOM. Together,

this implies 374 MHz/V, which is in good enough agreement with the quoted 466 MHz/V

for our estimates. Since the error signal width was large compared to the 7.4 kHz linewidth

transition, we decided that designing and ordering a new spectroscopy cell was warranted.

We ordered a custom design from ANCORP. Technical drawings provided to ANCORP are

shown in figures 2.5 and 2.6. There are a couple notable changes from the previous designs.
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Figure 2.5: Designs of spectroscopy cell. More complete designs provided by ANCORP
during the ordering process are presented in Appendix D.

Firstly, the strontium is held in a larger diameter central region, rather than a cup. This allows

for easier wrapping of the source with heater tape and eliminates potential accumulation of

strontium on a relatively cold upper surface. The diameter and length of the center region

holds 20g of strontium. The other main change was the use of standard 2.75” CF flanges

welded at a 39◦ angle from normal to be used for the viewports. Having the windows at an

angle avoids multiple reflections causing interference effects to appear in the spectroscopy

signal, which were present previously if care was not taken to misalign and separate stray

reflections. Stellmer [19] used viewports mounted at the brewster angle near 56◦. However,

this angle cannot be achieved using 2.75” CF flanges without obstructing the beam for the

standard 0.75” diameter vacuum chamber section, hence our use of the maximum 39◦ angle.

Assuming an index of refraction of 1.487, as quoted by Corning Inc. for alkali borosilicate
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Figure 2.6: Details of CF2.75” bore location.

7056 [22], this angle reduces the reflection losses for P polarized light to about 1.5% from

each viewport surface, down from 3.8% for normally incident light. This was acceptable to us

to avoid the added challenges of sourcing proper brewster angle windows, since it sufficiently

reduced reflection losses and eliminates interference effects.

Additionally, since we were concerned that part of the spectroscopy signal deterioration

was due to pressure broadening from some form of outgassing or a slow leak in the vacuum

chamber, we decided to attach a pressure gauge to the spectroscopy cell. We settled on the use

of a convection enhanced Pirani gauge from Kurt J. Lesker Company (Model: KJL275803LL).

Because the pressure is near the lower limit of the gauge, the readings change dramatically
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Figure 2.7: Spectroscopy cell installed on the strontium laser table. On the left side is the
Pirani gauge, tee, and angle valve. Centered is the bulky foil wrapped insulation.

(usually reading 0.0 mTorr) each time the unit is disconnected and then reconnected to power,

and there are also reading variations with temperature. Nonetheless, we use it to assess whether

or not the pressure in the spectroscopy cell is rising significantly.

To enable attachment of the gauge to the spectroscopy cell, we attached a standard 1.33”

CF tee to the spectroscopy cell as can be seen in figure 2.7. We connect the Pirani gauge to

one flange of the tee and an all-metal angle valve to the other. This angle valve was purchased

from Kurt J. Lesker Company (Part number: VZCR20R,) and is used to pump on, flow argon

into, and seal the spectroscopy cell.

Figure 2.7 shows the fully assembled and installed spectroscopy cell. Visible are magnets

above the spectroscopy cell, and there are other magnets hidden below. This adds a magnetic

field that induces a Zeeman shift that ensures only π transitions are possible when the laser is

on resonance. This minimizes broadening of the spectroscopy error signal from background

magnetic fields as discussed by Stellmer [19].

To heat the spectroscopy cell, we used heater tape controlled by variacs. We used the

Omega Engineering Super-High Temperature Samox-insulated resistive heating tape [13]. Sim-

ilar products are sold by McMaster if one does not need specific dimensions (e.g., McMaster

30



Machine Design Chapter 2

Figure 2.8: Heater tape wrapped around the spectroscopy cell before insulation was added.
The central component of the heater tape was bleached white from being raised to high tem-
peratures in a previous bake.

Part number: 4550T113.) The placement of the heater tape is shown in figure 2.8. We wrapped

it in three sections to allow heating the source separately from the adjacent sections of the

spectroscopy cell. This allows either heating evenly or heating the sections to the left and right

of the source to a higher temperature to avoid accumulation of strontium in that region.

To monitor the temperature of the spectroscopy cell, we put thermocouples (McMaster

Part number: 9251T92) in contact with the spectroscopy cell. They were tied to the cell with

stainless steel wire. These were then wrapped in a couple layers of aluminum foil. The foil

layer was then wrapped with heater tape as seen in figure 2.8. Each thermocouple was placed

under one of the strips of heater tape to monitor the temperature beneath it. One might consider

using a shielded thermocouple (e.g., McMaster Part number: 3860K53), but we have found that

when wrapped in aluminum foil in usual operating fashion, these can read 50◦C or lower near

400◦C compared with the unshielded ones, presumably because of reduced heat conductance to

the thermocouple through the shielding. This can be an issue if one desires accurate readings,

which is quite valuable in this case where the equilibrium strontium vapor pressure grows

31



Machine Design Chapter 2

exponentially with temperature.

We found in heating the spectroscopy cell that the insulation was sufficient to keep the

exterior of the windows, gauge, and 1.33” CF flanges below 35◦C as measured with an IR

thermometer, so we were not concerned about thermal stresses on any of the CF flanges or

exceeding the maximum operating temperature of 40◦C for the Pirani gauge.

2.5.1 Recommended Cell Assembly Procedure

As will be discussed in the section 2.5.2, in our first assembly of this spectroscopy cell,

we opted to incorporate several steps that seem unnecessary after the fact or that would be

unnecessary under different conditions. In light of this experience, we suggest the following

minimal procedure.

1. Assemble most of the spectroscopy cell and load strontium under argon.

2. If you are concerned that there are some oils or other contaminants in the cell, bake about

180◦C for a couple days. This will also drive off water, but water should be reacted away

by the strontium in any case.

3. If you opted to bake, attach the vacuum gauge under argon at this point. If not, the

vacuum gauge could have been attached initially.

4. Wrap the spectroscopy cell source with heating tape and insulation. Heat it to about

330◦C for a couple days while pumping on it with a turbo pump to drive out any gases

from the strontium itself. Cool back to room temperature afterwards.

5. Calibrate the gauge and fill the spectroscopy cell to roughly 2 mTorr of argon (accounting

for any gas dependent reading of the gauge).
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6. Seal the spectroscopy cell and monitor its pressure to ensure that it is not leaking or

outgassing substantially. If there is a low level of outgassing, one might try operating the

spectroscopy cell anyway and rely on strontium’s getter effect to remove it.

7. Install the spectroscopy cell on the optical table.

2.5.2 Spectroscopy Cell Assembly and Issues that Arose

Below is a description of the assembly process for the first spectroscopy cell of this design.

We took extra precautions for the first version, and in particular, we did not wish to rely on

strontium’s getter property to remove gases. As described in reference [23], the reactiveness

of strontium makes it an effective pump for gases in the atmosphere, with the exception of the

noble gases. This should enable it to remove the initial water present on the chamber walls

and to absorb hydrogen that diffuses out of the stainless steel of the chamber. One might also

expect it to help with the majority of small leaks, with the exception being the 1% of argon

present in the atmosphere.

Hydrogen Bake

We began with a hydrogen bake in air. That is, we heated the spectroscopy cell using heater

tape without any CF flanges attached. The components wrapped around the spectroscopy cell

from the surface of the spectroscopy cell outwards are as follows: 1. Thermocouples, 2. Foil,

3. Heater tape, 4. Sheets of insulation wrapped in foil, 5. An extra foil layer. Wrapped in with

the spectroscopy cell was the 1.33” CF tee, so that it would also be baked. This whole setup

was placed in an oven (Despatch model LAC2-18-8), mostly because it was a safe place to do

so to prevent fire hazards or burns, but we did operate the oven at 200◦C partway through the

bake in an attempt to limit thermal gradients. The oven could not be used alone unfortunately

because its maximum operating temperature is 260◦C.

33



Machine Design Chapter 2

The motivation for this was the consideration that the slow release of absorbed hydrogen

from the stainless steel could raise pressure in the spec cell over time. The Handbook of

Vacuum Technology [24] suggests an initial hydrogen concentration in stainless steel of 40

Pa·l/cm3, which for the dimensions of our spectroscopy cell would cause the pressure to rise

10s of Torr if a more than about 20% of the hydrogen in the stainless steel accumulated in the

interior of the spectroscopy cell. Given that we wished to operate with a buffer gas of roughly

3×10−3Torr, this seemed like a potential issue. However, it seems likely in retrospect that the

strontium in the spectroscopy cell would react with the hydrogen and remove this gas.

We held the cell at above 400◦C for 4 days. For this bake, we used one J-type thermo-

couple that was shielded in stainless steel (similar to McMaster part number 3860K53) and

two unshielded J-type thermocouples. We found that the unshielded thermocouples both read

close to 485◦C when the shielded thermocouple read roughly 400◦C. It seems likely that this

is due to the shielding limiting thermal conductance to the thermocouple and causing it to read

consistently low. In any case, this is sufficient to remove the majority of the hydrogen from the

stainless steel.

Aluminum Deposit Removal

A detrimental outcome of the hydrogen bake was that the heated aluminum foil deposited

on the steel chamber in some areas. The deposits were in the form of millimeter to centimeter

scale strips in several locations on the spectroscopy cell surface. Unfortunately, two such

locations were the 1.33” CF flange and one of the 2.75” CF flanges, likely because the foil was

wrapped tightly in these regions with heating tape directly on top.

Fortunately, we were able to chemically remove these deposits by sonicating the flanges

for several hours in a pH 12.5 aqueous solution of NaOH (0.2% by weight made with 2 g of

NaOH in 1 L of water).
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Baking the Strontium

After an incident in which a Buna-N rubber KF flange was unintentionally used and heated

to the point of leaking in a bake, we successfully loaded strontium into the spectroscopy cell.

Loading of 20 g of strontium was carried out in the argon atmosphere of a glovebag. All

components of the spec cell were assembled after loading except for the gauge, whose port

was sealed off with a 1.33” CF blank for the bake. This was necessary because max bakeout

temperature of the gauge is a very low 70◦C, and it would not have survived the bake.

One particular issue for us was that the strontium that we were supplied from Plasmamate-

rials seems to have been contaminated with some type of soil. We encountered a previous issue

in which this substance condensed on the viewports of a vacuum chamber. Fortunately, it was

possible to bake away this mysterious deposit at temperatures near 100◦C. We were able to see

similar condensation in a test in which a sample of the this strontium was heated. Plasmamate-

rials insists that there was no oil in the production process of the strontium, and to their credit,

they offered to have us send the strontium back for analysis. We did not have them analyze

it. In any case, the primary purpose of the bake was to remove this unknown substance, rather

than the usual objective of removing water from the vacuum chamber.

In an effort to protect our turbo pump from contamination, we used a liquid nitrogen cold

trap from Kurt J. Lesker (Model: TLR4XI100QF,) which we filled with liquid nitrogen every

10 hours. In using this, we found that close to when the liquid nitrogen finished evaporating,

the gas load on the turbo would increase significantly as condensed vapors were released from

the trap surface.

The bake proceeded like a typical water bake. We used the aforementioned oven (Despatch

Model: LAC2-18-8) to bake the spectroscopy cell. We ramped the temperature at 40◦C/hour

to 180◦C. We then held it at 180◦C for 72 hours. Afterwards, we ramped back down to room

temperature at 40◦C/hour. The peak turbo pump pressure reading was 2.3×10−6 mbar (low in
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part because of the LN2 trap), and it reached the minimum pressure that the turbo pump could

sustain by the end of the bake, which was 1.1×10−7mbar.

After the bake, the Pirani gauge was attached under argon and its zero was calibrated after

pumping out the spectroscopy cell.

Outgassing Issues

We tried leaving the spectroscopy cell at room temperature while monitoring the increase

in the Pirani gauge reading. We found that the pressure was rising at about 1.3 mTorr per hour

initially. After a few days of monitoring and careful leak checking with a helium leak checker,

we determined that this pressure was entirely due to outgassing, likely from the addition of the

pirani gauge. A “bake” at 64◦C for five days was insufficient to eliminate the outgassing.

We eventually wrapped the strontium source heating tape as shown in Figure 2.8 and insu-

lated it. We heated the source to 330◦C and pumped on it for three days. As the temperature

was ramped, the turbo pump pressure reading reached a high of 2.0×10−4 mbar when the source

was roughly 295◦C. Fortunately, the pressure dropped quickly after this, otherwise, we would

have aborted the procedure for fear of overloading and damaging the turbo pump. This seems

to strongly suggest that some substance in the strontium was outgassing. Whether this sub-

stance was evaporating from the surface of the strontium or escaping from gases trapped in

pockets in the interior of the strontium is unclear. After this, we heated the source to 450◦C

for a few hours while pumping. There was no large pressure spike this time, but the pressure

did increase. Heating the cell to 450◦C proved a major mistake because it coated one of the

windows with strontium. Why only one of the windows, rather than both was coated is not

clear to us, but we speculated the possibilities of some asymmetry in temperatures somewhere,

some difference in line-of-sight between the windows to the strontium granules, or some vapor

dynamics within the spectroscopy cell. The outgassing was no longer an issue when the spec-

troscopy cell was brought back to room temperature. We subsequently replace the strontium
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coated window under an argon environment.

Adding Buffer Gas

After this, we added enough argon to the cell that the Pirani gauge read 1.8 mTorr, but,

because of the gas dependence of the gauge, the actual pressure was 2.6 mTorr. This is a

factor of 3 higher than Stellmer’s suggestion of roughly 10−3mbar, but we opted to fill a bit

higher to ensure no rapid window coating occurred as we set up the spectroscopy cell with the

expectation that even the increased pressure broadening would be small compared to saturation

broadening and transit time broadening effects [25].

Installation

We installed the spectroscopy cell on the strontium machine laser table and ramped up

the temperature until a spectroscopy signal was seen. Because we were replacing a previous

version of the spectroscopy cell, no realignment was necessary. We had an operable signal at

when the spectroscopy cell reached 350◦C.

Also notable in this process was the observation of a pressure increase in the spectroscopy

cell that was clearly present when the cell was about 80◦C. This pressure continued to rise until

the peak pressure of about 30 mTorr around 260◦C. As the strontium was heated beyond this,

we believe it rapidly reacted with and absorbed the gases that were evidently being released in

the heating process. The pressure returned to a reading of 1.1 mTorr (uncorrected for the gas

dependence of the gauge) when the temperature had reached 400◦C. The discrepancy from the

1.8 mTorr reading that it was filled to is because of the change in gauge pressure reading when

the Pirani gauge is power cycled.
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2.6 New Oven Design

2.6.1 Previous Design

To generate a collimated beam of strontium atoms, we use an oven nozzle design based

on our group’s 2015 paper [17]. As discussed in that publication, the nozzle is essentially a

hexagonal lattice of stacked microcapillaries assembled into a double-sided 2.75” CF blank.

This has been an effective design for the most part, but we attempted to improve on this design

because of certain non-ideal features.

The most critical of these non-ideal features is that heating the nozzle heats two CF vacuum

flanges that are on each side of the nozzle. As alluded to in the original publication, we have

heated our nozzle to as much as 650◦C, which is far above the specified 450◦C temperature

rating of the flange. Impressively, the flange handles this reasonably well, and can go without

leaking for an extended period of time at these temperatures. In our experience, this time

period is about 2.5 years. In the most recent oven change of March 2022, the nozzle leaked

soon after replacement at a substantially lower temperature of about 570◦C, but the leak went

away after cooling the nozzle, and retightening the bolts to a torque of 165 in·lb, which is

above the initially used manufacturer specified value of 144 in·lb. In that case, we suspect

the heating deformed the nickel gaskets that we used, and retightening the bolts was able to

improve the seal. However, after roughly two years of constant elevated temperature, we find

that the bolts of the CF flange themselves degrade and fail, presumably because of some slow

chemical process with the air, given the dark gray corroded look of the bolts. The bolts also

warped and snapped under the torque of a wrench when we tried to unscrew them, and they

needed to be cut free with a Dremel to open the oven. The state of the flange after two years

of heating is shown in figure 2.9. The white patches are strontium oxide. Also shown is a pair

of 1/4”-28 silverplated bolts fused into a platenut that were used at the flange. The one broken

in the middle snapped when we tried to unscrew the bolt. The other one needed to be removed
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Figure 2.9: Components of the oven installed in July 2019 after the strontium source had been
depleted and the flange had leaked in February 2022.

by cutting off the head of the bolt.

For comparison, we show images of the state of the oven when installed in February 2019

in figure 2.10.

In contrast, the same design used for our lithium oven has not leaked, and we suspect this

to be due to operating temperature being within specifications for the CF flange, and the benefit

of using copper gaskets instead of nickel.

We also note that we no longer lower the temperature of the oven regularly to prevent

temperature cycling induce degradation of the flange seal. When the oven leaked in February

2019, we believe it was temperature cycling that caused it. In 2021, a leak was present in

the oven in spite of no temperature cycling, it should be noted that the actual reason the oven

needed to be changed was because the strontium source had been nearly fully evaporated, so

being able to turn down the temperature confidently might have helped the lifetime.

Beyond this, there were some features that made manufacturing and assembly less conve-

nient than it might be. First, because the microcapillaries have a nominal outer diameter of 8.3

thou (0.21mm), using wire electrical discharge machining (wire EMD) requires use of a wire

39



Machine Design Chapter 2

Figure 2.10: Components of the oven of July 2019 when they were being installed. The
left two images depict the vacuum chamber components of the oven section and the right
image depicts the same section insulated with “Superwool” ceramic insulation. The fibrous
insulation sheets are wrapped in aluminum foil before installing them around the oven to
mitigate the fibers from shedding around the experiment and protect. The wrapped insulation
sheets are held onto the oven using Kapton tape on the exterior surface of the insulation.

with a radius of approximately 4 thou or less. More commonly available are wires of radius 5

thou. In fact, this is what our on-campus machine shop used. Second, the sloped edges of the

channel for the microcapillary made clamping the capillaries difficult, and required a nearly

exact number of rows of microcapillaries. And finally, because the capillaries are recessed

into the blank, a tapped hole cannot be used as part of the clamp. Instead bolts and nuts must

be used to create the clamp, reducing the reliability of the clamp and necessitating care and

dexterity to assemble the clamp without spilling microcapillaries.

2.6.2 New Multiple Piece Design

In an attempt to improve upon the previous design, we opted to use a nozzle made of

multiple pieces. Firstly, intending to reduce the risk of vacuum chamber leaks, we redesigned

the oven section to no longer contain any flanges as shown in figure 2.11. By including interior

mounting holes, it is designed to be loaded with strontium through the 2.75” CF flange and

0.77” diameter hole into the cup section and then attach the nozzle over the 0.77” hole. This

mildly complicates loading of strontium by requiring funneling of reasonably small strontium
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Figure 2.11: New oven design. The details of the 2.75” CF flange are not shown.

pieces into the cup.

We custom ordered this part to be assembled by ANCORP. The one part that they did not

provide is the piece shown in “Inset A” of figure 2.11. They would have machined this part for

us in and this is recommended, but because of lead time concerns at the time of ordering, we

had this component made by Xometry and shipped it to them.

The heating elements of the oven section and nozzle are similar to the previous design.

We use custom sized Mi-Plus® mineral insulated band heaters from Tempco. One heater with

ID 2.25” and length 1” is used to heat the nozzle mounting collar (the piece in Inset A), and

another heater with ID 1.5” and length 2.5” is used to heat the straight section of the cup where

the strontium sits. The whole oven is externally insulated with ceramic fiber insulation wrapped

in aluminum foil.
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Figure 2.12: Left: Nozzle assembly with microcapillaries. Note that the screws on the top
side are for clamping the capillaries in place, and must be used first, while the screws on the
front face just ensure that there is no gap for strontium to get around the nozzle between the
two pieces. Right: Nozzle assembly attached with 8-32 bolts into the collar piece of the oven
section shown in figure 2.11

The nozzle itself is made up of 4 custom pieces. Full technical drawings and a few ad-

ditional details are provided in Appendix E. Computer-aided design (CAD) renderings of its

final form are shown in figure 2.12. Most notably, instead of cutting the triangular channel

with wire EDM from a single piece, the channel is made by setting sharp cornered triangular

wedges into a rectangular channel. These wedges and channel can be easily cut by a CNC

machine, provided specification of 1 thou precision on a few key features and sharp unbroken

edges in a few places. The primary benefits of this approach are fourfold: (1) the bottom corner

of the channel accommodates only one tube in contact with the sloped edges of the triangular

pieces, ensuring ideal stacking of the tubes, (2) the CNC machines needed to create the parts

are more readily available and typically require less lead time, (3) clamping the microcapillar-

ies is accomplished using tapped holes, and (4) the exact number of microcapillary rows can

be varied.

There is a downside in that the loose triangle pieces during assembly can jostle out of place
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Figure 2.13: Images of the nozzle taken through a microscope. Left: The side of the nozzle
that faces away from the oven. The total number of microcapillaries used in this nozzle was
798. Right: The masked side of the oven that faces the oven.

requiring some attention to this when assembling, but I personally found this not to be too

difficult to avoid. Nonetheless, I would recommend using a wire EDM if available rather than

the wedge pieces, even if the stacking is imperfect. Stacking imperfections seem somewhat

unavoidable in my experience, and the easier assembly is likely worth it. Also, an improvement

could be made by widening the rectangular channel and making the triangular wedges larger

so that fewer tubes need to be stacked with straight sides. This was possible to do and still

preserve packing, but stacking more than 3 or 4 rows with straight sides occasionally caused

imperfect packing because the tubes would try to stack in a straight row against the vertical

sides.

We successfully assembled the nozzle and an image of the front and back of the assembled

nozzle are shown in figure 2.13. There are a few locations where imperfect packing can be

identified, mostly near the edges of the vertical wall section. These do not appear to affect

functionality, but would likely go away if the triangular wedges were widened.
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2.6.3 Tips for Assembly

Assembly can be rather challenging, and we offer the following advice.

First, we suggest keeping the capillaries on a large conducting surface during assembly to

remove any static charge from the microcapillaries. We believe that static charge can cause

them to interact, but it is not entirely clear whether or not we mistook some magnetic interac-

tions (which are also present) for electrostatic ones.

We recommend sonicating all of the parts, bolts, tools, and capillaries in isopropanol before

assembly for cleanliness.

For assembly, we designed a sort of “scaffolding ” for the rectangular channel and triangles

to sit on during assembly. A CAD rendering of the part is shown in figure 2.14, and technical

drawings are in Appendix E. During assembly, the rectangular channel part can be taped to

the scaffolding and the nozzles can be loaded into it while taped together. A short extrusion

is on the scaffolding to keep the channel in place and to make sure that the microcapillaries

and triangle are flush with the front face of the channel. I should note that the extrusion was

a bit shorter than it probably should have been which causes the capillaries to extend a couple

of rows above the extrusion before they can be clamped. Ideally, the extrusion would match

the final height of the stacked capillaries. When construction is near completion, the clamping

portion of the assembly can be loosely clamped into place from above before the scaffolding

is removed. After the scaffolding is removed, the clamp can be tightened much more securely,

and the bolts that hold to channel piece flat against the face of the clamp can be added. At this

point, one should try poking the capillaries a bit to make sure that they are securely clamped,

and tighten the clamp a bit more if they move. A few extra rows of capillaries than the bare

minimum is necessary before clamping here to ensure that a tight clamping can be achieved

when the microcapillary array compresses slightly under the force of the clamp.

I also highly recommend the assembly technique pioneered by Quinn Simmons. He found
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Figure 2.14: A CAD rendering of the component to be used as a temporary scaffolding to
assemble the nozzle.

that it is not necessary to perfectly stack the tubes one by one. Instead, 10s of microcapillaries

can be loosely set in the channel and then agitated into a perfect lattice structure. My preferred

method of agitation is holding the whole nozzle assembly on the scaffolding and tap it against

the table. Quinn prefers to tap the scaffolding with tweezers. One can also poke the nozzles

with tweezers, but this is somehow worse, unless there is a missing nozzle near the bottom of

the stack and one needs to force a nozzle into place there before the remainder will file in. This

is very effective until the last one or two rows, at which point it is necessary to place tubes

one at a time to get a flat top row. Much of the time, the tubes can be seen with the unaided

eye, which is sufficient for agitating the capillaries into a perfect lattice. However, an optical

microscope is necessary to check for defects and to make sure that there is a complete final

row. One should have fine point tweezers for manipulation of the microtubes. Tweezers with

a curved nose are very helpful as well, especially when a microscope is in the way. Flat large

tweezers can also be used to place large numbers of tubes loosely in the channel at once.
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Primer on Optical Dipole Traps

In this chapter, we discuss the mathematical representation of laser beams that are used through-

out this thesis, and the concept of the optical dipole trap (ODT), which is the underlying mech-

anism by which our optical lattices are created. We hope this will be a valuable primer to

understand the experimental setups in chapters 4 and 5. At times, we delve into theoretical

details that can be safely skimmed over on a first pass, namely the details of section 3.3, but we

include these to potentially serve as a helpful introduction to the technical resources regarding

the analysis of ODTs.

3.1 Complex Representation of Laser Light

We use standard complex notation to represent an electromagnetic plane wave with

E = E0ei(k·r−ϕ) (3.1)
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Here, E0 is a three-dimensional complex vector

E0 =
∑

i

E0,ix̂i = E0,1x̂ + E0,2ŷ + E0,3ẑ

where x̂1 = x̂, x̂2 = ŷ, and x̂3 = ẑ are the unit vectors in cartesian coordinates and E0,i is a

complex number. We will also write

E0,i =
∣∣∣E0,i

∣∣∣ eiϕi

Equation (3.1) describes the physical time varying electric field Ereal of the plane wave

described equally well by the following equivalent expressions

Ereal = Re(E e−iωt) =
1
2

E e−iωt +
1
2

E∗ eiωt =
∑

i

∣∣∣E0,i

∣∣∣ x̂i cos(k · r − ωt − ϕ + ϕi)

More generally, we can consider non-plane waves, which we represent by a complex valued

vector function of space by

E(r) =


Ex(r)

Ey(r)

Ez(r)


This represents the physical field given by

Ereal(r) = Re
(
E(r)e−iωt

)
Lastly, it will be useful at some points to express E as

E = Eû (3.2)
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where E is a complex scalar and û is a complex vector that is normalized to satisfy û∗ · û = 1

Using complex numbers in this way to represent electric fields has a few primary benefits:

• The superposition of two electric fields is made relatively easy to compute as the sum of

two complex representations E1 + E2. One can confirm this by observing

Re
(
(E1 + E2)e−iωt) = Re(E1e−iωt) + Re(E2e−iωt)

This is helpful since computing E1+E2 is much simpler than the alternative manipulation

of trigonometric functions.

• The notation is more compact.

• Both the polarization and phase of the light is encoded in the single complex vector E.

• The time averaged intensity of the electric fields is made simpler to compute with the

help of the theorem in section 3.1.1.

Take care though that not every mathematical operation carries trivially to the complex

representation. Most importantly, the product E1 ·E2 does not correspond to the product of two

electric fields as can be seen by comparing Re(E1e−iωt) · Re(E2e−iωt) and Re(E1 · E2e−iωt)

3.1.1 Time Averaging Theorem

We will now consider a valuable theorem for our purposes that a simple extension of the

theorem given in Zangwill’s Modern Electrodynamics [26] section (1.6.3):

Consider two complex representations a(r) and b(r) as defined above. Let T = 2π/ω be
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the period of one cycle. Then the time averaged product of the two fields is given by

⟨ Re
[
a(r)e−iωt

]
· Re

[
b(r)e−iωt

]
⟩ =

1
T

∫ T

0
dt Re

[
a(r)e−iωt

]
· Re

[
b(r)e−iωt

]
=

1
2

Re [a∗(r) · b(r)]

(3.3)

where “·” represents the usual dot product between vectors and “⟨⟩” represents taking the time

average.

3.2 Optical Dipole Traps

Optical dipole traps are a flexible tool in atomic physics that enable the creation of broad

classes of hamiltonian potentials. Most relevant to this thesis, optical dipole traps can be used

to create harmonic traps and optical lattices. We discuss first the physical mechanism behind

this technique in this section and then briefly describe optical lattices at the end.

General Introduction to the Optical Dipole Potential

When an atom is irradiated with laser light of a frequency that is very different from the

atom’s resonant frequencies, it will negligibly absorb photons from the laser beam. Instead,

the energy of the atom’s internal states will shift in proportion to the square of the laser beam’s

electric field, an effect known as the A.C. Stark shift. For an intuitive sense of the consequence

of this statement, suppose the atom is in a nondegenerate ground state. The laser beam will

induce a change in the energy1 of this ground state, δϵ, given by the formula

δϵ = α(ω)
(
1
4
|E|2

)
(3.4)

1If considered in the floquet formalism, this is actually a shift of the quasienergy.

49



Primer on Optical Dipole Traps Chapter 3

where α(ω) is a constant of proportionality that depends on the laser’s frequency ω and the

polarization of the laser light. Here, we are also assuming that the laser beam is well approxi-

mated by a plane wave and that we have

|E|2 = E∗ · E

where E is the complex vector representing the laser beam per the description in section 3.1.

However, if the electric field amplitude varies with its position in space r, then this change

in the atom’s internal energy state can be considered as a spatially varying potential energy

V(r), which is referred to as the optical dipole potential,

V(r) = δϵ = α(ω)
(
1
4
|E|2

)
(3.5)

This potential enters into the hamiltonian Ĥ in the usual way:

Ĥ = −
ℏ2

2m
∇2 + V(r) = −

ℏ2

2m
∇2 + α(ω)

(
1
2
|E(r)|

)2

Often, one can also say that the potential V(r) is proportional to the intensity of the laser beam,

I(r), but this is only precisely true if one defines intensity to be proportional to E2, which

does not exactly match the textbook definition of intensity. This becomes apparent in the case

of a standing wave of light formed by two counter-propagating laser beams, and this is in

fact the important scenario of an optical lattice as we will later discuss. If one calculates the

intensity for this standing wave using the time average of the Poynting vector, one finds zero

intensity everywhere. But, E2 is not zero everywhere, and so an optical dipole trap is present.

Nevertheless, the optical dipole force is often described in terms of intensity, and it is nice as

an experimentalist to operate with the rough notion that the potential depth is proportional to

the easily measured intensity of a laser beam, which is often the case in practice.
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A key feature of α(ω) is that it can be negative or positive depending whether the laser

light is a lower frequency (“red detuned”) or higher frequency (“blue detuned”) than the most

relevant atomic transition(s). The most relevant transitions are typically the ones with the

largest linewidths, but sometimes smaller linewidth transitions are important if the laser is near

resonant with them as we will see from equation (3.16).

The force associated with this potential is referred to as the optical dipole force, and a

simplified introduction can be found reference [27] where a two level atom is analyzed. In the

case of a two level atom where the energy difference between the two levels is ℏω0 and the

linewidth of the transition between these levels is Γ, the optical dipole potential can be found

to good approximation to be [27]2

V(r) =
3πc2

2ω3
0

Γ

∆
I(r) (3.6)

assuming that I = 1
2ϵ0c |E|2 and where ∆ ≡ ω − ω0. This formula gives good intuition for how

the potential scales with the detuning ∆ and transition linewidth Γ, which is approximately

applicable even with a real multilevel atom in the common case when only two levels are

important.

Also helpful to know is the rate at which the atoms scatter photons from the laser in this

two level approximation, which is given by [27]

Γsc(r) =
3πc2

2ℏω3
0

(
Γ

∆

)2

I(r) (3.7)

The quadratic scaling with detuning ∆ suggests that heating caused by scattering photons from

the laser beam can be made negligible if ∆ is sufficiently large, and this fact is frequently

utilized.
2Note that our convention differs by a factor of 2 from that of [27] for the complex representation of the electric

field, so that our relationship between I and |E| differs by a factor of 4. We follow the convention of [26].

51



Primer on Optical Dipole Traps Chapter 3

In section 3.3, we will offer a more formal discussion of the dipole potential with refer-

ences.

Utility of Optical Dipole Traps

The optical dipole trap is a very versatile tool in atomic physics, since it is completely

controlled by adjusting the spatial intensity of a laser beam. The potential can be applied or

removed very rapidly by turning a laser beam on or offwith an acousto-optic modulator. Lattice

potentials can be formed from standing waves of light, which are referred to as optical lattices

and enable the study of certain theoretical problems in solid state physics. The potential can

be translated in space by redirecting the laser beam, and the depth of a trap can be varied by

adjusting the intensities of laser beams.

3.3 A.C. Stark Effect: Formal Theory of the ODT

The effect of an oscillating electric-magnetic field on an atom is known as the A.C. Stark

effect, and it is the origin of the optical dipole force felt by an atom in a far detuned laser beam.

We will discuss the theory of this effect, drawing on resources [28, 29, 30].

We begin with the semiclassical description of the Hamiltonian where the atom is described

quantum mechanically and the field is described classically. This gives the Schrödinger equa-

tion

iℏ
∂Ψ

∂t
= (H0 + Vreal)Ψ

where H0 is the hamiltonian system in the absence of the externally applied potential (e.g. the

system of the isolated atomic nucleus and atoms) and V is the applied fields (e.g. the electric

field of a light wave.)
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The operator for the field can then written as3

Vreal(t) =
1
2

Ve−iωt +
1
2

V†eiωt = Re(Ve−iωt)

V is further conveniently expressed in the multipole expansion

V = Vd + Vµ + VQ + · · ·

where Vd is the electric dipole interaction term, Vµ is the magnetic dipole interaction term, VQ

is the quadrupole interaction term, and so on, where

Vd = −d · E Vµ = −µ · [n × E] −
i
3

∑
α, β

QαβkαEβ

d and µ are the electric and magnetic dipole moment operators, Qαβ =
1
2e

∑
(3rαrβ − r2δαβ) is

the quadrupole moment tensor of the atom, e is the electron charge (e < 0), n is proportional

to the wavevector according to k = ω
c n, and the sum in the expression Qαβ means the sum over

all electrons in the atom. Vµ accounts for the magentic field of the wave H = n × E. VQ takes

into account spatial inhomogeneity of the field.

For an off resonance laser interacting with an atom, we are usually well justified in approx-

imating the interaction by only the electric dipole interaction. For the AC stark analysis, we

will do this by setting

V ≈ Vd

yielding

Vreal = −Re(d · Ee−iωt) (3.8)
3We opt to differ by a factor of 2 from reference [29] so that the convention matches that used for the electric

field in equation (3.1). Strange to us is that reference [29] shares our convention for E, but then chooses a slightly
different definition for V .
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The details of the theory of this interaction are rather involved, and a full treatment requires

a perturbation theory discussion as treated in [29]. Here we will only sketch out the details and

highlight the results that are relevant to an experimentalist.

First, let us consider the basis of relevant atomic states. We consider an atom with hamil-

tonian H0. We will consider atomic state with quantum number γ, the total atom spin quantum

number f , and spin along a given axis M. We will denote these states by |γ f M⟩ and we will

have

H0 |γ f M⟩ = εγ f |γ f M⟩

where εγ f are the energies of H0. If one would like to be more concrete, one can consider

γ to indicate both the principle quantum number n and the fine structure J quantum number,

in which case f would be the total spin quantum number F and M would be the associated z

component spin quantum number mF . However, we opt to use γ, f , and M to allow for more

general cases, such as when we wish to only consider the fine structure states, in which case γ

represents the principle quantum number n, and f represents the combined spin-orbit coupled

spin J with M the associated z component of spin mJ.

We will then consider the full hamiltonian to be

H(t) = H0 + Vreal(t)

where Vreal is the dipole interaction from equation (3.8).

Because Vreal(t) = Vreal
(
t + (2π/ω)

)
is time-periodic, it is then appropriate to work in the

Floquet formalism to the time-periodic total hamiltonian and develop a perturbation theory

approach as in [29]. Let us denote the Floquet states associated with |γ f M⟩ in Floquet space

by |γ f M⟩⟩ [1]. Then, finding the perturbed quasienergies becomes a problem of finding the
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eigenvalues of the matrix

TM,M′ = ⟨⟨γ f M |VrealG
(γ f )Vreal | γ f M′⟩⟩ (3.9)

where G(γ f ) is a modified version of the quasienergy state Green’s function. Note that, as is

typically the case for floquet states, ⟨⟨· · ·⟩⟩ denotes an integration over time along with taking

the usual inner product of the regular Hilbert space ⟨· · ·⟩. The quasienergies ε̃ are then given

by solutions to the eigenvalue problem

det |ε̃I − T | = 0 (3.10)

where I is the identity matrix.

Fortunately, the time integration implicit in equation (3.9) can be carried out analytically,

leaving a relatively simple expression in terms of matrix elements of the usual eigenstates

|γ f M⟩. This time integration can be thought of as taking a sort of time average of the energy

shift over each cycle of the laser. The resulting equation given in equation (5.3) of [29] is

TM,M′ =
1
4
|E|2 ⟨γ f M | (û∗ · d)Gεγ f + ℏω+ i0(û · d) + (û · d)Gεγ f + ℏω(û∗ · d) | γ f M′⟩ (3.11)

where Gε is the green’s function for the static hamiltonian H0, and E and û represent the electric

field of the laser as defined in equation (3.2).

Le Kien et al. [28] consider a slightly different version of (3.11). This expression suggests

to them an operator VEE for the A.C. Stark effect. Using their approach, we consider the

effective Hamiltonian for atoms in the presence of the laser beam to be

H = H0 + HHFS + VEE (3.12)
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where H0 is the atom hamiltonian approximated up to fine structure, HHFS is the hyperfine

interaction, and

VEE =
1
4
|E|2 [(û∗ · d)R+(û · d) + (û · d)R−(û∗ · d)]

With this perspective, if we assume that the hyperfine states are well separated in energy, T

from perturbation theory is then simply

TM,M′ = ⟨γ f M |VEE | γ f M′⟩

in agreement with equation (3.11), except that R+ and R− are slightly different operators than

Gε. We consider a discussion of these operators, their derivations, and their differences beyond

the scope of this section and typically not so critical to the work of an experimentalist.

Following Le Kien et al [28], let us use the hamiltonian in equation (3.12). We consider

the case that the HHFS possibly induces small energy splittings comparable or smaller than

those created by VEE. In this case, we need to consider matrix elements for different total spin

F (setting f = F), in addition to the already considered mF (setting M = mF). Thus, our

perturbation theory now involves considering the matrix

TF,mF ,F′,m′F = VEE
FmF F′m′F

≡ ⟨nJFmF |VEE | nJF′m′F⟩

in the eigenvalue problem (3.10).4 Here, we use n to denote the principle quantum number and

J to denote the combined spin-orbit angular momentum quantum number, and we have that

H0 |nJFmF⟩ = εnJ |nJFmF⟩

4Of course, one may wish to consider HHFS as part of the perturbation in which case we should have

TF,mF ,F′,m′F = ⟨nJFmF |HHFS + VEE | nJF′m′F⟩ = ⟨nJFmF |HHFS | nJF′m′F⟩ + ⟨nJFmF |VEE | nJF′m′F⟩
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The actual theoretical calculation of VEE
FmF F′m′F

for an atom using the formulas derived so

far is a rather challenging task. Fortunately, there are some steps that can be taken to express

it more simply in terms of relatively few constants. This procedure is discussed in detail in

appendix B of [28]. Here we will provide an abridged overview.

The main procedure in this simplification is to operate in the spherical basis for both vectors

and operators. For a review of scalar, vector, and tensor operators along with a derivation of the

Wigner-Eckart theorem that we will soon apply, we recommend the Notes 20 on the Wigner-

Eckart theorem in reference [31]. In brief, we use the spherical basis vectors defined by

ê−1 =
x̂ − iŷ
√

2
ê0 = ẑ ê1 = −

x̂ + iŷ
√

2
(3.13)

A vector operator, a.k.a. a rank 1 tensor operator, A can then be expanded in this basis by

Aq = êq · A and A =
∑

q

Aqê∗q

where ∗ is used to denote the complex conjugate.

It benefits us to operate in the spherical because it allows us to apply the Wigner-Eckart

theorem5 to the dipole operator d to write

⟨nJFmF |dq|n′J′F′m′F⟩ = (−1)F−mF

(
F 1 F′
−mF q m′F

)
⟨nJF||d||n′J′F′⟩ (3.14)

where the 2 × 3 array in parentheses denotes the Wigner 3- j symbol. ⟨nJF||d||n′J′F′⟩ denotes

the reduced density matrix, which is essentially just a constant that depends only on the n,

J, and F quantum numbers (but not mF) and the total operator d (but not the component q).

5Be aware that sometimes the reduced matrix operators are defined differently so that a factor of 1/
√

2 j + 1
appears on the right side of the equation (3.14). In fact, reference [29] opts to use this alternative version of the
theorem, while [28] uses the convention given in equation (3.14) so there are some differences in the formulas for
the conventional dynamical polarizability equations as a result.
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The power of using the Wigner-Eckart theorem here is that we only need the reduced matrix

elements to easily determine the substantially larger number of matrix elements.

Moreover, because the operator d does not act on the nuclear spin, one is able to further

relate ⟨nJF||d||n′J′F′⟩ to the reduced density matrix ⟨nJ||d||n′J′⟩ with the relation given in

equation (B.27) of reference [28].

⟨nJF||d||n′J′F′⟩ = (−1)J+I+F′+1
√

(2F + 1)(2F′ + 1)
{

F 1 F′
J′ I J

}
⟨nJ||d||n′J′⟩

where the 2 × 3 array in braces denotes the Wigner 6- j symbol, and I is the nuclear spin of the

atom.

Thus, we have greatly reduced the number of values needed to define the matrix T or VEE

from the total number of matrix elements to the relatively small number of reduced matrix

elements ⟨nJ||d||n′J′⟩. It is further noted in reference [28] that the values of ⟨nJ||d||n′J′⟩ can be

gotten from the oscillator strengths or transition probability coefficients, which are measurable

by experiment.

Similar operations can be carried out utilizing the properties of the spherical basis and the

decomposition of the combined R+ and R− operator into irreducible tensor operators. The net

result is equation (1) in reference [28], which states

VEE
FmF F′m′F

=
1
4
|E|2

∑
K=0,1,2

q=−K,...,K

α(K)
nJ {û

∗ ⊗ û}Kq (−1)J+I+K+q−mF
√

(2F + 1)(2F′ + 1)

×

(
F K F′

mF q −m′F

) {
F K F′
J I J

} (3.15)

Here, α(K)
nJ denotes the reduced dynamical scalar polarizability (for K = 0), the reduced

dynamical vector polarizability (for K = 1), and the reduced dynamical tensor polarizability

(for K = 2.) These quantities are given by formula (11) in reference [28], which we reproduce
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here:

α(K)
nJ =(−1)K+J+1

√
2K + 1

∑
n′J′

(−1)J′
{

1 K 1
J J′ J

}
|⟨n′J′||d||nJ⟩|2

×
1
ℏ

Re
(

1
ωn′J′ − ωnJ − ω − iγn′J′nJ/2

+
(−1)K

ωn′J′ − ωnJ + ω + iγn′J′nJ/2

) (3.16)

where ωnJ = εnJ/ℏ and γn′J′nJ is the linewidth of the transition between |nJ⟩ and |n′J′⟩, and

where the sum is taken over all n′ and J′ such that |nJ⟩ , |n′J′⟩. Be warned however, that

there are also the conventional dynamical polarizabilities that differ from the reduced dynam-

ical polarizabilities. They are also referred to as the scalar αs
nJ, vector αv

nJ, and tensor αT
nJ

polarizabilities and they are related to their reduced polarizability counterparts by the formulas

αs
nJ =

1
√

3(2J + 1)
α(0)

nJ (3.17)

αv
nJ = −

√
2J

(J + 1)(2J + 1)
α(1)

nJ (3.18)

αT
nJ = −

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α(2)

nJ (3.19)

And lastly, {û∗ ⊗ û}Kq denotes the compound tensor components given by

{û∗ ⊗ û}Kq =
∑

µ, µ′=0,±1

(−1)q+µ′
√

2K + 1
(

1 K 1
µ −q µ′

)
ûµû∗−µ′

where ûµ = û · êµ are the spherical components, defined in equation (3.13), of the polarization

vector, defined in equation (3.2).

The overall benefit of this exercise is the realization that the only values we need in order

to quantify the A.C.Stark shift (and the associated optical dipole forces) are the reduced matrix

elements ⟨n′J′||d||nJ⟩, the transition frequencies (ωn′J′ − ωnJ), and the linewidths for the most
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relevant transitions, along with the frequency ω, polarization û, and electric field amplitude |E|

of the laser light.

For the purposes of cooling and conducting experiments with 84Sr, we are interested in the

A.C. stark shift for a couple reasons. Most critical for experimental design is for determination

of the optical dipole potential in the presence of a far detuned laser. This is relatively simple

for 84Sr atoms in the ground state because J = 0, F = 0, and I = 0. The consequence

of this is that the Wigner 3- j and Wigner 6- j in equation (3.15) symbols both evaluate to 1,

{û∗ ⊗ û}00 =
1
√

3
û · û∗ = 1

√
3
, and α(K)

n0 = 0 for K ∈ {1, 2} because of the Wigner 6- j symbol in

equation (3.16). After plugging these values into equation (3.15) and using n to indicate the

ground state, the net result of this is that the ground state energy shift is simply

⟨n0|VEE |n0⟩ = VEE
0000 =

1
4
|E|2

(
1
√

3
α(0)

n0

)
= αs

n0

(
1
4
|E|2

)
(3.20)

and we recover exactly the energy shift given in equation (3.4) that gives rise to the very simple

form of the optical dipole potential given in equation (3.5). In practice, one can look up the

reduced dipole matrix elements, transition frequencies, and linewidths for strontium’s atomic

transitions and use it to accurately determine αs
n0 for a given laser frequency to then calculate

the optical dipole potential (see for example, table 3.2 and surrounding text of reference [32].)

In the case of atomic states where J = 1/2, as frequently occurs for alkali atoms, there is a

similar simplification when the laser light is linearly polarized. In this case, α(2)
n0 = 0 because

J = 1/2 and {û∗ ⊗ û}1q = 0 when û corresponds to linear polarization, thus only a scalar light

shift remains for this case.

Another reason we have considered the A.C.Stark shift is because it is relevant to the cool-

ing effectiveness of our red MOT (the magneto-optical trap operating on the 689nm strontium

transition.) While the red MOT is cooling, we introduce an optical dipole trap composed of

strong 1064 nm laser beams so that the atoms are loaded into the optical dipole trap as they
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are cooled by the red MOT. However, the dipole trap laser beams will shift both the upper and

lower atomic energy levels of the 689nm transition, which potentially requires tuning of the

689nm laser beam frequency as the dipole trap is ramped up so that the red MOT continues to

operate properly.

As a final note on the A.C. Stark shift, we note that it is possible to consider a polarizability

operator α̂ and write the optical dipole potential as [33]

V(r) = −E∗(r) · α̂ · E(r)

This gives a nice sense of connection to polarization induced by a light field in the classical

case.

Optical lattices are generally a special case of the optical dipole trap in the case that laser

beams are arranged to interfere with each other. When such interference occurs, the electric

field amplitude (and possibly polarization) varies periodically in space. A detailed introduction

and discussion of optical lattices formed with a generic number of interfering laser beams is

presented in chapter 6. We will simply note here the most relevant case for the experiments

discussed in the subsequent section. In these cases, two counterpropagating Gaussian laser

beams are set to interfere. Supposing that the beams are traveling in the +x̂ and −x̂ direc-

tions and further supposing that we can ignore the finite Rayleigh ranges of the beams in our

approximation, the beams will interfere with each other to form a potential of the form

V(x, y, z) = V0(y, z) sin2(k(x − δ))

that results from the optical dipole force. Here, the form of V0(y, z) depends on the beam waist.

This can be an important consideration, since V0(y, z) determines how the atoms are supported

against gravity (assuming gravity is in the z direction, as in our experiments,) and the form
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of V0(y, z) suggests the possibility of excitation of transverse modes. We note that in certain

circumstances, the finite Rayleigh ranges of the beams that we have ignored are also important

to consider, and typically this is dealt with by modeling it as a superimposed harmonic trap

along the x direction.
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Chapter 4

Dynamic Realizations of the Aubry-André

Model

In this chapter, we will briefly survey three recent experiments, conducted with the strontium

machine described in chapter 2, and based on techniques using optical lattices. Then in the

subsequent chapter 5, we will discuss in greater detail our most recent work on experiments

exploring the competition and mutual enhancement of Aubry-André localization and dynamic

localization in a class of systems where both are at play.

In all of these experiments, we create a bichromatic lattice, formed by superimposing two

optical lattices. The two optical lattices will be generated with laser beams of differing wave-

lengths (hence, the term bichromatic.) We can approximate these systems as 1D and describe

them by the Hamiltonian

H = −
ℏ2

2m
d2

dx2 + Vp(t) sin2
(
kp

(
x − δp(t)

))
+ Vs(t) sin2

(
ks

(
x − δs(t)

))
(4.1)

Vp(t) and Vs(t) denote the (possibly time dependent) lattice potential depths of the primary

and secondary lattice, respectively. Likewise, δp(t) and δs(t) denote the position of the lattice
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potential. Also, kp = 2π/λp and ks = 2π/λs where λp and λs are the wavelengths of the lasers

used to generate the primary and secondary optical lattices, respectively. For the experiments

in this section, λp is approximately 1064 nm and λs is approximately 915 nm. The secondary

wavelength was changed for the experiment discussed in chapter 5.

4.1 Phasonic Spectroscopy

The structure of a quasicrystal is in part determined by a set of phasonic degrees of free-

dom [34]. The underlying geometry of a regular crystal is defined by its Bravais lattice. In

contrast, quasicrystals require more information than this. One relatively simple definition

for defining a broad and relevant class of quasicrystals is provided by the “cut-and-project”

(or sometimes “projection”) method for constructing a quasicrystal geometry [35]. To carry

out this theoretical construction of a quasicrystal in N dimensions (with N ≤ 3 for physical

quasicrystals), one must specify (A) a true crystal Bravais lattice in an M-dimensional space

of higher dimension than the space of the quasicrystal (i.e., M > N), and (B) a subspace of

dimension N within the M-dimensional space onto which one can “project” nearby vertices

of the M-dimensional lattice according to the procedures described in reference [35]. The

quasicrystal is constructed by this projection procedure.

One can consider the concrete example case of an N = 2 dimensional quasicrystal con-

structed from a projection procedure in an M = 3 dimensional space. Here, the subspace is a

2D plane that “cuts” through the 3D crystal, and quasicrystal is found by “projecting” points

of the 3D crystal onto the 2D plane. Note that for some orientations of the N-dimensional

subspace, the cut-and-project method will produce an actual periodic crystal instead of a qua-

sicrystal, and we will assume that the orientation was chosen so that this is not the case.

The phasonic degrees of freedom can be understood as a quasicrystal construction param-

eter within the framework of this cut-and-project method. In total, we see that the quasicrystal
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915 nm

1064 nm

PD3 Dipolar Drive

Phasonic Drive

(a)

(b)

BS1
BS3

PD1

PD2

BS2

DC

DC

Figure 4.1: Experimental schematic. (a)BEC (blue) in a bichromatic lattice (yellow). Photo-
diodes (PD), beam samplers (BS), and dichroic mirrors (DC) are indicated, as is the config-
uration for both dipolar and phasonic driving using a piezo-driven mirror (solid block). (b)
Sample band-mapped data. Dotted lines indicate zone edges of the primary lattice. Repro-
duced from reference [36].

can be completely described by the following: (A) the geometry of the M-dimensional space

lattice, (B) the dimension N of the projection subspace within the higher M-dimensional space,

(C) the orientation of the N-dimensional subspace as defined by its basis vectors in the M-

dimensional space, and (D) the location of the N-dimensional subspace in the M-dimensional

subspace.1 The phasonic degree of freedom is the degree of freedom determined in step (D);

tuning this phasonic degree of freedom is achieved by translating the N-dimensional subspace

perpendicular to itself (i.e. in a direction perpendicular to all of its basis vectors) within the

M-dimensional subspace.

A bichromatic lattice formed from incommensurate lattices (i.e., when ks/kp is irrational)

also has a phasonic degree of freedom that it inherits from a mapping to a 1D quasicrystal [37].

In this case, the phasonic degree of freedom corresponds to the difference in position of the

primary and secondary lattice, given by δ̃ ≡ δs − δp. In reference [36], we explored how

a cloud of ultracold strontium atoms loaded into a bichromatic optical lattice reacts to rapid

modulation of the phasonic degree of freedom by driving δ̃ as a function of time.

Figure 4.1 shows the two configurations of the experimental apparatus that were used in

reference [36]. In the dipolar drive configuration, the entire bichromatic lattice was translated

1Note that two different sets of parameters potentially describe the same quasicrystal, so while these parameters
completely describe the quasicrystal, it is not necessarily a unique description.
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to produce a dipolar drive. In the phasonic drive configuration, only the secondary lattice was

translated, resulting in a modulation of the phasonic degree of freedom. To determine what

excitations this induced, we performed a band-mapping procedure in which the potential was

ramped down on the 100us time scale after which the atoms were allowed to freely expand

for some time before imagining. The atom position after imaging indicates which bands were

populated.

In the experiment, the dipolar drive is described in terms of equation (4.1) by

δp(t) = δs(t) = Adip sin(ωdipt)

The force perceived in the non-inertial reference frame in which the potential is stationary is

then given by

F(t) = K sin(ωdipt) = mω2
dipAdip sin(ωdipt)

We then define the dimensionless drive parameter αdip according to

αdip =
Kλp

2ℏωdip
=
λp

2
mωdipAdip

ℏ

which is equivalent to K0 used in chapter 5 and elsewhere, but we use αdip here to remain

consistent with the notation of reference [36]. We also define fdip = ωdip/(2π).

Phasonic driving is instead defined by the case

δs(t) = Aphason sin(ωphasont), δp(t) = 0

In this case too, we introduce a dimensionless amplitude αphason given according to

Aphason = (1000 nm · kHz)
αphason

fphason
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where fphason = ωphason/(2π).

Figure 4.2 explores excitation to higher bands as a function of primary lattice depth and

drive frequency, and Figure 4.3 explores excitation to higher bands as a function of drive

strength and drive frequency. A comparison is made in both figures between dipolar driving

and phasonic driving. We observe in particular that excitations arise strongly for harmonics of

the drive frequency in the phasonic drive case that are not present when compared to dipolar

driving. Lastly, in figure 4.4, we observe the change in excitation spectrum as a function of

secondary lattice depth, which allows us to observe the coarse features of the energy structure

that result from the introduction of a secondary lattice of increasing strength.
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Figure 4.2: Comparison of dipolar and phasonic spectroscopy; areas where no data was taken
are marked in gray. (a) Excitation due to dipolar driving as a function of drive frequency fdip
and primary lattice depth Vp with αdip = 3.2 × Vs/Vp and Vs = 1.35ER,p. Green hatched
(Blue horizontal) overlay shows calculated first (second) interband transition. We note that
this value of αdip differs from that presented in reference [36] because post-publication, it
was realized that a factor of 20 amplifier gain was neglected in relating a control voltage to
the displacement of the mirror on a piezo. This did neglected factor did not affect values of
αphason. (b) High-resolution dipolar spectrum at Vp = 20ER,p. Line shows the calculated
center of the first interband transition. (c) Excitation due to phasonic driving as a function
of drive frequency fphason and primary lattice depth VP. αphason is set to ≈ 1. Green hatched
(Blue horizontal) overlays show calculated first (second) interband transition, with multipho-
ton subharmonics also indicated for the first transition. (d) High-resolution phasonic spectrum
at Vp = 20ER,p. Lines show the calculated center of the first twelve multiphoton transitions
corresponding to the lowest interband transition. (e) Data from (c) plotted versus drive period
1/ fphason, showing a broad low-frequency absorption feature. (f) Theoretical prediction for
(e). Reproduced from reference [36] with further detail therein.
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Figure 4.3: Amplitude dependence of multiphoton resonances. (a) Theoretical simulation of
phasonic spectra for varying drive amplitude αphason. (b) Experimentally measured phasonic
spectra for Vp = 20ER,p and varying αphason. Both experiment and theory show the onset
of a non-perturbative regime near αth = 0.9. (c) Line cuts of experimental phasonic (solid)
and dipolar (dashed) spectra at various α values. Note the extreme power broadening in the
dipolar spectrum. Reproduced from reference [36].
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Figure 4.4: Spectroscopy of an interacting quasicrystal. (a) Calculated energy spectrum vs.
ν = λs/λp. Dashed line shows the slice corresponding to the quasicrystal used in this ex-
periment. (b) Post-expansion atomic density distribution at varying disorder strengths VS ,
showing the effects of crossing the localization transition. We note here again the difference
in αdip from reference [36] for the reason described in the caption of figure 4.2 (c) Experimen-
tally measured dipolar excitation spectra for varying Vs/Vp at αdip = 0.44, showing spectral
minigaps. No data were taken for the gray areas in the upper-left and lower-right. (d) Calcu-
lated density of final states for a non-interacting system, starting from a BEC. (e) Calculated
density of final states for an interacting BEC; a shift of the resonance line to lower frequen-
cies from Fig. 4.4(d) is observed. (f) Calculated non-interacting transition density assuming
all single-particle orbitals below 1.5ER,s are initially populated. Reproduced from reference
[36].
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4.2 Kicked Aubry-André-Harper Model

The kicked Aubry-André-Harper (kAAH) model is given by the tight-binding Hamiltonian

HkAAH(t) = −J
∑

l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ F(t)∆

∑
l

cos(2πβ(l − δ)) |l⟩⟨l| (4.2)

which differs from the AAH model described in equation (1.1) of the introduction by the time

dependent factor F(t). We will consider F(t) to be a somewhat generic pulse train that has short

intervals of relatively high value with zero or very low magnitude between these intervals. In

theoretical study of the kAAH model, F(t) is typically taken to be a delta function pulse train

defined by

F(t) =
∑

n

δ(t/Tp − n)

where δ is the Dirac delta. Thus, equation (4.2) represents a tight-binding model where the

on-site potential of the AAH model is pulsed (or “kicked on”) intermittently in time.

In the recent work of reference [38], we experimentally realize this kicked version of the

AAH model. A schematic of the experiment is shown in Figure 4.5(c) and (d). The experiment

is conducted with a time dependent bichromatic optical lattice Hamiltonian of form (4.1) in the

case that Vs(t) is pulsed periodically with period Tp according to

Vs(t) = Vs,0

N∑
n=1

fτ(t/Tp − n) (4.3)

where fτ(t/Tp) represents the functional form of the pulse shape that is non-negative and de-

fined such that max fτ(t/Tp) = 1. We will further define an “effective pulse time”

τ ≡

∫ Tp

0
fτ(t/Tp) dt
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Figure 4.5: Kicked Aubry-André-Harper model phase diagram and experimental ap-
proach. a, Average IPR scaling exponent ξ̄ as a function of Λ and T , for α = 1.162842. b,
Standard deviation of IPR scaling exponents. Along the diagonal (Λ/T = 2), scaling expo-
nents for all eigenvectors take a single value. c, Experimental schematic. d, Experimental
sequence. Reproduced from reference [38].

Here, τ corresponds to the pulse duration in the case of square pulses given by

fτ(t/Tp) =


1 t ∈ (0, τ)

0 otherwise

We will arrange such that the duration of the pulse2 is small compared to the pulse period Tp.

In these experiments, Vp = 10ER,p was constant in time, where ER,p = h2/2mλ2
p is the recoil

energy of the primary lattice, and δp and δs were constant for the expansion of an individual

atom cloud, but may have drifted slowly between experimental runs.

We introduce a couple other definitions at this point as well. It will be helpful to define the

kick strength Λ as

Λ =
∆

∆τ
=
∆τ

ℏ

2We define the pulse duration as when fτ(t/Tp) is not approximately 0.
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and the pulse period in units of tunneling time TJ by

T =
Tp

TJ
=

TpJ
ℏ

In Figure 4.5(a) and (b), we present some theoretical predictions for the scaling behavior of the

IPR of the single-particle position-space eigenstates. The IPR for each eigenstate

|ψ⟩ =
∑

l

ψl |l⟩

for written in terms of the tight-binding basis states | j⟩ is calculated for a system of L sites, and

the scaling exponent of the IPR is defined as the value ξ that satisfies

L∑
l=1

|ψl|
4 ∼ L−ξ

The average of ξ calculated over the set of eigenstates is presented in Figure 4.5(a) in terms

of Λ and T , and the standard deviation of the set of ξ values for the eigenstates is shown in

Figure 4.5(b). These suggest an extended range of kicked strengths Λ and dimensionless pulse

times T that are theoretically predicted to create multifractal states.

To best match the theoretical delta pulses, one might wish to have pulses of very short dura-

tion compared to the time scale of the dynamics in the bichromatic lattice. This is achievable in

many cases, but a practical issue arises in that a pulse train can excite atoms out of the ground

band of the primary optical lattice. The theoretical tight-binding model (4.2) implies a lattice

system with only a single (ground) band, and so does not capture the possibility that kicks will

excite atoms to the higher energy bands that exist for a bichromatic lattice. Experimentally,

these excitations also result in destructive loss of atoms from the trap. If the time between

pulses is sufficiently small (i.e., high frequency) we can explore this experimentally without

issue as shown in the results presented in figure 4.6. In figure 4.6, we depict the width σx,
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Figure 4.6: Realizing the kicked Aubry-André-Harper model in the high-frequency
regime. a,b, Time sequence of density profiles in the kicked lattice for Λ/T below (a) or
above (b) the localization transition. c, Fitting expansion curves to a form which captures
both short and long-time behavior at various (Λ,T ) allows for measurement of the exponent
γ. The extracted widths were fit to σx(t)=σ0(1+t/t0)γ, the solution to a generalized diffusion
equation. d, Measured localization phase diagram of the kAAH model for small Λ and T ,
using a simple rectangular form for the pulse shape fτ(t) with τ = 1 µs. Colormap depicts
fitted width of the density distribution σx as a function of Λ and T at thold = 2 s. Dashed
line indicates the time-averaged static AA transition at Λ/T = 2. The center point (white) of
the colormap is set to the σx observed at the same hold time when the expansion exponent
is in the center of its transition from localized to delocalized values. Black crosses indicate
(Λ,T ) values of the data in a, b, and c. Cross-hatched pixels indicate data which failed cuts
of the fitting procedure due to heating via interband transitions. Without mitigative measures,
such heating prevents exploration of the phase diagram much beyond the region shown here;
see Fig. 4.7 for details on characterization and suppression of this effect. Reproduced from
reference [38].

which is the standard deviation of a gaussian fit to the 1D atomic cloud density distribution

along the lattice direction (details in reference [38].)

These destructive excitations, which are the reason for the cross-hatched pixels of fig-

ure 4.6(c), generically occur when the frequency power spectrum of the pulse train has suf-

ficient power in the range of frequencies resonant with transitions from the ground band to

higher bands. This can arise in some cases because the frequency of the pulses f = 1/Tp

matches the excitation frequency to higher band. Data exhibiting this excitation and the cor-

responding decay (loss) rate is presented in figure 4.7(a). However, for the more interesting

regions of T and Λ in figures 4.5(a) and 4.5(b), the period T between pulses is in fact much
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Figure 4.7: Apodized Floquet engineering. a, Decay rate of atoms kicked by square pulses
with a pulse duration of τ = 1 µs and a kick strength of Λ = 0.018 for thold = 2 s as a function
of kick period TP. Solid curve is the result of a numerical calculation (see Supplementary In-
formation section IV A of reference [38]). Arrows indicate dominant transitions from ground
band |n = 0⟩ to excited bands |n = 1, 2, ...⟩. Error bars represent 95 % confidence intervals
from an exponential fit to 20 measurements. b, Form of the power spectrum of square (top),
Gaussian (middle) and filtered (bottom) pulses. Shaded areas represent interband transitions.
Note that the frequency comb spacing is not drawn to scale for visibility. c, Net power in
frequency ranges corresponding to interband transitions, for square, Gaussian, and filtered
pulses of two pulse widths, each with period TP = 1ms. For longer pulses, the gaussian pulse
already has little power in the interband transition frequencies, and so filtering has little addi-
tional effect. d, Measured density profile at various times for each pulse shape. e, Measured
decay rates from the ground band for different pulse shapes at various values of TP and τ. The
baseline of each symbol corresponds to the measured decay rate. Error bars represent 95%
confidence bounds from an exponential fit. Reproduced from reference [38].

longer than those that would excite from the ground band to the first excited band in our sys-

tem. Nonetheless, operating with short square pulses with these longer pulse periods results in

dramatic atom loss because the power spectrum for this square pulse train still contains sub-

stantial resonant excitation frequencies, but in this case, changing the pulse shape can avoid

such excitation as we now explain.

Let us consider the Fourier transform of (4.3). To simplify, we ignore the effect of the

finite duration of the pulse train by approximating Vs(t) = Vs,0
∑∞

n=−∞ fτ(t/Tp − n). Given the
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periodicity of the pulse train, a simple approach is to write its Fourier series according to

Vs(t) =
∑

n

An ei2πnt/Tp

and solve for An in the usual way. However, we feel that an application of the convolution

theorem gives more insight. To this end, consider that we can write

Vs(t) = Vs,0

∞∑
n=−∞

fτ(t/Tp − n) = Vs,0

∞∑
n=−∞

∫
fτ(t′/Tp)δ

(
(t − t′)/Tp − n

)
dt′

The last expression is a convolution between the function fτ and a pulse train of Dirac delta

functions, so we can apply the convolution theorem to write the Fourier transform as

Ṽs(ν) = f̃τ(ν)Tp

∑
n

e−i2πnνTp = f̃τ(ν)

 1
Tp

∑
n

δ(νTp − m)

 (4.4)

where we have denoted the Fourier transform of a function g(t) by g̃(ν). Thus, we see from

equation (4.4) that when 1/Tp is small compared to the excitation frequency to higher bands, the

delta function comb factor will be finely spaced and the factor f̃τ(ν) predominantly determines

the relevant features of the energy spectrum of the drive. This is shown for a number of sample

pulse shapes in fτ in figure 4.7(b). Figure 4.7 generally depicts the critical requirement of pulse

shaping for this experiment, which in this case is referred to as “apodization.” We conclude

that we can suppress excitations to higher bands by shaping the pulse so that
∣∣∣ f̃τ(ν)∣∣∣ is small

when ν corresponds to a resonant excitation frequency between the ground band and excited

bands.

Figure 4.8 details the measured expansion at longer Tp that was enabled by this apodiza-

tion procedure. In particular, we observe features of reentrant localization in which increasing

kick strength initially increases localization, then decreases localization before continuing to

increase localization, which deviates quite dramatically from the simple time averaged expec-
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tation. This is a rather unintuitive effect as it is contrary to the naive expectation that as the

disorder kick strength increases, the degree of localization would increase.

Figure 4.8: Experimental signatures of anomalous localization in the kAAH model.
a, Measured phase diagram of the kAAH model for large T and Λ using apodized kicking
waveforms in the form of a Gaussian pulse with τ = 319.3 µs. Colormap shows fitted width
of density distribution σx for thold = 2 s. Dashed line indicates the time-averaged static AAH
transition at Λ/T = 2. The colormap center (white) is chosen at this transition point as in
Fig. 4.6(d). b, Calculated phase diagram of the kAAH model for parameters and observable
chosen to match the experiment. Numerically calculated time-evolved density distributions
were convolved with the estimated point spread function of our imaging system and fitted with
a Gaussian; colorbar shows the fitted width and has the same limits as panel a. c, Expansion
exponent γ versus Λ − Λ0 (diamonds), for parameter values indicated by points in panel
a, extracted by fitting the late-time width evolution to σx(t) ∝ tγ. Error bars show 95 %
confidence bounds from such a fit to 16 measurements Measured σx is also plotted (squares),
indicating that this single measurement tracks well with fits of the full time series. Equivalent
expansion exponent data for the horizontal dot-dashed line in (a) appears in extended figure
5 of [38]. d, Scaling exponent ξ of inverse participation ratio for single-particle states as a
function of disorder strength Λ for the same parameter range. m/L denotes the normalized
index of eigenstates. Reproduced from reference [38].
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4.3 Coherent Control of Localization

We will now introduce recent work on coherently controlling localization of atoms in a

driven version of the AAH model that is presented in reference [39] and is in the process of

review for publication. The form of the drive is very similar to that used in the experiments

of section 4.1, but at a much lower frequency. As before, δs in equation (4.1) is modulated in

time, where Vp, Vs, and δp are constant for each cloud. The modulation is given according to

the form δs(t) = −2ksA sin(ωt)/(2πβ), where A is adjusted in the experiment and ks ≡ 2π/λs

for a secondary lattice of wavelength λs = 914.4 nm.
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Figure 4.9: Experimental schematic and typical data. (a) An optically trapped BEC is loaded
into a bichromatic lattice and allowed to evolve. A time-varying phasonic displacement be-
tween the two sublattices is controlled by varying the frequency of the secondary lattice laser
(λS = 915 nm). (b) Absorption images of the atoms taken after various evolution times in the
phasonically modulated bichromatic lattice, in the localized regime (left panel) and delocal-
ized regime (right panel). Reproduced from reference [39].

A diagram of the experimental setup is shown in figure 4.9(a). δs is controlled by changing

the frequency of the laser beam that is retro-reflected to form the secondary lattice. This work

is not the first usage of this technique, but it is not so widely used lately, and could use an

introduction for those first encountering it. For this reason, we will supplement some detail

here.

The lattice in this case is formed by retro-reflecting a laser beam from a mirror. The mirror

implies a boundary condition on the light wave that sets a fixed phase condition on the lattice.
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To describe the lattice with this boundary condition in mind, let us take the origin (x = 0) to be

centered on the atomic cloud and the retro-reflecting mirror to be a distance L away from the

origin at x = L. The contribution to the potential from the secondary lattice is then described

by

Vs,latt(x, t) = Vs sin2
(
ks(t) ·

(
x − L

)
+ π/2

)
This satisfies the boundary condition requirement at the mirror (x = L) that the laser field

amplitude be zero, which corresponds to a maximum in the lattice potential. If we write ks(t) =

ks,0 + δks(t) = ks,0 + 2π · δ f (t)/c, where c is the speed of light and δ f (t) is the change in the

laser frequency from the nominal frequency f0 ≡ c/λs = cks,0/(2π), then we can equivalently

express the potential as

Vs,latt(x, t) = Vs sin2
(
ks(t) · x − 2π · δ f (t)L/c + ϕ0

)
where ϕ0 ≡ ks,0L + π/2 is a constant phase. Lastly, we must consider that L ∼ 1m is about

104 times larger than maximum width of the atomic cloud in our experiment. Furthermore,

the changes in laser frequency δ f (t) away from f0 will amount to translating the secondary

lattice near the atoms by a few lattice sites at most, which corresponds to the condition 2π ·

δ f (t)L/c ≲ 10. This implies that 2π · δ f (t)x/c ≲ 10−3, and we use this small value to justify the

approximation ks(t)x ≈ ks,0x in the region of x values that the atomic cloud will explore during

our experiment. Using this approximation implies

Vs,latt(x, t) ≈ Vs sin2
(
ks,0x − 2π · δ f (t)L/c + ϕ0

)
,

This expression reveals how the frequency modulation δ f (t) effectively gives rise to translation

of the lattice at the atoms.

One may find it helpful to envision the lattice sites as being like the pleats on an accordion
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(or the loops on a spring). If one end of the accordion (spring) is fixed to a wall and one watches

it some distance away from the wall, the expansion and compression of the accordion (spring)

will be seen predominantly as a translation of the pleats (loops) at small length scales away

from the wall.

The experiment explores drive frequencies ω with corresponding drive energy quanta ℏω

(analogous to “photon energy”) that are greater than the energy width of the ground band,

but much less than the energy band gap. This is in contrast to the experiment discussed in

section 4.1, where ℏω was at a scale comparable to the band gap to explore frequencies that

induce transitions to higher bands. Figure 4.10 summarizes our initial experimental observa-

tion of how the system reacts as a function of phasonic drive amplitude A at frequencies in

this range. We observe that the system behave under these drive conditions according to the

effective Hamiltonian

HF
CC = −J

∑
l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ ∆eff

∑
l

cos(2πβ(l − δ)) |l⟩⟨l| (4.5)

where

∆eff = ∆J0(2ksA)

J0 denotes the zeroth Bessel function. We recognize that effective Hamiltonian (4.5) has the

same form as the AAH Hamiltonian, and so we expect localization to occur when |∆eff |/J > 2

and delocalization to occur if |∆eff |/J < 2. The data in figures 4.10(a) and (b) shows agreement

with this model, and we see that we can induce dynamic delocalization by adjusting the phason

amplitude A. The data in figure 4.10(c) further demonstrates behavior in agreement with this

model in the case that ∆/J < 2. In this regime the cloud width σ after a fixed expansion time

is expected to behave according to σ = α(2 − ∆eff/J) where α is a constant of proportionality.
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Figure 4.10: Phasonic modulation causes dynamic delocalization. (a) Absorption images of
the atomic density distribution after 10s evolution for varying amplitudes of a 314Hz phason
modulation, showing peaks in the late-time width at several drive amplitudes. (b) Width of
the atomic density distribution after 10s evolution versus phason modulation amplitude, for
three different driving frequencies. The delocalized regions are observed to be independent
of drive frequency. The primary and secondary lattice depths are 10ER,p and 0.5ER,p. Here
ER,p = h2/2mλ2

p is the recoil energy, m is the atomic mass, and h is Planck’s constant. Shaded
areas show the regime of theoretically predicted delocalization described in the text. (c)
Quasidisorder strength can be inferred from transport. Plot shows a normalized form of the
late-time width σ versus phason modulation amplitude, for primar lattice depth 8.5ER,p and
secondary lattice depth 0.124ER,p, corresponding to the delocalized regime. In this regime the
expansion speed is approximately proportional to the quasidisorder strength, so the expected
functional form is the absolute value of a Bessel function |J0(2ksA)|, shown here as a solid
line with no fit parameters. All of the panels share the same x-axis scaling, measured in
the dimensionless shaking amplitude 2ksA (panel top) and in the actual shaking amplitude A
(panel bottom). Reproduced from reference [39].

Defining max(σ) = 2α, occurring at ∆eff = 0, we should expect that

[max(σ) − σ] = α∆eff/J ∝ J0(2ksA)
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and the form of this expression is observed to hold in the data shown in figure 4.10(c).
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Figure 4.11: Reversible coherent control of localization. Symbols show measured late-time
width of the density distribution versus hold time for five different experimental protocols:
no secondary lattice (diamonds), continuous phasonic driving of secondary lattice (upward
triangles), phasonic driving for the first 500ms (rightward triangles), phasonic driving only
between 500 and 1000ms (downward triangles), and no driving of the secondary lattice
(squares). For all protocols the primary lattice depth is 6ER,p, and for all but the first plot
the secondary lattice depth is 0.5ER,p. At these values in the absence of driving the system
is Aubry-André localized. Note especially that width evolution under the second “coherent
control” protocol shows evidence of localization for times less than 0.5s and greater than 1s,
and evidence of delocalization between those times, indicating reversible coherent control.
Shaking frequency is 628Hz and phason amplitude is 2kS A ≈ 5.52, near the second Bessel
zero. Reproduced from reference [39].

Figure 4.11 shows a further feature of this drive protocol: using this phasonic drive gives

coherent control of the localization. This is borne out in the data of figure 4.11 in that delo-

calization can be induced by application of the phasonic drive and returned to localization by

removing the drive to observe some expansion (red triangles in figure 4.11). Alternatively, one

can begin with the atoms localized before applying the drive to delocalize the atoms (yellow

triangles in figure 4.11), and we observe the same amount of expansion as in the previous case.

Thus, we find that the ordering of such a drive protocol is reversible.

Moreover, we argue from an analysis of the corresponding driven Hofstadter model that

this transition between localization and delocalization is controlled coherently by the drive
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amplitude A. This corresponding driven Hofstadter model can be constructed by adding time

dependent phase factors to the terms in the Hofstadter Hamiltonian of equation (1.2) in the

introduction to yield

HHof,Driven−y = −J
∑
l,m

[
|l + 1,m⟩ ⟨l,m| + |l − 1,m⟩ ⟨l,m| +

∆

2J
e−i2παle−i2ksA cos(ωt) |l,m + 1⟩ ⟨l,m| +

∆

2J
ei2παlei2ksA cos(ωt) |l,m − 1⟩ ⟨l,m|

]
(4.6)

In reference [39], this driven Hofstadter Hamiltonian is referred to as the “higher-dimensional

superspace” for the dynamic quasiperiodic potential. Arguments almost identical to those pre-

sented in the introductory chapter 1 of this thesis map this to the set of driven AAH models

given by

Hν =
∑

l

−J
[
|l + 1; ν⟩ ⟨l ; ν| + |l − 1; ν⟩ ⟨l ; ν|

]
+ ∆ cos

(
2π(αl− ν)+ 2ksA cos(ωt)

)
|l ; ν⟩ ⟨l ; ν|

The relationship between this Hν and HHof,Driven−y is given by

HHof,Driven−y =

∫ 1/2

−1/2
dνHν

The added phase factors exp(±i2ksA cos(ωt)) in equation (4.6) can be mapped to an oscillat-

ing force (or electric field for charged particles) directed along the y-direction, and this mapping

is accomplished with a standard unitary transformation (see for example reference [1], section

III.B. titled Dynamic Localization for this unitary transformation in a 1D lattice.) Since the

dynamic localization in this 2D model is coherent, we deduce that the localization transition in

the corresponding set of AAH models (each one corresponding to a different phason offset ν)

is also coherent.
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In the experimental data shown in figure 4.11, this coherent localization transition is seen in

ability to coherently “activate” transport by using a certain drive amplitude A that corresponds

to ∆eff/J < 2 and to coherently “freeze” the transport by choosing an amplitude A that corre-

sponds to ∆eff/J > 2. The coherence is evident in that the overall expansion is independent of

the time ordering of the periods of activated transport and frozen transport, up to effects not

considered in the model, such as interactions. Moreover, this demonstrates that the increased

spreading is not due to heating.

Lastly, we consider sinusoidally translating the primary lattice alone, which will serve in

part as a prelude for the work discussed in chapter 5. For this analysis we will be interested

in the reference frame that is comoving with the primary lattice, where the translation of the

primary lattice in the lab frame is experienced as an oscillating force. We will now discuss how

translation of the primary lattice is achieved.

In this experiment, the primary lattice setup does not correspond to that shown in fig-

ure 4.9(a). The primary lattice is not produced by retro-reflection from a mirror, but is instead

formed by two counter-propagating beams each of which has its frequency independently con-

trolled by an AOM. As explained in more detail in chapter 5, the velocity of the primary lattice

is given by equation (5.3) reproduced here:

vp =
λp

2
∆νp

where ∆νp is the frequency difference between the two laser beams that form the primary

lattice.

Moreover, we can express the strength of the drive in the reference frame that is comoving

with the primary lattice with the parameter

K0 =
mλ2

p

4ℏ
∆νmax,p
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This is equivalent to the definitions for K0 given in chapter 5 and in reference [39], where we

have assumed the form

∆νp = ∆νmax,p sin(ωt)

However, we must also account for the translation of the secondary lattice relative to the

primary lattice. In this case, the amplitude A of the secondary lattice in the reference frame of

the primary lattice will be given by

A =
λp

2ω
∆νmax =

2ℏ
mλp

K0

ω
(4.7)

In the high frequency limit, the effective Hamiltonian will take the form

HF
CC,DL = −Jeff

∑
l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ ∆eff

∑
l

cos(2πβ(l − δ)) |l⟩⟨l| (4.8)

which is again the only differs from the AAH Hamiltonian by the substitutions of J and ∆ by

their effective counterparts, given in this case by

Jeff = JJ0(K0) and ∆eff = ∆J0(2ksA)

Here, ∆eff is the same as above and the explanation for the form of Jeff will be explained in detail

in chapter 5. Thus, one would expect a transition between localization and delocalization to

occur at ∆eff/Jeff = 2. Figure 4.12 depicts data that agrees with this model at several drive

frequencies f = ω/(2π). Note that Jeff as a function of drive strength K0 is independent of

the drive frequency,3 but that A does vary inversely with drive frequency as a function of drive

strength according to equation (4.7). It is this dependence of J0(2ksA) on ω and K0 that gives

rise to the peaks of delocalization that are observed in the lower three panels of figure 4.12.

3This is assuming that the drive frequency is sufficiently high (discussed further in chapter 5) but also not
resonant with excitations to higher band that would lead to atom loss in our bichromatic lattice system.
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These peaks are spaced according to the zeros of the bessel function.

Figure 4.12: Interplay between dynamic localization and Aubry-André localization revealed
by phase modulation of only the primary lattice. Top panel shows calculated effective tunnel-
ing strength as a function of modulation amplitude K0. Lower panels show measured width
of the density distribution after 1s expansion in a bichromatic lattice with only the primary
lattice shaken, for various modulation frequencies as indicated. Gray lines indicate theoreti-
cally expected values of zero effective quasidisorder. Reproduced from reference [39].
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Chapter 5

Simultaneous Dynamic Localization and

Aubry-André Localization

5.1 Introduction

Due to the extended character of Bloch wavefunctions and associated energy structure,

quantum lattice systems tend to be metals by default. That is to say, the quantum particles,

usually electrons in solid state systems, diffuse readily in the lattice and can be motivated read-

ily by the application of a force, such as an applied electric field in the case of electron systems.

This behavior would be prevalent except for various localizing influences, which can take the

form of interactions (Mott localization), disorder (Anderson localization), quantum statistics

(band insulators), and periodic driving (dynamic localization). The interplay of various lo-

calizing phenomena is a deep topic which remains at the forefront of the study of condensed

matter; a current example is the intense discussion of the many-body localized state which

depends upon the interplay between interactions and disorder [40, 41].

As introduced in chapter 1, Anderson localization occurs when small scale disorder is

superimposed with a lattice potential. The random change in potential on each lattice site
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results in every eigenstate of the system being localized. Consequently, if a particle is placed

in an initial state of a localized wavefunction then it will remain localized to the scale of the

eigenstates. This localization has been observed in cold atom systems [42] and photonics

systems [43].

Also introduced in chapter 1 is the related localization phenomenon that arises in the

Aubry-André-Harper (AAH) model which is the tight-binding model description of a sinu-

soidal potential with period a2 superimposed with a much stronger lattice potential of period

a1. Aubry-André localization occurs in this system provided that the sinusoidal potential is

strong enough and that a1/a2 is irrational (excepting special values). As in Anderson localiza-

tion, the eigenstate wavefunctions are exponentially localized, and so one can view the AAH

potential in these cases as being “sufficiently disordered” to produce localization when the po-

tential is strong enough, although there are important differences between the phenomena of the

AAH model and Anderson localization to consider if one is being rigorous. In other words, the

spatial quasiperiodicity of the Aubry-André-Harper (AAH) model can drive a metal-insulator

transition [8, 44, 45]. This has been studied experimentally in photonic systems [46] and cold

atom systems [47].

A temporally oscillating spatially uniform force applied to a lattice system can also give

rise to localization by an entirely different mechanism, which can be viewed either as origi-

nating from a drive-induced flat Floquet band or from time-averaged Bloch oscillations [48].

In the academic literature, mechanism of localization is referred to as dynamic localization.

In this experiment, our periodically driven realization of the AAH model provides an exper-

imental study of the mutual enhancement and competition that exists between Aubry-André

localization and dynamic localization.

Previous work has fruitfully examined driven AAH systems theoretically [49, 50] and the

related topic of driven Anderson insulators theoretically [51, 52] and experimentally [53]. It

is important to note that we focus on the regime in which the drive frequency that induces
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dynamic localization is not necessarily large compared to the bandwidth. In this regime,

commonly-used theoretical approximations of the high frequency effective Hamiltonian for

the Floquet states break down, though numerical investigation has indicated (and we experi-

mentally confirm) that localization can persist [49]. The experimental and numerical results

we present here thus extend beyond previous work to reveal a richer and more complex phase

diagram that arises when the drive frequency is near the spectral width of transitions within

the lowest energy band. Our results demonstrate that even at these drive frequencies the high-

frequency analytical model accurately predicts the basic structure of the phase diagram while

also clearly revealing qualitative deviations from those predictions when the on-site potential

in the driven AAH model is sufficiently strong.

5.2 Description of Experiment

The experiments we describe begin by loading a Bose-Einstein condensate of 84Sr into a

pair of superimposed coaxial 1D optical lattices with different spatial periods, aligned along an

axis perpendicular to gravity. The deeper of these two lattices, which we refer to as the primary

lattice, is generated by counterpropagating laser beams with wavelength λp = 1064 nm. The

two primary lattice beams are derived from the same fiber amplifier (Toptica/Azurlight Model:

ALS-IR-1064-50-A-CC-SF) seeded with a narrow linewidth laser (Coherent Model: Mephisto

200FC Laser System), but their frequency and amplitude can be tuned independently using

acousto-optic modulators (AOMs). One of the primary lattice beams has a much higher in-

tensity than any of the other beams (approximately 2 W) in order to support the atoms against

gravity, as the atoms will be attracted via the optical dipole force discussed in section 3.2.

The depth of the primary lattice Vp is controlled by adjusting the intensity and polarization

of the weaker beam. The two laser beams that form the secondary lattice have wavelength

λs = 874.6 nm and are derived from a continuous wave titanium sapphire laser (M Squared
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Model: SolsTiS 18W PSF-XF) stabilized against slow drift by a wavemeter. The secondary

lattice beams are of roughly equal intensity, adjusted together to control the depth of the sec-

ondary lattice Vs, and have independently AOM-tunable frequency offsets.

The key capability offered by this setup is full time-dependent tunability of the potential

depths (Vp and Vs) and spatial offset of the primary and secondary optical lattices δp and δs,

up to slow uncontrollable drift in the phases due to thermal changes in the light propagation

media, thermal expansion of the optical table, and small drifts of opto-mechanical components.

Thus, we will not know the absolute starting values of δp and δs for an experimental run,

but we will be able to controllably change its position from this initial value. As we will

show, this capability enables the simultaneous experimental realization of both dynamic and

quasidisorder-induced localization, thereby allowing the direct investigation of their interplay.

The system is depicted schematically in figure 5.1(a) and described by the one-dimensional

bichromatic lattice Hamiltonian1

H = −
ℏ2

2m
d2

dx2 + Vp sin2(kp(x − δp)) + Vs sin2(ks(x − δs)) (5.1)

where Vp and Vs are the depths of the primary and secondary lattice, respectively. kp(s) =

2π/λp(s) and δp(s) denotes the possibly time-dependent spatial offset of the of the primary (sec-

ondary) lattice, which is determined by the phase difference ∆φp(s) between the counterpropa-

gating laser beams according to the formula

δp(s) =
∆φp(s)

2kp(s)
(5.2)

1This is identical to the generic time dependent bichromatic lattice Hamiltonian in equation (4.1) presented as
an introduction to chapter 4, but we have dropped the explicit time dependence of the parameters Vp, Vs, δp, and
δs.
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(c)

LocalizedDelocalized

(b)
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Primary Lattice

Secondary Lattice

Combined Potential

Figure 5.1: (a) A schematic of the 1D experiment model depicting primary (dark blue) and
secondary (light orange) lattice, and resulting potential (green). (b) AAH localization ob-
served in atomic clouds imaged after 500 ms of expansion. The localization-delocalization
transition occurs at ∆/J = 2 as indicated by the labeled bars above the panels. (c) Analogous
cloud images for dynamic localization with sinusoidal drive strength K0. Above each panel,
a theoretical plot indicates the predicted |Jeff | for each cloud in the ℏω ≫ 4J approximation.
The parameter ∆/J in (b) and K0 in (c) that describes the experimental conditions that pro-
duced the imaged cloud is indicated by the tick mark below each panel.

The velocity of each lattice is thus

vp(s) =
d
dt
δp(s) =

λp(s)

2
∆νp(s) (5.3)

where ∆νp(s) is the frequency difference between the two laser beams forming the primary

(secondary) lattice. We directly control ∆νp(s) by adjusting the phase of the radio frequency

(RF) drive to the AOM. All RF waveform generators share a clock signal so that the relative

position of the two lattices is well controlled up to the aforementioned thermal drift in optical

path lengths that are unimportant on the time scale of the collection of individual data points,

but can change the relative positions of the lattices between runs. This drift effectively results in

averaging over system realizations with different initial values of δp and δs in the experimental
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data, but we note that a change in these initial values does not appear to measurably change the

expansion dynamics in any case.

5.3 Theoretical Models of the Experiment

As discussed in chapter 1, the AAH model is simply a tight-binding approximation of

Hamiltonian (5.1), which is well-justified if, as in our experiments, Vp and Vp/Vs are suffi-

ciently large [54, 55]:

HAAH = − J
∑

l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ ∆

∑
l

cos(2πβ(l − δ)) |l⟩⟨l|
(5.4)

where J is the tunneling energy and ∆ is the quasidisorder strength. Here δ = 2(δs − δp)/λp,

β = λp/λs, and |l⟩ denotes the lowest band Wannier state of the primary lattice at site l corre-

sponding to position xl = lπ/kp + δp. If β is chosen to be an appropriate irrational number2,

the Hamiltonian exhibits a localization-delocalization quantum phase transition at ∆/J = 2.

For finite-size systems, how sharply the localization properties vary as a function of ∆ depends

on the exact value of β and the system size (controlled in this case by a weak harmonic con-

finement along the lattice direction) [55]. Throughout this paper, J and ∆ are calculated using

numerically computed maximally localized Wannier states [56].

Figure 5.1(b) shows absorption images of atomic clouds that demonstrate the phase transi-

tion of the AAH model for β = 1064/874.6, presented in a format similar to Ref. [47]. Here the

atoms are imaged in situ using absorption imaging after 500 ms of expansion in the combined

lattice potential. Vp = 9ER,p across all the data shown, where ER,p = ℏ
2k2

p/2m is the recoil en-

2All but an infinitesimal fraction of irrational numbers are appropriate [11], so this is not a practical concern
in an experiment.
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ergy of the primary lattice. Vs was varied up to a maximum value of 0.592ER,p, still well within

the regime described by the AAH Hamiltonian of equation (5.4), to realize the indicated values

of ∆ for the tight-binding approximation of the system. Images for various ratios ∆/J clearly

indicate the phase transition, showing suppression of expansion for values of ∆/J greater than

2.

Dynamic localization also emerges in the special case of Hamiltonian (5.1) in which Vs = 0

and δp is periodically modulated [57, 58, 59, 60]. Considering the case δp = −A cos(ωt),

a unitary transformation to the reference frame in which the lattice is stationary yields the

Hamiltonian

HDL = −
ℏ2

2m
d2

dx2 + Vp sin2(kpx) + m
d2δp

dt2 x (5.5)

describing a static lattice potential with an oscillating force. We define the drive strength K by

K cos(ωt)x = m
d2δp

dt2 x =
mλpω

2
∆νmax,p cos(ωt)x (5.6)

As in the AAH case, Hamiltonian (5.5) can be expressed in a tight-binding approximation [49]:

HDL,TB = − J
∑

l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ K cos(ωt)

∑
l

λpl
2
|l⟩⟨l|

(5.7)

Further application of Floquet theory [2, 4] reveals that if one considers only single particle

states and neglects exchange of energy with the drive in the high frequency limit ℏω ≫ 4J,

then the system behaves according to the even simpler tight-binding effective Hamiltonian [57]

HF
DL,TB ≈ −Jeff

∑
l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
(5.8)

with Jeff = JJ0(K0), where K0 = Kλp/2ℏω is the dimensionless drive strength. Crucially,
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hopping is entirely suppressed where the zeroth bessel function J0 has zeros, for example at

K0 = 2.405 and 5.520. Figure 5.1(c) shows absorption images taken after 500 ms of expansion

in the presence of drives of various amplitude, for Vp = 9ER,p and drive frequency ω = 2π ×

(300 Hz) = 5.9J/ℏ. These data clearly demonstrate the effects of dynamic localization for K0

close to the Bessel zeroes. We note that while ℏω = 5.9J, which is not in the high-frequency

limit, the results match well to features previously observed in the high frequency limit [60]

and to numerical studies in this intermediate frequency regime [48].

Having demonstrated that the experimental system under investigation can clearly ex-

hibit both quasidisorder-induced localization, figure 5.1(b), and drive-induced localization,

figure 5.1(c), we proceed to investigate the main novel topic of this work, which is the in-

terplay of these two phenomena. Specifically, we consider Hamiltonian (5.1) with primary lat-

tice depth Vp = 9ER,p and variable secondary lattice depth Vs in the range 0ER,p to 0.592ER,p.

This corresponds to J = 0.0242ER,p and ∆ ranging from 0 to 0.162ER,p for tight-binding ap-

proximation (5.4). Moreover, we translate the superimposed lattices together according to

δp = δs + δ0 = −A cos(ωt), where δ0 is a constant, to produce a sinusoidal force in the refer-

ence frame that is comoving with the lattice potentials. For these parameters, features of both

AAH localization and dynamic localization are expected to be present [49, 50]. Making the

unitary transformation to a frame in which the potential is static and then further making the

tight-binding approximation, we have [49]

HTB = − J
∑

l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ ∆

∑
l

cos(2πβl − δ) |l⟩⟨l|

+ K cos(ωt)
∑

l

λpl
2
|l⟩⟨l|

(5.9)

where all parameters are the same as those defined in equation (5.4) and equation (5.7). In the
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high frequency driving limit of the tight-binding model ℏω ≫ max(4J, 2∆), an approximate

effective Hamiltonian for (5.9) in the Floquet formalism is given by [49]

HF
TB ≈ − Jeff

∑
l

[
|l + 1⟩⟨l| + |l⟩⟨l + 1|

]
+ ∆

∑
l

cos(2πβl − δ) |l⟩⟨l|
(5.10)

where Jeff = JJ0(K0) is again the Bessel-renormalized hopping amplitude. This simply repro-

duces the AAH Hamiltonian (5.4) but with a drive dependent tunneling energy Jeff .

5.4 Main Results

We observe in experimental data that the effective Hamiltonian (5.10) captures the expan-

sion dynamics of the system well for ∆/J ≲ 2 even when the drive frequency is ℏω = 5.9J for

ω = 2π × (300 Hz), where we are not in the high frequency regime ℏω ≫ 4J. To motivate

the data presented in figure 5.2 that supports this claim, we note that the dynamics over many

cycles is described by the time-evolution operator U(t) = exp(−iHF
TBt/ℏ) in this approximation

if we ignore the micromotion that occurs on the time scale of the drive period [1]. In experi-

ments with equivalent ∆/|Jeff | but differing Jeff , the form of U(t) implies equivalent evolution

dynamics as a function of t/(ℏ/|Jeff |), provided the initial conditions are the same. In other

words, the expansion should depend solely on ∆/|Jeff | if we measure time in units of ℏ/|Jeff |.

Figure 5.2 presents σ of the atom density distribution as a function of the expansion time in

units of ℏ/|Jeff |. We observe that expansion is almost exclusively determined by the value of

∆/|Jeff | for these values, matching what is predicted for the high frequency regime. The most

notable deviation from the expected behavior is the accelerated expansion for ∆/|Jeff | = 0 and

K0 = 3.7 at later times, which was observed in the images to arise from a heated fraction of

atoms that develops at the higher drive strength.
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Expansion Time

(a)

(b)

Expansion Time

Figure 5.2: σ of the cloud as a function of expansion time for drive strengths indicated by
data point color and for ∆/|Jeff | equal to 0, indicated by circular markers, or 2, indicated by
triangular markers. (a) Cloud width presented as a function of expansion time given in units
of the effective tunneling time ℏ/|Jeff |. (b) Same as (a), but with axis limits chosen to better
show data for small values of |Jeff |. A gray box in figure (a) indicates the region shown in
figure (b). We observe that the data trend in these units of time depends predominantly on
whether ∆/|Jeff | is 0 or 2. Each data point value of σ is averaged from three experimental
realizations.

Equation (5.10) further implies the localization phase diagram as a function of quasidisor-

der strength and drive amplitude to exhibit metallic Bessel lobes in which the critical quasidis-

order strength varies as a J0 Bessel function, vanishing at the Bessel zeroes which define the

boundary between lobes, i.e., a metallic phase should occur for ∆ < 2JJ0(K0). To quantita-

tively visualize this expected localization phase diagram, we numerically calculate the inverse

participation ration (IPR) of the Floquet eigenstates of Hamiltonian (5.9) calculated at the ini-

tial time in the micromotion. We found that the variation in IPR of the eigenstates due to

micromotion over the course of one drive period was negligible regardless of the drive fre-
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quencies considered in this paper, justifying our consideration of initial time. For the case

ℏω = 50J in the high-frequency limit, we present the average IPR of the initial-time Floquet

eigenstates, denoted ⟨IPR⟩, in figure 5.3(a). The results clearly display the delocalized lobes

expected in this high-frequency regime.

To clarify the precise definition of ⟨IPR⟩, we note that the Floquet eigenstates, indexed by

n, are of the form

|Φn(t)⟩ =
∑

m

e−imωt
∑

l

cn,m,l |l⟩

as is generically true for Floquet systems. We calculate the IPR of one of these Floquet eigen-

states with the formula

IPRn =
∑

l

∣∣∣∣∣∣∣∑m

cn,m,l

∣∣∣∣∣∣∣
4

which is the IPR of |Φn(t)⟩ at t = 0. The IPR will generally vary periodically in time with period

2π/ω, and one may be concerned by our defining IPR at a single time. However, we checked

that these variations are insignificant in the cases considered here by randomly sampling the

IPR calculated at several times, and observing that the IPR is not change by much. Lastly, the

IPR averaged over all of the Floquet eigenstates is given by

⟨IPR⟩ =
1
N

N∑
n=1

IPRn

To experimentally explore this predicted phase structure, we measured the width of the

atomic density distribution after allowing it to expand in the system for a fixed 500 ms, with

system parameters of quasidisorder strength ∆ and drive amplitude K0 independently varied to

map out a 2D parameter space. Figure 5.3(c) presents the resulting experimental data, for a

drive frequency ℏω = 5.9J.

However, it is worth noting that the width after expansion should not be exactly constant

along the curve, since the actual expanded width depends on the effective tunneling time ℏ/|Jeff |,
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(a) (b) (c)

Figure 5.3: Interplay of dynamic localization and quasidisorder-induced localization. Nu-
merically calculated Floquet state IPR for a 9.4ER,p primary lattice is shown in (a) for the
high frequency drive limit ℏω = 50J and in (b) for intermediate drive frequency ℏω = 6.5J
[will be 5.9J when redone at 9Er]. In (c), we present the fitted gaussian width σ of the trans-
versely-integrated atomic density distribution after 500 ms of expansion, with Vp = 9ER,p

and ℏω = 5.9J. Each value is the average of three repeated measurements. In the region
∆/J > 2, we observe clear differences between (a) and (b), suggesting differing Floquet
eigenstate properties in these two frequency regimes. In the region ∆/J > 3, the expansion
behavior in (c) matches qualitatively with the Floquet eigenstate properties suggested by (b)
while differing significantly from (a).

which varies with K0. Nonetheless, this is a good indicator of the behavior.

The first main result of this experiment is the observation of the predicted delocalized lobes

in the region with ∆/J < 2, further supporting the observations of figure 5.2. The data clearly

exhibit a drive-amplitude-dependent localization-delocalization phase transition and insulating

states touching the y axis at the Bessel zeroes where Jeff = 0. The boundaries between localized

and delocalized states at the edges of the lobes (shown as a dashed line) are in good agreement

with the Bessel form predicted by Hamiltonian (5.10).

The second main result of this experiment is the observation of clear deviations from the

structure predicted by the high-frequency approximation, which are especially pronounced in

the region with ∆/J > 4. We note in particular two features: a broad area of anomalously

high expansion in the lower-right of the parameter space, and a narrow band of anomalously

low expansion near the line K0 = 3.8. We interpret these features as a signature of nontrivial

phenomena not captured by the high-frequency approximation, and present both numerical and

analytical support for this interpretation.
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We note that the local suppression of expansion near K0 = 3.8 for ∆/J > 4 corresponds

closely to the zero of the first Bessel function J1. To better understand this observation, we

apply the Jacobi-Anger equation to Hamiltonian (5.1):

2 sin2(kp(x − δp)) =

1 − Re

 ∞∑
n=−∞

Jn(2kpA)(−i)nei(kp x−nωt)

 (5.11)

In the high frequency limit, one can consider the non-zero Bessel terms as averaging away

over many cycles. However, when ℏω ≈ 4J, higher-order terms will contribute non-negligibly,

with the J1 term dominating. We thus interpret the observed localized stripe near K0 = 3.8

as the effect of a higher-order suppression of tunneling not captured in the commonly-used

high-frequency approximation.

To provide numerical perspective on these features of the phase diagram, we plot in fig-

ure 5.3(b) the Floquet-eigenstate-averaged IPR derived in the same manner as for figure 5.3(a),

but now for a drive frequency ℏω = 5.9J, no longer in the limit of very small drive period.

The resulting phase diagram clearly captures both of the the anomalous features of the experi-

mental data noted above in the region ∆/J > 4. Taken together, these numerical and analytical

arguments demonstrate that the experimentally observed phase diagram of the interplay of dy-

namic and AAH localization not only quantitatively reproduces the expected metallic Bessel

lobes, but also clearly displays features of anomalous localization and delocalization, which

arise from higher-order terms typically neglected by high-frequency Floquet approximations.

5.5 Discussion

In summary, we have presented experimental and numerical investigation of the interplay

of dynamic and Aubry-André localization in a regime where the drive frequency is not much
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larger than the energy scale of the system. We identify localization behavior that depends

intricately on system parameters in the strong secondary lattice regime that arise away from

the high frequency drive limit. We further investigate expansion dynamics that support the

notion that the high frequency model continues to match observation provided the secondary

lattice depth is not so great. We have touched here on the rich structures that can arise when

quantum systems are driven near the boundary of their natural response frequency. This and

further study may prove insightful for future Floquet engineering applications where optimal

system parameters may deviate from the simple high frequency model. This frequency regime

is also potentially relevant to investigation of open quantum systems and of thermalization of

quantum systems.
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Chapter 6

Optical Lattices formed by Multiple

Interfering Laser Beams

In this section, we will discuss optical lattices formed by multiple laser beams, first abstractly

and then with a specific discussion of an active phase locking scheme. The active locking

scheme that we will discuss has a fair bit of versatility, allowing the individual control of the

intensity of each laser beam, complete control over the relative phases of the laser beams, and

a couple classes of interesting geometries as applications.

6.1 Analysis of Multiple Interfering Laser Beams

As we saw in sections 3.2 and 3.3, the optical dipole trap is a flexible tool that enables rapid

and controlled application of spatially varying potentials produced by the presence of laser

beams. Of course, a famous feature of coherent laser light is interference, and interfering laser

beams can produce interesting spatially varying potentials, such as the lattice potential. Such

periodic potentials are referred to as optical lattices. We will consider here the mathematics of

interfering laser beams and the potentials they create.
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In section 3.3, we saw that the optical dipole trap potential felt by an atom in a laser beam

depends on the complex electric field amplitude E and the polarization vector û of the laser

beam as defined in equation (3.2). In general, both the polarization and amplitude of the electric

field will vary in space. For the ground state of strontium 84Sr, we have the simplification that

the potential depends only on the electric field amplitude, specifically, in proportion to |E|2.

However, even in this simple case, we must consider the light polarization as we sum the laser

fields and so we ought to work with the complex vector representation E = Eû, with the

notation and representations described in section 3.1.

6.1.1 General Case of Interfering Plane Waves

Let us consider N interfering plane waves of laser light, which we will enumerate with the

index l. We assume they all have the same angular frequencyω, but allow them to have arbitrary

wavenumber kl and relative phaser ϕl. The superposition of these plane waves describes the

total electric field Etot and can be expressed as the sum

Etot =

N∑
l=1

El exp
(
i(kl · r − ϕl)

)
.

Note that to reduce visual clutter, we will use El in this section to represent what might more

naturally be written as El,0 following the definition of equation (3.1).

We can consider |Etot|
2 to gain some insight into the resulting total potential.

|Etot|
2 =

∑
l

|El|
2 +

∑
p,q

(
Ep · E∗q

)
exp

[
i
(
(kp − kq) · r − (ϕp − ϕq)

)]

=
∑

l

|El|
2 +

∑
p>q

(
Ep · E∗q

)
exp

[
i
(
(kp − kq) · r − (ϕp − ϕq)

)]

+
(
E∗p · Eq

)
exp

[
− i

(
(kp − kq) · r − (ϕp − ϕq)

)]
(6.1)
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We see that |Etot|
2 can be expressed as a sum of 1

2 (N)(N − 1) sinusoidal plane wave potentials,

where each sinusoidal component is of the form

Re
(
A exp

[
i
(
(kp − kq) · r

)])
where

A = 2Ep · E∗q exp
[
− i (ϕp − ϕq)

]
In the case where there is solely a scalar light shift to consider as happens for the bosonic

strontium ground states, the realized optical dipole potential is simply proportional to this

|Etot|
2. In other cases however, the spatially varying polarization of Etot needs to be considered.

6.1.2 Specializing to In-Plane Beams

Now let us assume that all of the kl are in the same plane. Specifically, let kl · ẑ = 0. Then

we can write

El = Elzẑ + El∥e−iαl(k̂l × ẑ)

where Elz, El∥ are real numbers.

In this case, we have

Ep · E∗q = EpzEqz + Ep∥Eq∥e−i(αp−αq)(k̂p × ẑ) · (k̂q × ẑ) = EpzEqz + Ep∥Eq∥e−i(αp−αq)k̂p · k̂q

So, equation (6.1) becomes

|Etot|
2 =

∑
l

|El|
2 + 2

∑
p>q

EpzEqz cos
(
(kp − kq) · r − (ϕp − ϕq)

)

+ Ep∥Eq∥
(

cos θpq
)

cos
(
(kp − kq) · r − (ϕp − ϕq) − (αp − αq)

) (6.2)
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where k̂p · k̂q = cos θpq and θpq is the angle between kp and kq.

Of course, in the case of only linearly polarized beams (i.e. αl = 0) this simplifies a bit

further to

|Etot|
2 =

∑
l

|El|
2 + 2

∑
p>q

(
EpzEqz + Ep∥Eq∥

(
cos θpq

))
cos

(
(kp − kq) · r − (ϕp − ϕq)

)
(6.3)

6.1.3 Four In-Plane Laser Beams with Out-of-Plane Polarizations

Let us consider a more concrete case of 4 “in-plane” laser beams, by which we mean

their directions of propagation are all in the same plane, and let us further suppose that their

polarizations are perpendicular to this plane. In other words, we will suppose that kl · ẑ = 0

and El = Elẑ.

Neglecting the overall energy offset term resulting from the sum over |El|
2, the potential of

the optical lattice will be given by

V(r) ∝ E1E2 cos
(
(k1 − k2) · r − (ϕ1 − ϕ2)

)
+ E2E3 cos

(
(k2 − k3) · r − (ϕ2 − ϕ3)

)
+ E3E4 cos

(
(k3 − k4) · r − (ϕ3 − ϕ4)

)
+ E4E1 cos

(
(k4 − k1) · r − (ϕ4 − ϕ1)

)
+ E1E3 cos

(
(k1 − k3) · r − (ϕ1 − ϕ3)

)
+ E2E4 cos

(
(k2 − k4) · r − (ϕ2 − ϕ4)

)
(6.4)

In the case of bosonic isotopes of strontium in the ground state, the constant of proportionality

is αs
n0/4, which follows from equation (3.20).

It is clear that even though equation (6.4) is expressed in terms of the 12 parameters El, kl,

and ϕl for l ∈ {1, 2, 3, 4}, we do not in fact have 12 independently variably parameters to adjust

V(r). To make this more clear, let us define the following independent variables:

A1 ≡ E1E2 A2 ≡ E2E3 A3 ≡ E3E4 AX ≡ E1E3
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δk1 ≡ (k1 − k2) δk2 ≡ (k2 − k3) δk3 ≡ (k3 − k4)

δϕ1 ≡ (ϕ1 − ϕ2) δϕ2 ≡ (ϕ2 − ϕ3) δϕ3 ≡ (ϕ3 − ϕ4)

Expressing the potential in terms of these new variables, we have

V(r) ∝ A1 cos
(
δk1 · r − δϕ1

)
+ A2 cos

(
δk2 · r − δϕ2

)
+ A3 cos

(
δk3 · r − δϕ3

)
+

A1A3

A2
cos

(
(δk1 + δk2 + δk3) · r − (δϕ1 + δϕ2 + δϕ3)

)
+ AX cos

(
(δk1 + δk2) · r − (δϕ1 + δϕ2)

)
+

A1A3

AX
cos

(
(δk2 + δk3) · r − (δϕ2 + δϕ3)

)

This suggests 10 free parameters, but in fact, once δk1 and δk3 are chosen, δk2 is not truly

free,1 as the restriction that each wavevector |kl| = 2π/λ constrains the possible values for

{δk1, δk2, δk3}. Nonetheless, δk1 and δk3 can independently be any vectors, so long as |δk1|,

|δk3| ≤ 4π/λ. This becomes quite clear in the following procedure for selecting values of δkl:

1. Choose δk1 and δk3.

2. Consider the possible set of {k1, k2, k3, k4}. Assuming δk1 , 0,2 then there are at most 2

choices for k1 and k2. To see this, suppose the desired δk1 is achieved when k1 = a and

k2 = b, then we can alternatively choose k1 = −b and k2 = −a. Similarly, setting δk3

gives at most two choices for k3 and k4.

3. Consider possible δk2, and it is clear that we are restricted to at most four choices of δk2.

Figure 6.1 shows the graphical relationships between the vectors kl and δkl, and one can

consider this procedure geometrically as well by considering chords on the circle that

correspond to the desired δk1 and δk3.
1See also grad school and the human condition.
2The case δk1 = 0 would mean that k1 and k2 are effectively part of a single plane wave, and you would get an

interference pattern formed by only 3 waves.
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k1 k2

k3k4

δk1

δk3

δk2

Figure 6.1: Diagram of the laser beam wave vectors kl and the newly defined variables δkl.
Notice that once δk1 and δk3 are chosen, there are few options for δk2.

6.1.4 Considerations of the Reciprocal Space

It is worth considering the fourier transformation Ṽ(ξ) of the potential V(r) in equation

(6.1) in the general case or in equation (6.4) in the specialized planar case. One of course

finds that the Fourier transform is only nonzero at ξ ∈ { ki − k j | i, j = 1, ...,N }. This fourier

transform can be considered to define a reciprocal space for an optical lattice if the nonzero

values of ξ are coincident with a lattice of points. That is to say, the interference pattern forms

an optical lattice if the set of points

S ≡

 ∑
i, j

ni j

(
ki − k j

)
| ni j ∈ Z


and the set defining some lattice

L =

 ∑
i=1,2,3

nibi | ni ∈ Z


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are equivalent (S = L) for some appropriately chosen basis vectors b1, b2, and b3 of the recip-

rocal space lattice.3

In general, a set of N interfering laser beams will not form a lattice. However, for a d-

dimensional lattice, you are guaranteed to form a lattice with N = d + 1 lattice beams [61]. We

observe why this is necessarily true for the case of 3 interfering laser beams in 2 dimensions

in subsection 6.1.6. The alternative to forming an optical lattice is to produce an “optical

quasicrystal” from interfering laser beams as in [62].

6.1.5 Analysis of Laser Beam Phase Changes

Supposing that we are still in the situation that the potential is simply proportional to |Etot|
2

and considering the general expression for |Etot|
2 given in equation (6.1), the potential is of the

form

V(r) =
∑
p,q

ap,q exp
[
i
(
(kp − kq) · r − (ϕp − ϕq)

)]
(6.5)

for coefficients ap,q.

It is worthwhile to consider the ways in which the phases ϕl of the light affects the inter-

ference pattern. As is evident from equation (6.5), the potential only depends on these phases

through the quantities ϕp − ϕq. We can consider the linear mapping from the set {ϕl} to the set

of values {ϕp − ϕq}. To make this concrete, let us consider the case of 4 laser beams



(ϕ1 − ϕ2)

(ϕ2 − ϕ3)

(ϕ3 − ϕ4)

(ϕ4 − ϕ1)

(ϕ1 − ϕ3)

(ϕ2 − ϕ4)


=



1 −1 0 0

0 1 −1 0

0 0 1 −1

−1 0 0 1

1 0 −1 0

0 1 0 −1




ϕ1

ϕ2

ϕ3

ϕ4


≡ M


ϕ1

ϕ2

ϕ3

ϕ4


3Of course, it is possible that we only needs two basis vectors b1 and b2 to define the reciprocal space if it is a

2D lattice.
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The null space of the matrix M is not empty, and we have

null(M) = span




1
1
1
1


 ≡ span {v0}

The existence of this null space can be argued on physical grounds: The A.C. Stark shift

responsible for the optical lattice can be considered as arising from a time average of the energy

over the laser frequency,4 and advancing all of the phases by the same amount is equivalent to

changing the initial time, and so is irrelevant to the time average.

Within the remaining 3-dimensional vector subspace given by R4 \ null(M) of phase trans-

formations, there is a 2-dimensional subspace that corresponds to spatial translations of the

interference pattern and a 1-dimensional subspace corresponding to geometrical changes.

This realization leads to a convenient decomposition of the phase vector:


ϕ1

ϕ2

ϕ3

ϕ4


= c0v0 + cxvx + cyvy + cgvg

where variations of the c0 coefficient causes no change to the optical potential, variations in cx

and cy result in translations of the optical potential in the x and y direction respectively, and

variations in cg correspond to changes in the lattice geometry.

To identify the vectors vx and vy, we can consider the translation brought about by changing

r −→ r − δ
4In the floquet formalism, this arises from calculating ⟨⟨· · ·⟩⟩. One might also expect this given that we are

disregarding the details of the “fast” laser cycle time dynamics when we considered the A.C. Stark shift as causing
a “D.C.” shift to the energy levels.
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This corresponds to a shift in the arguments of the exponentials in equation (6.5) given by

i
(
(kp − kq) · r − (ϕp − ϕq)

)
−→ i

(
(kp − kq) · r − (kp − kq) · δ − (ϕp − ϕq)

)
A conclusion from the above is that if we change the phases so that

(ϕp − ϕq) → (ϕp − ϕq) + (kp − kq) · δ (6.6)

for all p, q, then the result will be a translation of the interference pattern by the vector δ.

To determine vx, we can set δ = x̂ and identify the relevant changes in phase ∆ϕl that give

rise to the transformation expressed in (6.6). This process yields

vx =


∆ϕ1

∆ϕ2

∆ϕ3

∆ϕ4


Formally, vx can be found by solving



(k1 − k2) · x̂

(k2 − k3) · x̂

(k3 − k4) · x̂

(k4 − k1) · x̂

(k1 − k3) · x̂

(k2 − k4) · x̂


= Mvx

for vx. Likewise, vy can be found by repeating the above procedure for δ = ŷ. And finally,

in the 4-beam case, vg can be taken as a 4-D vector that is perpendicular to the vector space

spanned by v0, vx, and vy.

One may wish to consider more the more general case of N interfering beams. This can
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be done in the same way to identify v0, vx, and vy in 2D, but the remaining orthogonal vector

subspace given by RN \span{v0, vx, vy}will have dimension N−3. In reference [63], the authors

consider potentials of a more general form given by

V(r) =
N∑

l=1

al exp
[
i
(
bl · r − ϕl

)]
+ a∗l exp

[
− i

(
bl · r − ϕl

)]
(6.7)

where the potential is generated in such a way that the ϕl’s can be varied independently of each

other. We can consider equation (6.5) as a special case of equation (6.7). As discussed in [63],

potentials of this form can be quasiperiodic. In the theory of quasiperiodic systems, the lattice

sites of the quasicrystal of this type in the physical d-dimensional space can be constructed

by the cut-and-project (or projection) method as the projection of a set of points of a lattice in

a d′-dimensional space onto the physical d-dimensional subspace, where d′ > d [35]. Thus,

some of the vectors in RN \ (null(M) ∪ span{vx, vy}) are associated with pure translations of the

d-dimensional subspace through the higher d′-dimensional space. Such vectors are associated

with the phasonic degrees of freedom of the quasicrystal. This allows us to choose a set of

basis vectors in RN for the changes in the phases ϕl of the laser beams (or of the sinusoidal

potentials in equation (6.7)) so that each basis vector corresponds to a change of the lattice that

is only one of the following types

1. No change to the potential

2. Pure spatial translation of the potential

3. Variation of a phasonic degree of freedom

4. Change of the geometry
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k1 − k2

k2 − k3

k1 − k3

Figure 6.2: Left: Depiction of the vectors (k1 − k2), (k2 − k3), and (k1 − k3), which can
be considered as a subset of the reciprocal space for the lattice produced by the beam inter-
ference. Right: Lines of maximal value of the cosine terms that sum to make the potential,
where colors corresponding to wavevectors in the left figure.

6.1.6 Special Case: 3-Beam Lattice in 2 Dimensions

Let us consider a 2D optical potential formed by 3 interfering beams that satisfy kl · ẑ = 0.

We will see that indeed it produces an optical lattice as discussed in [62]. In this case, the

potential is given by

V(r) ∝ E1E2 cos
(
(k1 − k2) · r − (ϕ1 − ϕ2)

)
+ E2E3 cos

(
(k2 − k3) · r − (ϕ2 − ϕ3)

)
+ E1E3 cos

(
(k1 − k3) · r − (ϕ1 − ϕ3)

) (6.8)

The form of this potential implies the geometry depicted in the left side of figure 6.2. This

results simply from the fact that (k1−k2)+ (k2−k3) = (k1−k3). Clearly, the resulting potential

will be a lattice with reciprocal lattice basis vectors b1 = k1 − k2 and b2 = k2 − k3. In the right

side of figure 6.2, the resulting real space lattice is shown, where the lines indicate the maxima

of the cosine plane waves, and the intersection of three lines corresponds to a lattice site. As
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drawn, the maxima of the three waves always intersect in groups of three (in other words, there

are no intersections of only two maxima). This is in fact mathematically inevitable regardless

of the choice of phases ϕl in equation (6.8).

6.1.7 Considering Beams Along the x̂ and ŷ Axes

Let use consider how the analysis of phase shifts discussed in section 6.1.5 for the particular

case of

k1 = kx̂, k2 = kŷ, k3 = k(−x̂), k4 = k(−ŷ)

Then we find that we can take

vx =


1
0
−1

0

 , vy =


0
1
0
−1

 , vg =


1
−1

1
−1


This is of particular experimental relevance, in that it means that to preserve a lattice struc-

ture, it is critical to ensure that 
ϕ1

ϕ2

ϕ3

ϕ4


· vg = const

This condition can be equivalently be written as

ϕ1 + ϕ3 − ϕ2 − ϕ4 = const

or using subscripts to denote the beam direction

ϕx̂ + ϕ−x̂ − ϕŷ − ϕ−ŷ = const (6.9)
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where ϕx̂ = ϕ1, ϕ−x̂ = ϕ3, ϕŷ = ϕ2, and ϕ−ŷ = ϕ4.

Satisfying this condition in a real optical lattice can be challenging in practice, since the

values of ϕl can drift as a result of practical reasons. from effective laser path length changes,

which occur from mirror motion, thermal expansions, index of refraction changes of optics

or air, laser frequency drift, etc. A system must be designed so that it maintains the value of

ϕx̂ + ϕ−x̂ − ϕŷ − ϕ−ŷ. Frequently, this is accomplished with feedback to control this phase, but

this is not the only option. A discussion of some of the implementations for maintaining this

condition are given in section 6.2.

6.1.8 Special Case: k1 = −k2 = kx̂ and k3 = −k4 = kŷ

In this case, we take k1 = −k2 = kx̂ and k3 = −k4 = kŷ. We also keep all polarizations in

the ẑ direction. In this case, let us change to a slightly more natural notation by renaming the

phases according to ϕ1 → ϕx,1, ϕ2 → ϕx,2, ϕ3 → ϕy,1, and ϕ4 → ϕy,2.5

Following the analysis in [64], if one ignores overall translations potential, the resulting

potential can be expressed as

U = −
1
2

VX cos(2kx) −
1
2

VY cos(2ky) − 2
√

VXVY cos(kx) cos(ky) cos(ϕ)

where ϕ = 1
2

(
ϕy,1 + ϕy,2 − ϕx,1 − ϕx,2

)
. In this case, we see that the parameter ϕ controls the

geometry of the lattice. We will explore the effect of the laser beam phases on the lattice beam

geometry further in section 6.2.

5This is slightly different notation than Greif uses. Specifically, he takes the counter propagating beams to be
ϕ2 → ϕx,1 + ϕx,2 and ϕ4 → ϕy,1 + ϕy,2.
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6.2 Four Beam Optical Lattice in 2D with Arbitrary Dy-

namic Laser Beam Parameters

In this section, we will present a new scheme for a lattice generated from the interference

of four laser beams with wavevectors given by k1 = −k2 = kx̂ and k3 = −k4 = kŷ.

6.2.1 Previous Implementations

The practical problem of preserving the lattice geometry by maintaining the condition (6.9)

has been solved in certain cases previously. The earliest that we are aware of was presented in

[65]. Here, the lattice is formed by the interference of two arms of a Michelson interferometer

as diagrammed schematically in Figure 6.3. The phase difference between the two arms corre-

sponds to the quantity (ϕx̂+ϕ−x̂− (ϕŷ+ϕ−ŷ)+const) so if one stabilizes the intensity of the light

reaching the photodiode in Figure 6.3, then the lattice geometry will be preserved. In this case,

instead of directly changing the phase of the laser beams, they change the overall frequency of

the laser by small amounts such that the change in the magnitude of kl induces phase changes

of the beams, while negligibly changing the lattice constant constant of the optical lattice. In

practice, this condition is easily satisfied since the wavelength of the laser λ is so small com-

pared to an intentional or unintential centimeter scale difference in the path lengths of the two

arms.

Another important and perhaps unintuitive feature of the scheme shown in figure 6.3 is that

the lock preserves the geometry even if there are changes to the path lengths of the two arms,

which are likely to arise if the mirrors drift, there is some thermal expansion of the optical

table, or some change in the index of refraction of the air. That is to say, the constant in the

expression (ϕx̂ + ϕ−x̂ − (ϕŷ + ϕ−ŷ) + const) does not change in spite of these drifts, which can

be shown by considering the phases of the for beams as a function of the optical path lengths
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Atoms

Laser with 
Controllable
Frequency

Feedback 
Control
Electronics

Photodiode

Figure 6.3: A schematic of the setup described in [65]

before and after the atoms. However, these drifts will induce a translation of the overall lattice.

This is typically present on some level in optical lattice experiments, but the time scales are

generally long enough that they are irrelevant to seconds scale experiments.

A very elegant approach is presented in [66]. In that work, the requisite condition in equa-

tion (6.9) is passively ensured by the geometry of the beam. That is to say, the constant in con-

dition (6.9) is unchanged in spite of optical path length changes from mirror drift, etc. without

the need for active feedback. Note again however that these drifts will cause translations of the

lattice.

Another active stabilization approach is well presented in [64]. Here, an RF signal is gen-

erated from the interference of the lattice laser beams with a reference beam, and the phase

difference relative to the reference beam is extracted. In this case, the system is such that the

quantity ϕx̂ + ϕ−x̂ is held constant relative to the reference beam. Likewise, ϕŷ + ϕ−ŷ is held

constant. The net result is that condition (6.9) is satisfied. The scheme has as its technical

precursor designs for fiber noise cancelation scheme initially presented in [67].
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6.2.2 Related Implementations

We would also like to draw the reader’s attention to a couple of other interesting works that

are concerned with stabilizing the geometries of two dimensional optical lattices by controlling

the relative phases of interfering laser beams.

The first is the Kagome lattice work conducted in the group of Dan Stamper-Kurn, where

the hardware details are discussed in PhD theses from the group [68, 69, 70]. To produce a

kagome lattice or trimerized-kagome lattice, two optical lattices are superimposed. Each of

the two lattices is formed by three interfering laser beams, and the choice of in plane or out

of plane polarization determines whether each will form a triangular lattice or a honeycomb

lattice. One of the lattices is formed from the interference of 1064nm laser beams and the

other 532nm laser beams. One challenge here is that the two superimposed lattices need to be

spatially overlapped to within a small fraction of a lattice constant so that the desired kagome

or trimerized-kagome lattice is produced. Relative phase changes of the individual laser beams

would induce such a translation of the superimposed lattices relative to each other. To stabilize

the relative position, good design of the geometry is utilized to maximize passive stability,

while residually drift is managed with phase control of the individual beams using AOMs.

The second is a very different approach described in reference [63]. In this work, a hexag-

onal lattice was produced from the interference of frequency modulated laser beams. The

modulated beam is equivalent to multiple copropagating laser beams of a discrete set of fre-

quencies, said frequencies being the original laser frequency ν as well as ν + nνM where n ∈ Z

and νM is the frequency of the modulation. The laser beams with frequency ν + nνM for n , 0

are referred to as sidebands. By choosing the frequency of each of the laser beams and the

modulation frequency appropriately, it is possible to interfere the sideband of one modulated

laser beam with the central frequency beam of another modulated beam. Doing so gives con-

trol of the phase of the resulting interference by changing the phase of the modulation. This
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enables the creation of optical potentials where the geometry and position are fully controllable

by varying the phase of the modulation, as was demonstrated for a hexagonal lattice in [63].

6.3 Polarization Encoded Retroreflection Phase-Lock

In this section, we will discuss a novel phase detection configuration that is well suited

to active feedback and phase control. It has potentially fruitful applications the production

dynamically driven bichromatic lattices, where each of the superimposed lattices can be inde-

pendently phase controlled and modulated with a closed loop bandwidth ultimately limited by

acousto-optic modulator (AOM) response times and and electronics. Unintended differential

drift of the component lattices’ positions is also passively avoided in this application. A sepa-

rate application of the design is to produce a fully controllable optical lattice formed with four

laser beams with wavevectors given by k1 = −k2 = kx̂ and k3 = −k4 = kŷ. By full control, we

mean here that the intensities of each of the 4 beams can be independently controlled, that all

of the phases can be independently controlled, and that these parameters can be independently

changed at rates limited by the AOMs and electronics.

As with other phase detection schemes, the basic goal is to determine the difference in

phase of a pair of beams by interfering them. Different from most schemes however, we will

set one of the beams to have right-handed circular polarization and the other to have left-

handed circular polarization. Assuming for simplicity for now that the two beams are of equal

power, interfering the two beams will produce linearly polarized light, where the angle of

linear polarization depends on the relative phase of the interfering beams.6 In this way, the

6We refer to this overlap of oppositely circularly polarized light as “interference.” Note however, that super-
imposing these beams does not actually cause a phase dependent intensity of the combined beam as is typically
the case when one describes two beams as interfering. One could argue that a different term is more accurate, but
we opt to refer to this as interference since ultimately the whole system will behave like an interferometer, and
because interferometers formed with polarizing beam splitters frequently also “interfere” beams of orthogonal
linear polarizations before a later polarizer produces a phase dependent beam intensity.

117



Optical Lattices formed by Multiple Interfering Laser Beams Chapter 6

2 PBS

PBS
50:50

AOM

EOM

s
polarized

p
polarized

+1

+1

AOM

Atoms

1:99
(T:R)

4

R
Signal

PBS

PBS
at 45º

Photodiode

Mixer

Combiner

High pass

Low pass Beam
B

Beam
A

+90º

HPF
RF LO

IF

EOM 
Signal GenLPF

AOM Driver
(MOGLabs)Ch1

Modulation
Input Laser

T
Signal

Electronics

Detection

Double
Pass

Laser
Beam
Generation

Figure 6.4: An overview schematic of a a polarization encoding retroreflection lock for a one
dimensional lattice. Laser beams are shown as colored lines in orange, green, and yellow.
Optical fibers are shown as blue curves. Electrical signal paths are shown as black lines.
Background colors are used to roughly organize the diagram into the subsystems denoted
Laser Beam Generation, Double Pass, Detection, and Electronics. The subsystems will be
described in more detail in the subsequent sections. Only the components needed for the
phase detection and lock are shown. In a full implementation, one must also include optics
and electronics for beam power stabilization and control and lenses to focus the beams at the
atoms, along with the many mirrors, etc. that were neglected for readability.

phase difference of the two beams is “encoded” onto the resulting linear polarization. We can

then detect this phase by measuring the resulting polarization. To make the detection more

robust to signal noise and more convenient to detect, we will modulate the phase of one of the

beams at high frequency so that the polarization will also be modulated. We will see that this

enables easy isolation and amplification of the generated signals that allows for robust phase

detection and control using I/Q signal processing. A diagram of the most basic implementation

118



Optical Lattices formed by Multiple Interfering Laser Beams Chapter 6

2 PBS

AOM

EOM

+1

+1

AOM

Beam
B

Beam
A

Laser

Laser
Beam
Generation

Figure 6.5: Optics to prepare the laser beams for the formed lattice. They are labeled as
beam A (orange) and beam B (green). PBS denotes polarizing beam splitter. AOM denotes
acousto-optic modulators. EOM denotes electro-optic modulator. λ/2 labels half waveplates.

of this polarization encoding for the case of a monochromatic 1D optical lattice is shown in

figure 6.4. We would like to note that a similar phase lock configurations that was inspiring for

this work is presented in the thesis of Tsz Him (Zephy) Leung [68].

6.3.1 Preparing the Lattice Beams

The optics to prepare the two laser beams that will interfere to form the 1D lattice are

depicted in figure 6.5. Here we show a laser split into two beams using a polarizing beam

splitter cube. We denote the two beams as A and B. Each beam is passed through an acousto-

optic modulator (AOM). The AOMs provide control over the power and phase of each of the

beams independently. In practice for a 1D lattice, one need only control the the phase of one of

the beams (or equivalently control the frequency). The power of both of the beams needs to be

controlled, which is typically best done by stabilizing with feedback using a power monitoring

photodiode (power stabilization not shown in the diagrams.)
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Figure 6.6: Diagram of the “Double Pass” configuration used to overlap the two beams and
interfere them for later phase detection, while generating an optical lattice at the atomic cloud.
λ/4 labels a quarter waveplate. Both beams are retroreflected at the far left of the diagram
on the beam sampler labeled 1:99 (T:R) to indicate an order 1% transmission. The numbered
gray circles indicate relevant points for analysis given in the text.

Beam B also passes through an electro-optic modulator (EOM) which adds a small (≪ π/2)

high frequency modulation (order 10MHz) to the phase of one of the beams. When beams A

and B are interfered on a photodiode, the resulting signal will have an A.C. component at the

modulation frequency of the EOM. The A.C. component of the signal at this frequency can then

be processed with a lock-in amplifier scheme to robustly determine the phase as compared to

relying on a D.C. signal.

Beams A and B are then coupled into polarization maintaining optical fibers. As shown

in figure 6.6, Beam A exits the optical fiber horizontally polarized relative to the optical table

(p-polarized for reflecting optics whose surfaces are perpendicular to the table surface as is the

case for most optics.) Beam B exits the optical fiber polarized vertical to the table (so that it is

s-polarized for the relevant optics.) Beams A and B overlap to form a 1D optical lattice at the

atoms after beam B has passed through the optics that have been labeled “double pass” because

of similarity to the optics used in a double pass AOM setup.

6.3.2 Encoding Phase Difference onto Polarization

At the beam sampler on the far left of figure 6.6, a small amount of the superimposed

beams is transmitted for detection. This light goes to the detection setup shown in figure 6.7.

Let us analyze the polarization of the light that is transmitted through the beam sampler. To
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do this, we will consider what happens to the beams as they traverse the double pass of figure

6.6. Beam A enters the double pass by transmitting through the PBS and beam B enters the

double pass by reflecting off the PBS. After this happens, the two beams are propagating to the

left in the ẑ direction at point 1 indicated in figure 6.6. At point 1, beam A is polarized in the x̂

direction, and we can represent its electric field using the conventions described in section 3.1

as7

EA,1 = EA ei(kz+ϕA)x̂

Likewise, the electric field for beam B is given by

EB,1 = EB ei(kz+ϕB)ŷ

Here, EA, EB ∈ R. At point 1 of figure 6.6, these two beams are superimposed to produce a

beam of total electric field ETot,1 given by

ETot,1 = EA,1 + EB,1

Next, let us now consider the laser beams at point 2 in figure 6.6. In going from point 1

to point 2, the beams propagate through a quarter waveplate. The action of the waveplate is

a linear transformation, so we can consider the waveplate as acting on beam A and beam B

separately. The quarter waveplate is ideally set to transform each of the linear polarized beams

to circularly polarized beams, but it does not matter whether beam A is transformed to right or

left circular polarization. Let us make the choice to set the fast axis to be along the 1
√

2
(x̂ − ŷ)

direction and the slow axis to the 1
√

2
(x̂ + ŷ) direction. The action of the waveplate will then

7Here, we implicitly model the laser beams as plane waves. If one wishes to have a more accurate model, we
should consider EA to be spatially dependent to produce a gaussian beam profile. In the case that the beam waist
is large enough that the Rayleigh range is negligible compared to the propagation lengths, we can approximate it
as a collimated beam and ignore the z dependence of EA. Ignoring the spatial dependence of EA is sufficient for
our purposes here where we are only concerned with the polarizations and phases of the beams.
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be to add π/2 phase to the 1
√

2
(x̂ + ŷ) component of the electric field relative to the 1

√
2
(x̂ − ŷ)

component. We can represent this transformation mathematically as

E2 ·
1
√

2
(x̂ − ŷ) = E1 ·

1
√

2
(x̂ − ŷ)

E2 ·
1
√

2
(x̂ + ŷ) = eiπ/2E1 ·

1
√

2
(x̂ + ŷ) = i E1 ·

1
√

2
(x̂ + ŷ)

where E1 represents the laser electric field before propagation through the waveplate and E2

after. In principle, the finite optical path length of the waveplate and between points 1 and 2

could imply an additional overall phase shift to both beams, but it is irrelevant to this analysis,

since we will only be interested in the final polarization and relative phase shifts between beams

A and B.

Using this transformation, and applying it to beams A and B individually, beams A and B

at point 2 can be represented by

EA,2 =
1
2

EA ei(kz+ϕA)
[

(x̂ − ŷ) + i (x̂ + ŷ)
]

EB,2 =
1
2

EB ei(kz+ϕB)
[

(x̂ − ŷ) − i (x̂ + ŷ)
] (6.10)

and we see from each of their forms that EA,2 has left-handed circular polarization and EB,2 has

right-handed circular polarization as desired.8

For a laser beam, polarization can be conveniently determined from the beam’s Stokes

parameters. Following [26] and using the complex notation of section 3.1, we can represent

the laser beam by

E = (E1ê1 + E2ê2)eik·r (6.11)

where ê1, ê2, and k̂ = k/ |k| form a right handed orthonormal basis where ê1 × ê2 = k̂. In our

8We follow the convention given in section 16 of [26] for right and left circular polarization. Here left-handed
circular polarization is defined as a counterclockwise trace of the electric field vector as it evolves in time when
the wavevector of the light wave is pointing at the viewer. It is not an intuitive convention in our opinion.
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case, we have chosen k̂ = ẑ. Here, E1 and E2 are complex numbers. We can write

E1 = aeiδ1 E2 = beiδ2 (6.12)

where a, b, δ1, δ2 ∈ R. For this description, the Stokes parameters are defined by

s0 = a2 + b2

s1 = a2 − b2

s2 = 2ab cos(δ)

s3 = 2ab sin(δ)

(6.13)

where δ ≡ δ2−δ1. Given knowledge of E1 and E2, we can calculate the Stokes parameters from

s0 = |E1|
2 + |E2|

2

s1 = |E1|
2
− |E2|

2

s2 = Re
(
2E∗1E2

)
s3 = Im

(
2E∗1E2

)
(6.14)

as is readily confirmed by plugging in the expressions for E1 and E2 in equations (6.12) and

confirming that one recovers equations (6.13).

It is also worth noting that the Stokes parameters have the property that [26]

s1 = s0 cos(2γ) cos(2α) s2 = s0 cos(2γ) sin(2α) s3 = s0 sin(2γ) (6.15)

where α indicates the angle of the major axis of the polarization ellipse with the ê1-axis and γ

is an angle that indicates the polarization.

Let us now consider the polarization of the combined laser beams at point 2 of figure 6.6
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given by

ETot,2 = EA,2 + EB,2 =
1
2

EA ei(kz+ϕA)
[

(x̂ − ŷ) + i (x̂ + ŷ)
]
+

1
2

EB ei(kz+ϕB)
[

(x̂ − ŷ) − i (x̂ + ŷ)
]

Let us take ê1 =
1
√

2
(x̂ − ŷ) and ê2 =

1
√

2
(x̂ + ŷ), allowing us to identify

E1 =
1
√

2
EAeiϕA +

1
√

2
EBeiϕB

E2 =
i
√

2
EAeiϕA −

i
√

2
EBeiϕB

(6.16)

and from this, we can readily calculate the Stokes parameters using equation (6.14) to find

s0 = E2
A + E2

B

s1 = 2EAEB cos(ϕB − ϕA)

s2 = 2EAEB sin(ϕB − ϕA)

s3 = E2
A − E2

B

(6.17)

Comparing this to equations (6.15), we can identify that α = (ϕB−ϕA)/2. From this observation,

we conclude that the phase difference between beams A and B is encoded onto the angle α of

the polarization ellipse. This is what we mean when we say that the phase difference is encoded

onto the polarization of the light.

To gain some intuition, it is helpful to consider the case that EA = EB = E. In this case, the

combined beam has linear polarization, as can be identified from the stokes parameters by the

fact that s3 = 0 in this case. With a bit of algebraic manipulation, one can explicitly write

ETot,2 = EA,2 + EB,2 = Eei(kz+(ϕA+ϕB)/2)
[

cos
(
(ϕB − ϕA)/2

)
(x̂ − ŷ) + sin

(
(ϕB − ϕA)/2

)
(x̂ + ŷ)

]
This expression reveals that the total field is in fact linearly polarized at the angle (ϕB − ϕA)/2
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Figure 6.7: Optics for detection of the polarization and light phase.

to the 1
√

2
(x̂ − ŷ) axis. In some sense, this is the ideal case since it will produce interferometric

signals with the highest visibility, but we will see that deviating from the ideal is not a critical

issue.

Now that we have demonstrated that the phase difference between beams A and B are

encoded in the polarization of the combined beam, let us discuss how we can analyze the phase

difference. The optics for the scheme that we will now describe is shown in figure 6.7. A

sample of the superimposed beams are transmitted on the 1:99 beam sampler, which transmits

1% of the beam power as a sample and reflects the remainder. The sampled beam is then split

with a non-polarizing beam splitter. We will now show that by polarizing these two samples

along two different axes, we can unambiguously measure the phase (ϕB − ϕA)/2. These two

polarizers are the polarizing beam splitters shown in figure 6.7.

The Mueller matrix for an ideal polarizer that polarizes at an angle θ relative to the ê1 axis,

the 1
√

2
(x̂ − ŷ) axis in our case, can be found to be [71]9

Pθ =
1
2



1 cos(2θ) sin(2θ) 0

cos(2θ) cos2(2θ) sin(2θ) cos(2θ) 0

sin(2θ) sin(2θ) cos(2θ) sin2(2θ) 0

0 0 0 0


9We note that the conventions of reference [71] differ somewhat from those that we adopt in this thesis.

However, one can confirm with the methods described in section 4.3.4 of [71] on the Mueller calculus that the
matrix is in fact the same for our convention as theirs.
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We can calculate the effect of a polarizer on the sampled beams by applying this matrix

to the Stokes vector defined by the parameters given in equation (6.17). In our case, we will

measure the intensity of the polarized beam, which is proportional to the first element s0 of the

resulting vector. Thus, we find that

I(θ) ∝
1
2

E2
A +

1
2

E2
B + EAEB cos(ϕB − ϕA) cos(2θ) + EAEB sin(ϕB − ϕA) sin(2θ)

=
1
2

E2
A +

1
2

E2
B + EAEB cos

(
(ϕB − ϕA) − 2θ

) (6.18)

We see that we can set θ = 0 and θ = π/4 to get

I(0) ∝
1
2

E2
A +

1
2

E2
B + EAEB cos(ϕB − ϕA) (6.19)

and

I(π/4) ∝
1
2

E2
A +

1
2

E2
B + EAEB sin(ϕB − ϕA) (6.20)

By detecting these two intensities on a photodiode, we can extract cos(ϕB−ϕA) and sin(ϕB−ϕA),

which is sufficient to extract the value of ϕB − ϕA. Polarizing the sample beam onto these two

axes as depicted in figure 6.7 is accomplished with the PBS and the PBS mounted at a 45

degree angle, but any polarizer will suffice. In this case, keeping in mind that we are working

in the coordinate system with basis vectors 1
√

2
(x̂− ŷ) and 1

√
2
(x̂+ ŷ), we have that the “T Signal”

and “R Signal” denoted in figure 6.7 are proportional to I(0) and I(π/4), respectively.

In principle, detection of the signals given in equations (6.19) and (6.20) are sufficient to

uniquely extract the phase difference (ϕB − ϕA). However, doing so requires that one know

the the ratio EA/EB, whose values could be intentionally or unintentionally changed over the

course of an experiment. In the next section, we will discuss a way to relax this requirement

substantially using phase modulation.

126



Optical Lattices formed by Multiple Interfering Laser Beams Chapter 6

6.3.3 Error Signal Generation

Let us now discuss a scheme for setting (ϕB − ϕA) to match a reference phase value ϕref.

More precisely, we will generate an error signal for the difference between (ϕB − ϕA) and ϕref,

which can then be sent to a servo to maintain the condition ϕB − ϕA = ϕref.

As depicted in figure 6.5, beam B transmits through an EOM. We will use this EOM to

apply a small phase modulation to beam B so that the phase of beam B will be time varying of

the form

ϕB + M sin(Ωeot + ϕeo)

where M ≪ 1, and we assume that ϕB is slowly varying compared toΩeo. Making this assump-

tion, the analysis of the previous section is the same, but with the replacement

ϕB → ϕB + M sin(Ωeot + ϕeo)

Thus, the intensity of the beams that are detected by the photodiode are given by the updated

forms of equations (6.19) and (6.20). The photodiodes in figure 6.5 will detect the “T Signal”

denoted VT ∝ I(0) and the “R Signal” denoted VR ∝ I(π/4). Introducing an overall constant of

proportionality Kpd between square of the electric field |E|2 and the photodiode voltage signals,

we have that

VT = Kpd

[
1
2

E2
A +

1
2

E2
B + EAEB cos

(
ϕB − ϕA + M sin(Ωeot + ϕeo)

)]

VR = Kpd

[
1
2

E2
A +

1
2

E2
B + EAEB sin

(
ϕB − ϕA + M sin(Ωeot + ϕeo)

)] (6.21)

With the assumption that M is small, we can apply angle sum trigonometric identities for

the cos and sin terms in equation (6.21). We can then further approximate cos(M) ≈ 1 and
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sin(M) ≈ M to write

VT = Kpd

[
1
2

E2
A +

1
2

E2
B + EAEB cos(ϕB − ϕA) − M(EAEB) sin(ϕB − ϕA) sin(Ωeot + ϕeo)

]

VR = Kpd

[
1
2

E2
A +

1
2

E2
B + EAEB sin(ϕB − ϕA) + M(EAEB) cos(ϕB − ϕA) sin(Ωeot + ϕeo)

]
(6.22)

The virtue of modulating with an EOM is now clear: the amplitudes of the AC components

of VT and VR give M(EAEB) sin(ϕB − ϕA) and M(EAEB) cos(ϕB − ϕA), respectively. This signal

is more immune to noise and also allows for convenient generation of an error signal using

standard lock-in amplification techniques.

For reasons that will become clear in a moment, we will want to phase shift one of the

signals by 90 degrees. Let us shift the phase the RF component of VR as shown in figure 6.8.
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This will convert VR to

VR,+90◦ = Kpd

[
1
2

E2
A +

1
2

E2
B + EAEB sin(ϕB − ϕA) + M(EAEB) cos(ϕB − ϕA) cos(Ωeot + ϕeo)

]
(6.23)

We can then sum the VT and VR,+90◦ signals to obtain

VT + VR,+90◦ = Kpd

[
E2

A + E2
B + EAEB cos(ϕB − ϕA) + EAEB sin(ϕB − ϕA)

− M(EAEB) sin(ϕB − ϕA) sin(Ωeot + ϕeo) + M(EAEB) cos(ϕB − ϕA) cos(Ωeot + ϕeo)
]

And one can easily confirm that

VT + VR,+90◦ = Kpd

[
E2

A + E2
B + EAEB cos(ϕB − ϕA) + EAEB sin(ϕB − ϕA)

+ M(EAEB) cos(ϕB − ϕA + ϕeo + Ωeot)
]

Lock-in amplifier techniques can then be used on this signal to create an error signal.

Specifically, the signal is put through a high pass filter (HPF) and input to the RF input of

a mixer (or phase detector) as shown in figure 6.8. It is mixed with a local oscillator (LO) input

from the same driver as the EOM driver. The local oscillator signal is given by

Vlo = Alo sin(Ωeot + ϕlo)

The ideal mixer output is then

Vmix out = Amo cos(ϕB − ϕA + ϕeo + Ωeot) sin(Ωeot + ϕlo)

=
Amo

2

[
sin(ϕB − ϕA + ϕeo − ϕlo) + sin(2Ωeot + ϕB − ϕA + ϕeo + ϕlo)

]
where Amo ≡ AloKpdM(EAEB). Finally, we send the mixer output through a low pass filter
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(LPF) resulting in the convenient error signal

Verr =
Amo

2
sin(ϕB − ϕA + ϕeo − ϕlo) (6.24)

ϕlo and ϕeo are both easily controlled independently by using the two output channels of a

signal generator, which is shown as the “EOM Signal Generator” in figure 6.8. We can instead

consider these as defining the reference phase ϕref ≡ ϕlo − ϕeo so that

Verr =
Amo

2
sin(ϕB − ϕA − ϕref) (6.25)

Using this as an error signal for feedback on the beam A or beam B AOM driver to control

the phase or frequency, one can impose a lock condition that implies Verr = 0 and dVerr
dϕB
= 0. The

resulting condition assuming Amo > 0 on the phase is that

ϕB − ϕA − ϕref = 0 =⇒ ϕB − ϕA = ϕref

If a lock is implemented so that the above condition holds, one is able to directly control

ϕB − ϕA by changing ϕref, which can be simply and robustly controlled with the phase of the

local oscillator input ϕlo to the mixer. In the 1D case, this change in ϕB−ϕA induces a translation

of the optical lattice.

Note that in this idealized case we have the great benefit that the lock condition will be

independent of EA, EB, M, Alo, and Kpd. In practice however, one will typically be limited

to some range of overall values of Amo. This is because, unless extraordinary care is taken, a

control servo such as a PID will not be stable for every slope of the error signal dVerr
dϕB

near the

lock point. Moreover, even in the stable range, how quickly one can vary ϕref to control ϕB−ϕA

via the lock will potentially be limited due to the change in feedback response. Consequently,

one must take care in confirming that the closed look behavior is sufficient for the parameters
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(beam intensities, drive frequencies, etc.) one wishes to use in an experiment, but it is about

the best one can hope for from an analog error signal.

6.3.4 Deviations from Ideal Optics Behavior

Imperfect Quarter Waveplate

One major practical concern is that the quarter waveplate of the “double pass” shown in

figure 6.6 is imperfect. Specifically, if the quarter waveplate is imperfect, then part of beam

A will transmit on the PBS cube after retro reflecting, instead of entirely reflecting as shown.

This stray light will then interfere with beam A at the atoms to form a lattice even when beam

B is not there. The nature of interference makes it so that the stray beam needs very little power

to produce a significant lattice.

It maybe be possible to avoid this by not perfectly retroreflecting from the the beam sam-

pler, and instead hitting the mirror at a very shallow angle. The sampled beams will not be

perfectly overlapped when they reach the detection photodiodes, but assuming they are partly

overlapped, a signal should be possible, albeit, with sacrificed visibility. We have not tried this

in tests yet.

An alternative is to use multiple waveplates or use of some adjustable phase retarding

element to that no stray beam reaches the atoms.

Note that this is much less of a concern for beam B because imperfect polarization does

not send send stray light towards the atoms.

Imperfect Polarizations for Error Signal Detection

In our discussion of encoding the phase difference between beams A and B onto the polar-

ization of the combined sampled beams in section 6.3.2, we assumed that the sampled beams

had opposite circular polarizations. With this assumption, we need only make two intensity
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measurements after passing the beam through linear polarizers with transmission axes at 45

degrees relative to each other to determine the phase difference between beams A and B. The

setup to make this measurement was shown in figure 6.7. One would be justifiably concerned

about the effect of imperfectly polarized sample beams. This could occur before the beams are

combined, but we find less avoidably that nonpolarizing 50:50 beam splitters will change the

polarization of the beams that pass through them, and the change will not necessarily be the

same for the transmitted and reflected beam. We will show that a couple minor design changes

remove this problem in practice.

The design changes are (1) make the polarizers (the PBS’s in figure 6.7) rotatable and

(2) add a variable attenuator in front of one of the photodiodes, such as a variable attenuator.

The first change will allow one to ensure that the intensity of light reaching the “T Signal”

photodiode varies like cos(ϕB − ϕA) and that reaching the “R Signal” photodiode varies like

sin(ϕB − ϕA). The second change allows us to balance amplitudes of the sinusoidal signals on

the photodiodes. In practical cases, one is able to vary the angle of the polarizers before the

photodiode so that the signals look like cos(ϕB − ϕA) and sin(ϕB − ϕA), but the amplitudes of

the signals might not exactly match. One can then use the variable attenuator to, such as a

linear gradient filter on a tilt stage or a translation stage, to make the amplitudes of the two

photodiode signal match.

This alternation to the designs is sufficient provided three conditions. Condition 1 is that

all of the optical elements after the beam is sampled must be linear, in that their effect on

the light polarization is a linear transformation. This is generally a safe assumption for the

optical elements in the setup, as it allows for birefringent effects and partial polarizations.

Condition 2 is that the polarizations are not changed “too dramatically” which we will state

more quantitatively later, but which is typically not a concern for realistic optics. Finally,

of greatest practical concern is condition 3 that there must be no stray beams present at the

photodiode.
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Conditions 1 and 3 are sufficient for the following analysis. Condition 3 simply ensures

that are only two beams to analyze. Condition 1 allows us to consider the two sampled beams

as being totally independent until we need to consider the intensity at the photodiodes. Let

us specifically consider the situation right after the 50:50 beam splitter in figure 6.7. We can

consider either the beams transmitted or the beams reflected from the 50:50 splitter, but in

either case, we have two beams of some polarization that we wish to polarize and them mea-

sure on a photodiode. At this point, beam A and beam B may have started with some non-

ideal polarizations and they have also had their polarizations changed by mathematically linear

transformations. Let us consider the two beams represented as

EA = eiϕ/2

 cos(ρ/2) − sin(ρ/2)

sin(ρ/2) cos(ρ/2)


 cos θa

i sin θa

 = eiϕ/2

 cos(ρ/2) cos θa − i sin(ρ/2) sin θa

sin(ρ/2) cos θa + i cos(ρ/2) sin θa


EB = e−iϕ/2

 cos(ρ/2) sin(ρ/2)

− sin(ρ/2) cos(ρ/2)


 cos θb

i sin θb

 = e−iϕ/2

 cos(ρ/2) cos θb + i sin(ρ/2) sin θb

− sin(ρ/2) cos θb + i cos(ρ/2) sin θb


(6.26)

with the restriction θa, θb ∈ [−π/4, π/4]. These are not the most general electric fields, but

let us now discuss what the parameters represent and why there is no loss of generality for

our problem. ϕ represents the difference in phase between the two beams.10 We have given

up an irrelevant common phase factor eiϕcomm on the two beams, since we are ultimately only

concerned with a final measured intensity, which only depends on the phase difference between

the beams. ρ represents the angle between the major axes of the two polarization ellipses of the

beams. This parametrization does not allow for independently specifying the major axes of the

polarization ellipses. However, this lost degree of freedom represents a change of coordinates,

and it is unneeded since we will momentarily consider polarizing along an arbitrary axis.

10ϕ can be considered equivalent to ϕB − ϕA for the beams considered in equations (6.10).

133



Optical Lattices formed by Multiple Interfering Laser Beams Chapter 6

Let us now consider polarizing these combined beams along an arbitrary axis defined by

the unit vector

u =

 cosα

sinα


The result will be an electric field of amplitude

Eu = u · EA + u · EB

The intensity of the beam after polarization will then be11

I ∝ E∗u · Eu = 1 +
1
2

cos(2α − ρ) cos(2θa) +
1
2

cos(2α + ρ) cos(2θb)

+
[

cos(ρ) cos(θa − θb) + cos(2α) cos(θa + θb)
]

cos(ϕ)

+
[

sin(ρ) sin(θa + θb) − sin(2α) sin(θa − θb)
]

sin(ϕ)

(6.27)

It would be great for our purposes if for some desired ϕ0, we can always find some polar-

ization axis α0 such that

I = c0 + b0 cos(ϕ − ϕ0)

where b0 , 0. Theoretically, this is not always possible, but we will find a practically rele-

vant sufficient condition that ensures that it is possible, given conditions on the ellipticity of

polarization.

Before proving the sufficient condition, let us note the true minimum requirement for our

purposes. Looking at figure 6.7, our goal is that the light intensity that reaches the “T” and

11We discourage the diligent reader from repeating the algebra to find this expression and to instead confirm
it with the Mathematica by setting assumptions that all of the variables are real and then taking the difference
between the initial and final expressions. We found it necessary to brace the expression for the difference with
FullSimplify[TrigFactor[ExpToTrig[]]]. Mathematica does not otherwise readily generate this expression to our
knowledge.

134



Optical Lattices formed by Multiple Interfering Laser Beams Chapter 6

“R”’ photodiodes be of the forms

IT = ct + bt cos(ϕ − ϕ0) and IR = cr + br sin(ϕ − ϕ0)

respectively, where bt , 0 and br , 0, but we have no requirement on ϕ0. In other words,

we need the intensity of the light that reaches photodiode “T” to vary as a cosine and the

light that reaches photodiode “R” to vary as a sine. It follows from our analysis of the ideal

case that everything will work out great if bt = br > 0. However, when bt > 0, br > 0,

but br , bt, we have the practical remedy of variably attenuating the light that reaches one

of the photodiodes (or attenuating the electrical signal). Moreover, on the other ostensibly

problematic case that bt > 0 and br < 0, we can reverse roles of the electrical signals practically

achieved by “swapping which bnc cable goes to which photodiode.”

Even if we imagine that our 50:50 beam splitter in figure 6.7 outputs two perfect copies of

the beams to the “T” and “R” photodiodes, and if we imagine polarizing them along axes at

angles αt and αr, it is not theoretically possible to get intensities of the forms IT and IR above

for all cases of polarizations of beams A and B. However, these theoretical cases require rather

large changes in the polarization from the ideal right and left circularly polarized beams A and

B, and so we have not seen them arise in practice.

THEOREM

Claim: Consider beam Σ defined as the beam formed by superimposing two arbitrary laser

beams A and B represented by equations (6.26). We restrict to θa, θb ∈ [−π/4, π/4] without loss

of generality. If

|θa + θb| < π/4 and |θa − θb| > π/4. (6.28)
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then for any value ϕ0 we can find a polarization axis α0 such that the intensity of beam Σ

becomes

I = c0 + b0 cos(ϕ − ϕ0)

for some b0 , 0 after being polarized along this axis.

Proof: Consider that ϕ = (ϕ − ϕ0) + ϕ0 so that

cos(ϕ) = cos(ϕ0) cos(ϕ − ϕ0) − sin(ϕ0) sin(ϕ − ϕ0)

and

sin(ϕ) = sin(ϕ0) cos(ϕ − ϕ0) + cos(ϕ0) sin(ϕ − ϕ0)

Thus, we can write equation (6.27) for the intensity after polarization along axis α as

I ∝ 1 +
1
2

cos(2α − ρ) cos(2θa) +
1
2

cos(2α + ρ) cos(2θb)

+
[

cos(ρ) cos(θa − θb) cos(ϕ0) + sin(ρ) sin(θa + θb) sin(ϕ0)

+ cos(θa + θb) cos(ϕ0) cos(2α) − sin(θa − θb) sin(ϕ0) sin(2α)
]

cos(ϕ − ϕ0)

+
[

sin(ρ) sin(θa + θb) cos(ϕ0) − cos(ρ) cos(θa − θb) sin(ϕ0)

− sin(θa − θb) cos(ϕ0) sin(2α) − cos(θa + θb) sin(ϕ0) cos(2α)
]

sin(ϕ − ϕ0)

(6.29)

For equation (6.29) to take the desired form of I = c0 + b0 cos(ϕ − ϕ0) where b0 , 0, we

need to find a value of α that satisfies the following two conditions:

Condition 1: The factor in front of sin(ϕ − ϕ0) is 0

Condition 2: The factor in front of cos(ϕ − ϕ0) is not also zero to ensure b0 , 0
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Satisfying condition 1 is equivalent to satisfying the equation

sin(ρ) sin(θa + θb) cos(ϕ0) − cos(ρ) cos(θa − θb) sin(ϕ0)

− sin(θa − θb) cos(ϕ0) sin(2α) − cos(θa + θb) sin(ϕ0) cos(2α) = 0

for some value of α that we will denote α0. This desired value α0 will exist for a given choice

of ϕ0 if and only if12

(
sin(ρ) sin(θa + θb) cos(ϕ0) − cos(ρ) cos(θa − θb) sin(ϕ0)

)2

≤
(

sin(θa − θb) cos(ϕ0)
)2
+

(
cos(θa + θb) sin(ϕ0)

)2
(6.30)

Let us now show that the inequality (6.30) indeed holds. To this end, let us first note that

conditions (6.28) imply

|cos(θa − θb)| <
1
√

2
, |sin(θa − θb)| >

1
√

2
,

and

|cos(θa + θb)| >
1
√

2
, |sin(θa + θb)| <

1
√

2

(6.31)

Next, let us note that the following inequality holds for the left hand side (L.H.S.) of the

inequality (6.30):

L.H.S of (6.30) =
(

sin(ρ) sin(θa + θb) cos(ϕ0) − cos(ρ) cos(θa − θb) sin(ϕ0)
)2

<
1
2

(
|sin(ρ| |cos(ϕ0)| + |cos(ρ)| |sin(ϕ0)|

)2
=

1
2

max
(
sin2(ρ − ϕ0), sin2(ρ + ϕ0)

)
≤

1
2

where the first inequality follows from (6.31).

12Condition (6.30) follows from the fact that in general c1 cos(α)+ c2 sin(α) =
√

c2
1 + c2 cos(α− δ) for tan(δ) =

c2/c1 and that
√

c2
1 + c2 cos(α − δ) = L for some α if and only if c2

1 + c2 ≥ L2.

137



Optical Lattices formed by Multiple Interfering Laser Beams Chapter 6

Then consider that the following holds for the right hand side (R.H.S.) of the inequality

(6.30):

1
2
=

1
2

cos2(ϕ0) +
1
2

sin2(ϕ0)

<
(

sin(θa − θb) cos(ϕ0)
)2
+

(
cos(θa + θb) sin(ϕ0)

)2
= R.H.S of (6.30)

Comparing the previous two inequalities, we see that the inequality in (6.30) indeed holds.

Thus, condition 1 can be satisfied for some α = α0.

Now we turn our attention to condition 2. This condition is satisfied if for the value α0 we

have found, the intensity of beam Σ after polarization does not simply reduce to I = c0 for some

c0 that is constant with respect to ϕ. Looking at equation (6.29), we see that this amounts to

ensuring that the factor in front of cos(ϕ− ϕ0) does not become zero for α = α0. We will prove

this by contradiction, by first assuming the opposite. That is, let us suppose that the factor on

cos(ϕ − ϕ0) in equation (6.29) is zero, i.e.,

cos(ρ) cos(θa − θb) cos(ϕ0) + sin(ρ) sin(θa + θb) sin(ϕ0)

+ cos(θa + θb) cos(ϕ0) cos(2α0) − sin(θa − θb) sin(ϕ0) sin(2α0) = 0

(6.32)

At the same time, α0 was chosen such that the factor on sin(ϕ − ϕ0) in equation (6.29) is

zero, i.e.,

sin(ρ) sin(θa + θb) cos(ϕ0) − cos(ρ) cos(θa − θb) sin(ϕ0)

− sin(θa − θb) cos(ϕ0) sin(2α0) − cos(θa + θb) sin(ϕ0) cos(2α0) = 0

(6.33)

Let us consider 3 cases for the value of ϕ0.

Case 1: sin(ϕ0) = 0
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In this case, equation (6.32) reduces to

cos(2α0) = −
cos(ρ) cos(θa − θb)

cos(θa + θb)
(6.34)

which implies

|cos(2α0)| = |cos(ρ)|
|cos(θa − θb)|
|cos(θa + θb)|

< |cos(ρ)| or cos(2α0) = cos(ρ) = 0

where the inequality follows from our assumptions on the values of |θa − θb| and |θa + θb|.

Similarly, equation (6.33) reduces to

sin(2α0) =
sin(ρ) sin(θa + θb)

sin(θa − θb)
(6.35)

which implies

|sin(2α0)| = |sin(ρ)|
|sin(θa + θb)|
|sin(θa − θb)|

< |sin(ρ)| or sin(2α0) = sin(ρ) = 0

We see that equations (6.34) and (6.35) together imply a contradiction, since, if sin(ρ) , 0

and cos(ρ) , 0, we would need

|cos(2α0)| < |cos(ρ)| and |sin(2α0)| < |sin(ρ)|

which is impossible for any value of α0. Likewise, if cos(ρ) = 0, we would need

|cos(2α0)| = 0 and |sin(2α0)| < 1
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which is impossible for any α0, and if sin(ρ) = 0, we would need

|cos(2α0)| < 1 and |sin(2α0)| = 0

which is also impossible for any α0. If ϕ0 = 0, it is not possible that a value of α0 will result in

beam Σ having an intensity I = c0 that is independent of ϕ as claimed.

Case 2: cos(ϕ0) = 0

In this case, equation (6.32) reduces to equation (6.35) and equation (6.33) reduces to

equation (6.34). So again, our assumption implies that equations (6.34) and (6.35) are simul-

taneously satisfied, which produces a contradiction as we saw in case 1.

Case 3: cos(ϕ0) , 0 and sin(ϕ0) , 0

In this final case, let us consider the following linear combinations of equation (6.32) and

(6.33). First, we multiply equation (6.32) by cos(ϕ0), and we multiply equation (6.33) by

sin(ϕ0). Then we can take the difference between the resulting equations to find

cos(ρ) cos(θa − θb)
(

cos2(ϕ0) + sin2(ϕ0)
)
+ cos(θa + θb) cos(2α0)

(
cos2(ϕ0) + sin2(ϕ0)

)
= 0

(6.36)

For second linear combination we will consider, we multiply equation (6.32) by sin(ϕ0),

and we multiply equation (6.33) by cos(ϕ0). Then we can add the resulting equations to find

sin(ρ) sin(θa + θb)
(

cos2(ϕ0) + sin2(ϕ0)
)
− sin(θa − θb) sin(2α0)

(
cos2(ϕ0) + sin2(ϕ0)

)
= 0

(6.37)

Of course, in both of the above two equations, we can make the replacement sin2(ϕ0) +

cos2(ϕ0) = 1, and we readily see that equation (6.36) is the same as equation (6.34) and that

equation (6.37) is the same as equation (6.35). Thus, we once again run into the contradiction

of case 1.
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After examining these three cases, we have ensured that the intensity can not be made

independent of ϕ, which proves that condition 2 holds for all possible values of α0. □

A Practical Corollary for Finding the Error Signal

The previous theorem is quite reassuring for our goal of creating an error signal in the

setup of figure 6.7. We need only to ensure that the beams exiting the 50:50 beamsplitter have

polarizations satisfying the conditions of the theorem, |θa + θb| < π/4 and |θa − θb| > π/4. Then

the theorem guarantees that we can set the polarizers in front of the photodiodes at some angle

so that the beam reaching photodiode “T” has the intensity I1 = c1+b1 cos(ϕ−ϕ0) and the beam

reaching photodiode “R” has the intensity I2 = c2 + b2 sin(ϕ − ϕ0) = c2 + b2 cos(ϕ − ϕ0 − π/2).

In fact, we can make the stronger statement that it is sufficient that only one of the out-

puts of the 50:50 beamsplitter to satisfy the conditions of the theorem assuming that the other

photodiode has a signal that varies with phase.

An Edge Case of the Theorem

Finally, let us consider one practical case that is utilized in [68]. Here, a circularly polarized

beam is interfered with a linearly polarized beam. Let the circularly polarized beam be beam

A with θa = π/4 and the linearly polarized beam be beam B with θb = 0. This case does not

satisfy the conditions of the theorem. In fact, there is one value of ϕ0 for which there is no axis

of polarization to get I = c0 + b0 cos(ϕ − ϕ0) for b0 , 0. In fact, it fails because b0 = 0, and it

corresponds to the axis of polarization that is perpendicular to the linear polarization.

Nonetheless, this is a practically useful setup, where one can use two polarization axes that

are perpendicular to each other to find an error signal.
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6.3.5 Deviations from Ideal Electronics Behavior

Non-ideal behavior of electrical components is also of practical concern. As can be seen

from examining the ideal “T” and “R” electrical signals from the photodiodes given in equa-

tions (6.22), the difference in optical phase is encoded on the amplitudes of the the electrical

signal.

We are dependent on a couple of things working properly. As already discussed, one need

the factors of M(EAEB) to actually be equal in equations (6.22), which can be addressed by

variably attenuating the laser light that reaches the photodiodes. We bring this up again because

one must be concerned with the possibility of the signal amplitudes being changed by the

electronics. Also, one can consider attenuating the electrical signal rather than or in addition

to the optical signal if one wishes.

More relevant is that the phase of the electrical signals must be correct. This cannot be fixed

by changing the optical phases. Phase errors on the electrical systems can be induced by the

summing element and the 90 degree phase adding element for the “R” signal. Manufacturers

will typically provide these specifications. One can also induce phase error with cable delays.

We have considered making some variable phase shifting circuit. Commercial options are

available, but not always with useful specifications or easy implementation. Active circuit

designs can be readily found. Since in our case, we only need a very small phase shift range

for correction of roughly 3 degrees or so, there seem to be plenty of options for small circuits

made of resistors, capacitors, and trim potentiometers that allow some phase shift, but the

design requires some consideration of impedance matching. One alternate approach is to have

slightly varying RF cable lengths and tune the EOM frequency such that the cable phase delays

perfectly compensate the imperfections in the electronics.

Let us calculate the consequence of a phase or amplitude difference from the ideal. We

will denote the phase error by δ. With the plan of high passing the signals, we can simplify the
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analysis by only considering the A.C. components of the signals. Further, let us assume that

ϕeo = 0. We can write this A.C. component of “T” signal as

VT,ac = −at sin(ϕB − ϕA) sin(Ωeot + δ) = at sin(ϕA − ϕB) sin(Ωeot + δ)

and for the A.C. component of the “R” signal after 90 degree phase shift, we have

VR,ac,+90◦ = ar cos(ϕB − ϕA) cos(Ωeot)

Both of the above equations follow simply from the VT equality in equations (6.22) and equa-

tion (6.23).

These signals will be summed and fed into the mixer in figure 6.8. The mixer will be

used to detect the phase ϕmeas of this combined signal. Ideally, we want ϕmeas = ϕA − ϕB, but

imperfections will cause a deviation between the measured phase and the true phase ϕA − ϕB.

The combined signal will be

Vmix in = at sin(ϕA − ϕB) sin(Ωeot + δ) + ar cos(ϕA − ϕB) cos(Ωeot)

= −at sin(ϕB − ϕA) cos(δ) sin(Ωeot)

+
(
ar cos(ϕB − ϕA) − at sin(ϕB − ϕA) sin(δ)

)
cos(Ωeot)

= atot cos(Ωeot + ϕmeas)

We see that

ϕmeas = arctan2
(

ar cos(ϕB − ϕA) − at sin(ϕB − ϕA) sin(δ), at sin(ϕB − ϕA) cos(δ)
)

(6.38)

where arctan2 is the standard two-input arctangent function such that ϕ = arctan2(x, y) solves
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for the angle ϕ that satisfies

tan(ϕ) = y/x, sin(ϕ) =
y√

x2 + y2
, and cos(ϕ) =

x√
x2 + y2

Generally, error of the measured phase given by ϕerr = ϕmeas − (ϕB − ϕA) is not intuitively

clear from equation (6.38). We will note that from plotting ϕerr as a function of (ϕB − ϕA), one

can observe that a mismatch of the signal amplitudes by at/ar = 1.1 at δ = 0 causes a phase

error that varies roughly sinusoidally with (ϕB − ϕA), where the absolute value of the max error

is roughly 2.5 degrees. If instead at = ar, one can observe that there is no phase error for

(ϕB − ϕA) = 0 or π, and a maximum phase error given by ϕerr = δ at (ϕB − ϕA) = π/2 or 3π/2.13

13We sketch a reasonably clean geometric proof here. We can consider finding the output of arctan2 as equiv-
alent to solving for the angle of the vector xx̂ + yŷ. The vector whose angle we wish to find can be written as
v = cos(ϕB − ϕA)ê1 + sin(ϕB − ϕA)ê2. In the case of no error (ϕmeas = ϕB − ϕA), we have ê1 = x̂ and ê2 = ŷ. For
nonzero δ, ϕmeas is found from getting the angle with ê1 = x̂ and ê2 = − sin(δ)x̂ + cos(δ)ŷ. And to get ϕerr = δ, i.e.
ϕmeas = (ϕB−ϕA)+δ, we would have ê1 = cos(δ)x̂+sin(δ)ŷ and ê2 = − sin(δ)x̂+cos(δ)ŷ. Since |ê1| = 1 and |ê2| = 1,
we see that by constructing the vectors ϕmeas for the case of interest will lie in the range [(ϕB − ϕA), (ϕB − ϕA)+ δ],
with the extreme values taken when sin(ϕB − ϕA) = 0 or cos(ϕB − ϕA) = 0.
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Augmentation and Documentation to

Maximally Localized Generalized

Wannier States Code

A.1 Introduction

Walters et al. developed a valuable tool for MATLAB that enables straightforward deter-

mination of the Wannier states of optical lattices [72]. It is similar to Wannier90 used in the

condensed matter physics and material science communities, but specialized for atomic physi-

cists using optical lattices. The tool makes for convenient specification of an optical lattice

in terms of its Fourier transform coefficients and generates as outputs the Wannier states and

Hubbard model parameters for the lattice. We have found that this implementation works well

for lattices with inversion symmetry, but we have also found that the correct Wannier states are

often not found in cases where the lattice lacks inversion symmetry or has multiple sites per

unit cell in many cases.

In this appendix, we will discuss edits made to the code implementation from [72]. The
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code in this edited form works exclusively for 2D lattices and it enables calculation of Wannier

states when there is no inversion symmetry and when there are multiple sites per unit cell.

Similar straightforward edits could used to allow for analogous implementation in 3D and 1D

if need be.

In the algorithm for finding the maximally localized Wannier states |wnR⟩, a set of unitary

matrices {Uq}with one matrix for each quasimomentum q is found by gradient descent methods

[73, 74]. These Uq determine a change of basis for the set of bloch states {ψq
j } with band j and

quasimomentum q. The maximally localized Wannier states |wnR⟩ are then given by1

|wnR⟩ = V
∫

BZ

dq
(2π)3 e−iq·R

J∑
j=1

|ψ
q
j ⟩ (Uq) jn (A.1)

The integral is over the quasimomentum vectors q in the brillouin zone and J is the number of

bands. |wnR⟩ denotes the Wannier state centered on site R. The index n roughly indicates the

Wannier states for band n, but technically n is a more general index in the case that multiple

bands are close enough in energy that it is physically justified to combine states from multiple

bands to generate Wannier states. Strictly speaking, n only indicates the Wannier states for

band n in the case that each matrix Uq is diagonal, i.e., when there is no mixing between

bands. In this special case that Uq is diagonal, it may also be helpful to note that we are simply

redefining the bloch basis by adding a phase factor to each of the states in the bloch basis,

1A note here on a dissonant conventions set by the authors [72]. Here equation (A.1) is formally very similar
to a Fourier transform using the convention

ψ(r) =
1

(2π)D

∫
dk ϕ(k)

where ψ(r) is the real space wavefunction, and ϕ(k) is its fourier transform. I believe this convention is used so that
both |wnR⟩ and |ψq

j ⟩ are properly normalized. However, the actual fourier transform convention for wavefunctions
used later by [72] opts for a differing fourier transform normalization convention given by

ψ(r) =
1

(2π)D/2

∫
dk ϕ̃(k)

We just wanted to point this out

146



Augmentation and Documentation to Maximally Localized Generalized Wannier States Code
Chapter A

which are relevant for the integral over states in the brillouin zone.

The bulk of the change is to initialize the algorithm by providing an improved initial guess

for {Uq} using the method described in [73] (Section IV, subsection D, under “1. Algorithm”)

and more recently in section 2.3 of [74]. We make a harmonic potential approximation of the

lattice near each local minimum of the potential in a unit cell, and we construct a set of guess

states {|gl⟩} from the quantum harmonic oscillator states for each of the approximate harmonic

potentials. The choice of guess state(s) to use to initialize each band (or set of mixed bands)

is made by calculating the norms of the projections of each guess state onto the set of states in

the band(s). We use the guess state with the largest norm after projection, with the caveat that

a guess state |gl⟩ can only be used for initializing one Wannier state index n.

After the initial guess for {Uq} is made, the gradient descent algorithm is run almost exactly

as written by Walters et al. save for the following key changes. Firstly, their algorithm was

written with a step that initializes {Uq} assuming that the lattice has inversion symmetry. This

step has been removed. Secondly, we removed a step where {Uq} was transformed so that an

approximate Wannier state was translated back to a central site. Our understanding is that this

line assumed that there was only one local minimum per unit cell, and it does not function

properly when this is not the case. Lastly, we disabled the disentanglement algorithm based on

[75]. We found that for the cases we tried, this algorithm seemed to take the Wannier state from

an expected form with near minimal Ω values to states that were clearly incorrect with large

Ω values. However, it is likely that this algorithm is vital in the type of lattices with entangled

bands that we did not test.

In the following sections, we will describe in detail how the initialization steps were imple-

mented.
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A.2 Determination of Local Minima

Before initialization, we determine where the local minima of the lattice potential are within

a unit cell. In code, this is done by the function findPotentialLocalMinima. This function

finds the coordinates of each of the local minima and fits a small square grid of sample points

to a general 2D quadratic function.

A.2.1 The Preferred Unit Cell

To search for local minima, the program will first sample the unit cell with a rectangular

grid of points. It will then calculate a numerical approximation of the gradient of the potential

at every point on the grid. Next, it checks the 100 points with the shallowest slope (smallest

norm of the gradient vector) to see if they are the minimum among the neighboring points.

With this in mind, it would be ideal if the unit cell were a rectangle with sides parallel to the

x̂ and ŷ direction so as to efficiently sample it with a rectangular grid of points. In 2D, one can

always choose a rectangular unit cell, but in general, these rectangular unit cells do not have

sides that are parallel to the x̂ and ŷ direction. One could rotate coordinates to take advantage

of the rectangular unit cell, but we felt the benefit was not worth the effort of implementation.

Without rotation, one can still choose the unit cell to be a parallelogram with one of the sides

parallel to the x̂ or ŷ and the other not. In the case that one of the primitive lattice vectors is

parallel to either the x̂ or ŷ direction, then the ideal rectangular unit cell can be found.

A.2.2 Case of Rectangular Primitive Cell

Let the two primitive vectors of the lattice be a1 and a2 and denote ai = ai,xx̂ + ai,yŷ. In the

case that one of the primitive lattice vectors is along the x̂ or ŷ direction, say ai = aix̂, we can
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take the unit cell to be the rectangle with vertices

(0, 0), (ai,x, 0), (0, a(i+1),y), and (ai,x, a(i+1),y)

and in the alternate case that ai = aiŷ, we have

(0, 0), (a(i+1),x, 0), (0, ai,y), and (a(i+1),x, ai,y)

Here and elsewhere, a3 ≡ a1.

In practice, we will opt to center the unit cell on the origin, and instead use the unit cell

with vertices

(
−ai,x

2
,
−ai+1,y

2

)
,

(
−ai,x

2
,

ai+1,y

2

)
,

(ai,x

2
,
−ai+1,y

2

)
and

(ai,x

2
,

ai+1,y

2

)

and for ai = aiŷ, we take

(
−a(i+1),x

2
,
−ai,y

2

)
,

(a(i+1),x

2
,
−ai,y

2

) (
−a(i+1),x

2
,

ai,y

2

)
, and

(a(i+1),x

2
,

ai,y

2

)

In the algorithm, an initial check is done to see if one of these rectangular unit cells is an

option.

A.2.3 All Other Cases

In all other cases, there are four options of unit cell that have two sides parallel to x̂ or ŷ:

1. Two sides parallel to a1 with magnitude |a1|. The remaining two sides parallel to x̂.

2. Two sides parallel to a2 with magnitude |a2|. The remaining two sides parallel to x̂.

3. Two sides parallel to a1 with magnitude |a1|. The remaining two sides parallel to ŷ.
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4. Two sides parallel to a2 with magnitude |a2|. The remaining two sides parallel to ŷ.

In all cases, the length of the side parallel to x̂ or ŷ is such that the area of the unit cell is

|a1 × a2|.

For cases 1 and 2, the unit cell can be taken to be the parallelogram with vertices

(0, 0), (ai,x, ai,y), (dx, 0), and (dx + ai,x, ai,y)

where ai is the primitive lattice vector that is parallel to two sides of the unit cell, and

dx ≡ a(i+1),x −
a(i+1),y

ai,y
ai,x

Again, a3 ≡ a1.

However, we will instead translate the unit cell to be centered on the origin, giving a paral-

lelogram with the vertices

(
−dx − ai,x

2
,
−ai,y

2

)
,

(
−dx + ai,x

2
,

ai,y

2

)
,

(
dx − ai,x

2
,
−ai,y

2

)
, and

(
dx + ai,x

2
,

ai,y

2

)

Similarly, for options 3 and 4, we can define the unit cell by

(0, 0), (ai,x, ai,y), (0, dy), and (ai,x, dy + ai,y)

where

dy ≡ a(i+1),y −
a(i+1),x

ai,x
ai,y

Translating the unit cell to be centered on the origin gives vertices

(
−ai,x

2
,
−dy − ai,y

2

)
,

(
ai,x

2
,
−dy + ai,y

2

)
,

(
−ai,x

2
,

dy − ai,y

2

)
, and

(
ai,x

2
,

dy + ai,y

2

)
150



Augmentation and Documentation to Maximally Localized Generalized Wannier States Code
Chapter A

We would like to pick the unit cell option in light of the following considerations.

1. We will inscribe the unit cell with a rectangle of sample points that has sides parallel to

x̂ and ŷ directions. We would like the rectangle to have the smallest area possible.

2. Secondarily, we would like the chosen unit cell to be “small” in the sense that the local

minima in the unit cell as close as possible. (Otherwise, it will require translation by a

lattice vector to make them adjacent.) To be concrete, we mean that we would like the

longer diagonal of the unit cell to be as small as possible.

To satisfy the first preference, we will choose the vector ai such that
∣∣∣ai,xai,y

∣∣∣ ≤ ∣∣∣a(i+1),xa(i+1),y

∣∣∣
Two options then remain. If we take two of the sides to be parallel to the x axis, then the

length of the long diagonal of the unit cell is given by

√∣∣∣ai,y

∣∣∣2 + (∣∣∣ai,x

∣∣∣ + |dx|
)2
=

√√∣∣∣ai,x

∣∣∣2 + ∣∣∣ai,y

∣∣∣2 + A∣∣∣ai,y

∣∣∣
 A∣∣∣ai,y

∣∣∣ + ∣∣∣ai,x

∣∣∣ (A.2)

where A =
∣∣∣dxai,y

∣∣∣ is the area of the unit cell.

If instead we take two of the sides to be parallel to the y axis, the length of the long diagonal

of the unit cell is given by

√∣∣∣ai,x

∣∣∣2 + (∣∣∣ai,y

∣∣∣ + ∣∣∣dy

∣∣∣)2
=

√√∣∣∣ai,x

∣∣∣2 + ∣∣∣ai,y

∣∣∣2 + A∣∣∣ai,x

∣∣∣
 A∣∣∣ai,x

∣∣∣ + ∣∣∣ai,y

∣∣∣ (A.3)

where A =
∣∣∣dyai,x

∣∣∣ is the area of the unit cell.

To satisfy the second preference we want to choose the unit cell with the shorter long

diagonal. Comparing equation (A.2) and (A.3), we see that we can satisfy this by setting sides

parallel to the x axis if
∣∣∣ai,y

∣∣∣ > ∣∣∣ai,x

∣∣∣ and taking the sides parallel to the y axis if
∣∣∣ai,y

∣∣∣ < ∣∣∣ai,x

∣∣∣.
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A.2.4 Masking the Appropriate Region

Lastly, since we have sampled the rectangle that inscribes the unit cell, we will define a

boolean mask to only check for local minima within the unit cell. This mask will basically “cut

away” the excess sample points that are outside of the unit cell.

To do this, we will check 4 conditions. Let v1 and v4 represent opposite vertices of the

parallelogram unit cell. Let v2 and v3 represent the other two vertices. We can define the

directions parallel to each of the sides by the vectors

t1 = v2 − v1, t2 = v3 − v1, t3 = v2 − v4, and t4 = v3 − v4

Similarly, we can define a direction normal to each of the sides of the parallelograms by

ni =

 0 −1

1 0

 ti

Using the fact that 0 is on the interior of the unit cell parallelogram, we can determine that

a point r is on the interior of the parallelogram, if and only if it satisfies all of the following

conditions:

sign
(
(r − v1) · n1

)
= sign

(
(0 − v1) · n1

)
sign

(
(r − v1) · n2

)
= sign

(
(0 − v1) · n2

)
sign

(
(r − v4) · n3

)
= sign

(
(0 − v4) · n3

)
sign

(
(r − v4) · n4

)
= sign

(
(0 − v4) · n4

)
To check which points of the grid are in the unit cell, we require that it either satisfy the

above conditions or be on one of two adjacent boundaries. We therefore change the condition
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to be

sign
(
(r − v1) · n1

)
=

(
sign

(
(0 − v1) · n1

)
or 0

)
sign

(
(r − v1) · n2

)
=

(
sign

(
(0 − v1) · n2

)
or 0

)
sign

(
(r − v4) · n3

)
= sign

(
(0 − v4) · n3

)
sign

(
(r − v4) · n4

)
= sign

(
(0 − v4) · n4

)
As a code example, the first condition as an example will be implemented as

C1 = (sign((X-v1x)*n1x + (Y-v1y)*n1y) == sign(-v1x*n1x -v1y*n1y))

| (sign((X-v1x)*n1x + (Y-v1y)*n1y) == 0)

where v1 = (v1x) x̂ + (v1y) ŷ and n1 = (n1x) x̂ + (n1y) ŷ.

Likewise, generating similar conditions for the others, we can find the mask condition with

the line

Mask = C1&C2&C3&C4

A.3 Quadratic Approximation of the Local Minima

This section will discuss how the local minima of the unit cell are determined and how they

are fit to a quadratic approximation.

A.3.1 Gridding the Unit Cell

Having now identified a preferred unit cell that is centered on the origin we will describe

how the grid of points chosen and how the gradient on those data points is calculated.
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Let the rectangle that inscribes the unit cell have dimensions dx by dy. We would like to

sample in this region on an approximately square grid with total points N. The number of

points in each direction will be Nx and Ny, and we have NxNy = N. To get a roughly square

grid, we want dx/dy ≈ Nx/Ny. In the ideal case, we would have

Nx

Ny
=

N2
x

N
=

dx

dy
=⇒ Nx =

√
Ndx

dy

Since Nx and Ny must be integers, we will actually take

Nx = 2 ceil

1
2

√
Ndx

dy

 + 1

to ensure that Nx is an odd integer.

This will set the point spacing along the x direction to be δx = dx/Nx.

We will then set Ny using the formula

Ny = 2 ceil
(
1
2

dy

dx
Nx

)
+ 1

to get a point spacing δy = dy/Ny.

Note that as an input we are providing N, but the output will give us Nx and Ny that satisfy

NxNy ≳ N.

We can then set the sampled x points to be

xpoints = −

(
Nx + 1

2

)
δx : δx :

(
Nx + 1

2

)
δx

This produces Nx + 2 data points. We do this to sample outside of the boundary by δx/2 just to

get an accurate gradient calculation at the edges. We will later then only consider the gradient

at the points xpoints(2:Nx+1) corresponding to the points between −
(

Nx−1
2

)
δx and

(
Nx−1

2

)
δx
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spaced by δx.

We will use an almost identical setup for the y data points with

ypoints = −

(
Ny + 1

2

)
δy : δy :

(
Ny + 1

2

)
δy

We can then use meshgrid in MATLAB to form the matrix grid of x and y values with

[X,Y] = meshgrid(xpoints,ypoints)

We will then further define a sampling of the potential F by

F = f(X,Y)

where f (x, y) defines the lattice potential as a function of space.

We can then calculate the gradient of f on the sampling of points using

[dFx,dFy] = gradient(F,δx,δy)

We can then calculate the norm of the gradient at each of the points normdFwhich is simply

identified with

normdF = sqrt(dFx.∧2 + dFy.∧2 )

A.3.2 Finding the Local Minima

To find the local minima we first get the 100 sampled points with the smallest values

normdF. We check these points starting with the smallest normdF value and working up. To

check if a point is a local minimum, we see if it has the minimum value of the potential among

its 8 nearest neighbors on the rectangular grid. If it has the minimum value, we then at it to a
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list of approximate local minima if it is not the neighbor of a point that is already on the list

of approximate local minima (or a neighbor after translation by a lattice vector). We check the

neighbors in case the sampling is such that multiple neighboring sample points have the same

value.

A.3.3 Fitting the Local Minima to a Quadratic Approximation

To determine the quadratic approximation of the potential around each local minimum, a

square grid of side length λ/10 of points around the approximate minimum is generated, where

λ is the laser wavelength used to create the optical lattice. These points are fit by least squares

to the quadratic model

V(x, y) = a1x2 + a2xy + a3y2 + a4x + a5y + a6 (A.4)

This is done in the usual fashion of least squares by writing

a =



a1

a2

a3

a4

a5

a6



, X =


. . .

...
...

x2
i xiyi y2

i xi yi 1
...

...
. . .

 , v =


...

Vi

...



Then each row would satisfy equation (A.4) if

v = Xa
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and the minimum sum of the squared error is given by

XT Xa = XT v

In MATLAB, this is best solved by using the “\” operation:

a = XT X\XT v

The parameters ai for each minimum location are returned as quadFitParams. The best

fit minimum location is calculated by solving ∇V(x, y) = 0 for V(x, y) given in equation (A.4).

It is a simple calculation to see that the minimum point (x0, y0) is determined by solving

 2a1 a2

a2 2a3


 x0

y0

 =
 −a4

−a5


which we have MATLAB solve for each local minimum. We return the set of found local

minima in the matrix potentialMinimaLocs.

Lastly, we note that equation (A.4) can be rewritten in the form

V(x, y) = a1(x − x0)2 + a2(x − x0)(y − y0) + a3(y − y0)2 + V0 (A.5)

where the values a1, a2, and a3 are the same as in equation (A.4), x0 and y0 are the calculated

coordinates of the minima, and

V0 = a6 − a1x2
0 − a2x0y0 − a3y2

0
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A.4 Approximate Wannier Function Guess States

Having found a quadratic form approximation to the wells in the the previous section, we

will now use the eigenstates of those approximate wells for our initialization state. These

eigenstates are simple harmonic oscillator states. We will express these states in fourier space

because this will make the initialization calculations simpler computationally.

A.4.1 Harmonic Oscillator States in k-space

As is the common convention for optical lattices, the program considers the Hamiltonian

in units of the recoil energy ER =
h2

2µλ2 where the position is in units of the laser wavelength λ

and µ is the mass of the atom. The Hamiltonian is thus

H = −
1

(2π)2

∂2

∂x2 −
1

(2π)2

∂2

∂y2 + V(x, y) =
k2

(2π)2 + V(x, y)

where the operator k = kxx̂ + kyŷ satisfies kx = −i ∂
∂x and ky = −i ∂

∂y . k is in units of 1/λ.2

We will suppose that we have chosen the coordinates x and y such that V(x, y) can be

expanded as

V(x, y) ≈ V0 + b1x2 + b3y2 = V0 − b1
∂2

∂k2
x
− b3

∂2

∂k2
y

(A.6)

In this approximation,

H = −b1
∂2

∂k2
x
− b3

∂2

∂k2
y
+

k2

(2π)2 + V0

However, let us consider the Hamiltonian H′ that differs from H by the energy minimum

V0. This will not change the eigenstates, and we will easily get the eigenvalues of H from those

2Take heed that this differs from the other common convention in which k is given in units of 2π/λ and x, y
are given in units of λ/2π. The forms are similar but factors of 2π appear in various locations.
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of H′ by adding back the energy V0.

H′ ≡ H − V0 = −b1
∂2

∂k2
x
− b3

∂2

∂k2
y
+

k2

(2π)2

We can easily apply separation of variables to H′ to get the eigenstates. That is, we will solve

for

H′Φx(x)Φy(y) = EΦx(x)Φy(y)

Considering just the kx equation

(
−b1

∂2

∂k2
x
+

k2
x

(2π)2

)
Φx = ExΦx

We will do one more change of variables using kx =
√

(2π) b1/4
1 ξ to get

(
−

√
b1

2π
∂2

∂ξ2 +

√
b1

2π
ξ2

)
Φx = ExΦx

so that we can write the eigenstate problem as

(
−
∂2

∂ξ2 + ξ
2
)
Φx =

2πEx
√

b1
Φx

This is the equation found for the 1D harmonic oscillator equation and the solution is easily

found in and introductory quantum textbook, e.g., [76] equation [2.72]. The solutions are

Φx,m(ξ) =
(
1
π

)1/4 1
√

2m m!
Hm(ξ)e−ξ

2/2

normalized to ∫ ∞

−∞

Φ∗x,m(ξ)Φx,m(ξ) dξ = 1
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with energies
2πEx,m
√

b1
= 2m + 1 =⇒ Ex,m =

√
b1

2π
(2m + 1)

for m ∈ {0, 1, 2, 3, . . . }.

And finally, we can change the variable back kx to get3

Φx,m(kx) = hm,b1(kx) ≡
(

1
2π2
√

b1

)1/4 1
√

2m m!
Hm

 kx
√

2π b1/4
1

 e−k2
x/(4π

√
b1) (A.7)

The full solution is thus

Φm,p(kx, ky) = Φx,m(kx)Φy,p(ky) = hm,b1(kx) hp,b3(ky) (A.8)

with energy

Em,p =

√
b1

2π

(
2n + 1

)
+

√
b3

2π

(
2p + 1

)
+ V0 (A.9)

for m, p ∈ {0, 1, 2, 3, . . . }.

A.4.2 Constructing Guess States in k-space

As we found in section A.3, we will have an approximate local potential of the form of

equation (A.5):

V(x, y) = a1(x − x0)2 + a2(x − x0)(y − y0) + a3(y − y0)2 + V0

Defining x′ ≡ x − x0 and y′ ≡ y − y0, we have

V(x′, y′) = a1x′2 + a2x′y′ + a3y′2 + V0

3Note that we abuse notation here in the usual way: Φx,n(ξ) is technically a different function than Φx,n(kx), but
we still use Φx,n to represent the function in both case because it is describing the same physical wavefunction.
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This differs from the approximation in equation (A.6) by the cross term a2x′y′, so to use the

results of section A.4.1, we will want to make a change of variables.

We can consider the first three terms as a quadratic form and solve an eigenvalue problem

to allow for separation of variables:

r′T Ar′ =
[

x′ y′
]  a1 a2/2

a2/2 a3


 x′

y′

 =
[

x′ y′
]

R

 λ1 0

0 λ2

 RT

 x′

y′


where R is a rotation matrix that satisfies RT R = I = RRT , and we have

R =
[

v̂1 v̂2

]

where vi are the eigenvectors satisfying Av̂i = λiv̂i and v̂i · v̂i = 1.

Doing one more change of variables, we can write

 x̄

ȳ

 = RT

 x′

y′

 (A.10)

or equivalently, x̄ = v̂1 · r′ and ȳ = v̂2 · r′. And finally, we can write

V(x̄, ȳ) = λ1 x̄2 + λ2ȳ2 + V0

and we can write b1 ≡ λ1 and b3 ≡ λ2 which matches the desired form of equation (A.6).

We now turn to fourier space. From the considerations in section A.4.1, we know that the

eigenstates in (x̄, ȳ) coordinates can be taken to be product states. These product states are

given by equations (A.8) and (A.7) using. Specifically, we can write the position space wave

function as

Ψ̄m,p(x̄, ȳ) =
1

2π

"
hm,b1(k̄x)hp,b3(k̄y) eik̄·r̄ dk̄x dk̄y (A.11)
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where

k̄ ≡

 k̄x

k̄y

 r̄ ≡

 x̄

ȳ


The energy of the eigenstate in (A.11) is given by

Em,p =

√
b1

2π

(
2n + 1

)
+

√
b3

2π

(
2p + 1

)
+ V0

We can then transform to the r′ coordinates by replacing r̄ with RT r′ using equation (A.10),

and carry out a change of variables on the integral in equation (A.11). This gives

Ψ̄m,p(x̄, ȳ) =
1

2π

"
hm,b1(k̄x)hp,b3(k̄y) eik̄·r̄ dk̄x dk̄y

=
1

2π

"
hm,b1(k̄x(k′))hp,b3(k̄y(k′)) eik′·r′

∣∣∣RT
∣∣∣ dk′x dk′y

=
1

2π

"
hm,b1(k̄x(k′))hp,b3(k̄y(k′)) eik′·r′ dk′x dk′y

= Ψ′m,p(x′, y′)

(A.12)

where we have used

k̄ · r̄ = k̄T r̄ =
(
k′T R

)
RT r′ = k′T r′ = k′ · r′

and
∣∣∣RT

∣∣∣ = 1. Lastly, we note that, since

k̄ = RT k′ =


v̂T

1

v̂T
2

 k′

we can read off

k̄x(k′) = v̂1 · k′ and k̄y(k′) = v̂2 · k′
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We see from the construction of equation (A.12) that

F
[
Ψ′m,p(x′, y′)

]
= hm,b1(k̄x(k′))hp,b3(k̄y(k′)) = hm,b1(v̂1 · k′)hp,b3(v̂2 · k′)

Finally, we can get the wavefunction in the the original r coordinates and its fourier trans-

form by considering

Ψm,p(x, y) = Ψ′m,p(x − x0, y − y0) =
"

hm,b1(v̂1 · k′)hp,b3(v̂2 · k′) eik′·(r−r0) dk′x dk′y

=

"
e−ik′·r0hm,b1(v̂1 · k′)hp,b3(v̂2 · k′) eik′·r dk′x dk′y

=

"
e−ik·r0hm,b1(v̂1 · k)hp,b3(v̂2 · k) eik·r dkx dky

(A.13)

In the last equality above, we made a trivial “change of variables” with k = k′ to maintain

notational consistency.

From equation (A.13), we identify the eigenstate function in momentum space as

Φm,p(kx, ky) = F
[
Ψm,p(x, y)

]
= e−ik·r0hm,b1(v̂1 · k)hp,b3(v̂2 · k) (A.14)

A.5 Bloch Function in k-Space

Next, let us consider the bloch wavefunctions in momentum space, since this is how the

program stores these wavefunctions. Denoting the bloch function in band j with quasimomen-

tum q by

ψ
q
j (r) = eiq·r u(q)

j (r)
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We consider the fourier series coefficients of uq
j (r) which are defined by

c(q,G)
j =

1
√
Γ

∫
PC

dr u(q)
j (r) e−iG·r (A.15)

where the integral is over a primitive lattice cell (“PC”) with volume (area) Γ and G are the

reciprocal lattice vectors. Conversely, it is also true that

u(q)
j (r) =

1
√
Γ

∑
G

c(q,G)
j eiG·r (A.16)

The program stores these coefficients c(q,G)
j with the following MATLAB variables

• c(qn,Gm)
j = bloch.State(m, n, j) (Size = M × N2 × J)

• qn = bloch.Q.Mesh(1, n)x̂ + bloch.Q.Mesh(2, n)ŷ Size = 2 × N2

• Gm = recip.Gk(1,m)x̂ + recip.Gk(2,m)ŷ

We start with the bloch state using the expression in (A.16)

ψ
q
j (r) = eiq·ru(q)

j (r) =
1
√
Γ

∑
G

c(q,G)
j ei(G+q)·r (A.17)

Note that in the program is normalized so that

∑
G

∣∣∣∣c(q,G)
j

∣∣∣∣2 = 1

or equivalently ∫
PC
ψ

q ∗
j (r) ψq

j (r) dr = 1 (A.18)

where the integral is over a primitive cell of area Γ.

164



Augmentation and Documentation to Maximally Localized Generalized Wannier States Code
Chapter A

Taking the fourier transform of equation (A.17), we get

ψ̃
q
j (k) =

1
2π

∫
R2
ψ

q
j (r)e−ik·r dr =

1

2π
√
Γ

∑
G

c(q,G)
j δ(G + q − k) (A.19)

A.6 Algorithm Initialization

Firstly, the definition of Wannier states in 2D can be found by considering equation (2)

from reference [74] and replacing the (2π)3 factor by (2π)2 for our 2D case:

|wnR⟩ = Γ

∫
BZ

dq
(2π)2 e−iq·R

J∑
j=1

|ψ
q
j ⟩ (Uq) jn (A.20)

Γ is the real space primitive cell area. J is the number of bands being consider.4 |ψq
j ⟩ are

the bloch states. Uq is a unitary matrix for each value of q which we wish to find using the

program. Uq represents a choice of gauge for the set of bloch states, and you can consider it as

redefining the original bloch basis {|ψq
j ⟩} to provide a new set of basis states {|ψ̃q

j ⟩}given by

|ψ̃q
n⟩ =

J∑
j=1

|ψ
q
j ⟩

(
Uq

)
jn

(A.21)

in which case, the more standard definition of Wannier states is recovered

|wnR⟩ = V
∫

BZ

dq
(2π)2 e−iq·R |ψ̃q

n⟩

It should be noted that for the program Uq is effectively a matrix that is being multiplied

4Note that if there are entangled bands the sum over the first J bands is changed to a sum over the bands j in
the set Jq, and in general this set will be different at different qausimomentum values q in the brillouin zone.

165



Augmentation and Documentation to Maximally Localized Generalized Wannier States Code
Chapter A

on the right hand side of row vectors. That is to say, whereas by typical convention

(Uv)m =
∑

n

Umnvn

the convention chosen in equation (A.20) and elsewhere is more like

(vtU t)n =
∑

m

vmUmn

The consequence of this is that subsequent transformations of Uq are done by right multiplica-

tion of matrices.

In equation (26) of reference [74], initialization is described as a redefinition of the basis

states with the formula

|ψ̃q
n⟩ =

J∑
j=1

|ψ
q
j ⟩

(
AqS −1/2

q

)
jn

This is equivalent to setting the initial guess for Uq in equation (A.20) to be

Uq,init ≡ AqS −1/2
q

The matrix Aq is defined by a block diagonal matrix

(
Aq

)
jn
=


⟨ψ

q
j |gn⟩ if band j and band n are in the same set of composite bands

0 otherwise
(A.22)

where {|gn⟩} are the initialization guess Wannier states. S q is then defined by

S q = A†qAq (A.23)

In the program, the composite bands are specified in the elements of the cell array groups.
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If two band indices are in the same element of groups they are considered composite. So,

as an example, if groups = {1,[2.3]} then bands 2 and 3 are composite, so the nonzero

elements of Aq are (Aq)1,1, (Aq)2,2, (Aq)2,3, (Aq)3,2, and (Aq)3,3. The nonzero elements are the

same for Uq as well.

Heuristically, one can think of this as “trying to express the guess state |gn⟩ in terms of the

available bloch states, with the restriction that Uq be unitary.” If one were so fortunate that the

guess state |gn⟩ is the Wannier state, one would find that

|wnR⟩ = |gn⟩ = Γ

∫
BZ

dq
(2π)2 e−iq·R

J∑
j=1

|ψ
q
j ⟩

(
AqS −1/2

q

)
jn

so that

Uq = AqS −1/2
q

In the program, we implement this in the initialization method of the Wannier90 class.

It sets the matrices Uq defined in the property Wannier90.U to the initial value based on the

guess states and simultaneously updates the overlap matrices stored in Wannier90.Mmn. To

encode the guess states, we define a class called InitializationHOStates that contains

information about the harmonic oscillator states that will be used as |gn⟩, and we provide an

object of this class as an input to the initialization method of the Wannier90 class.

A.6.1 Calculating Elements of Uq,init

We will calculate the elements of Aq from equation (A.22) in k-space.

For us, we will set our guess states to harmonic oscillator states from equation (A.14) of

section A.4.2

|gn⟩ = |Φ
r0
m,p⟩

where we use the superscript r0 to indicate that it is the harmonic oscillator for the approximate
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potential centered on the point r0.

We will calculate the inner products in k-space, since it is relatively simple and less com-

putationally intensive. Using equations (A.14) and (A.19), we see that

⟨ψ
q
j |Φ

r0
m,p⟩ =

"  1

2π
√
Γ

∑
G

(
c(q,G)

j

)∗
δ(G + q − k)

 [e−ik·r0hm,b1(v̂1 · k) hp,b3(v̂2 · k)
]

dkx dky

=
1

2π
√
Γ

∑
G

(
c(q,G)

j

)∗ ["
δ(G + q − k) e−ik·r0 hm,b1(v̂1 · k) hp,b3(v̂2 · k) dkx dky

]

=
1

2π
√
Γ

∑
G

(
c(q,G)

j

)∗
e−i(G+q)·r0 hm,b1(v̂1 · (G + q)) hp,b3(v̂2 · (G + q))

(A.24)

Note here that the integrals are over all of space whereas the bloch states are normalized

for integration over a primitive cell per equation (A.18). Consequently, this overlap integral

can take on values of magnitude greater than 1 and ⟨ψq
j |ψ

q
j ⟩ , 1 usually. Fortunately, this does

not matter for our calculation of Uq,init since it is made unitary by its construction.

The method InitializationHOState.HOkSpaceFunctions(n,kx,ky) returns the val-

ues of a guess state n according to equation (A.14) where different values of n will indicate

different values of m and p as well as different local minima positions r0. During the pro-

gram, the guess states in InitializationHOState will be sorted so that state n in of the

InitializationHOState object does correspond to the |gn⟩ used in equation (A.22) to cal-

culate Aq. This sorting will be explained in section A.7.

In the program, the bloch states are encoded in the class Bloch with the following proper-

ties being relevant to our calculation

• c(qn,Gm)
j = bloch.State(m, n, j) Size = M × N2 × J

• qn = bloch.Q.Mesh(1, n)x̂ + bloch.Q.Mesh(2, n)ŷ Size = 2 × N2
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• Gm = recip.Gk(1,m)x̂ + recip.Gk(2,m)ŷ

With these conventions, we can implement equation (A.24) in MATLAB with the following

line of code

(Aqn) ji = A(j,i,n)

= transpose(bloch.State(:,n,j))

∗ transpose(

initHOState.HOkSpaceFunction(i,G(1,:)+q(1,n),G(2,:)+q(2,n))

)

(A.25)

where

G(r,:) = recip.Gk(r,:) and q(r,n) = bloch.Q.Mesh(r,n)

and initHOState is an object of class InitializationHOState. We drop the 1/
√
Γ factor

because Aq only needs to be specified up to a normalization factor.

Note that the harmonic oscillator states are normalized as defined. That is to say

∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣initHOState.HOkSpaceFunction(i,kx,ky)
∣∣∣∣2 dkx dky = 1

for all i. However, harmonic states on different sites are not orthogonal.

A.7 Choosing Best Guess State

In the limit of a deep lattice the Wannier states are very well approximated by the guess

state based on the harmonic oscillator approximation. Moreover, comparing the average band

energy and approximate guess state energies will make it clear which guess state will be used
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for which band. However, when bands are close in energy or the lattice is shallow, which guess

states are good for which band is not immediately obvious.

Finding the best guess state(s) for a given band (set of composite bands) can be done by

checking which guess state has the largest norm after being projected onto the set of bloch states

under consideration. Mathematically, we see that this is found by considering the projection

operator5

P̂n =
∑
j∈Jn

∑
q

|ψ
q
j ⟩⟨ψ

q
j |

where Jn is the set of composite bands that will be considered for the nth guess state. Then as

our metric for how good a guess state is the expectation value of the projection operator for

state |gn⟩

⟨gn|P̂|gn⟩ =
∑
j∈Jn

∑
q

∣∣∣∣⟨ψq
j |gn⟩

∣∣∣∣2
Notably, the term in the sum is closely related to the elements of Aq since

∣∣∣∣(Aq
)

m,n

∣∣∣∣2 = ∣∣∣⟨ψm
q |gn⟩

∣∣∣2
so we are able to save some calculation time by saving the elements for the best projection

expectation value as the program runs.

In the program, we start with the first band, calculate the expectation value of the projection

of the possible guess states onto the first band (along with any higher bands that are considered

composite with the first band), and we set guess state |g1⟩ to be the guess state with the best

projection value. We then remove that guess state |g1⟩ from consideration for higher bands. We

then repeat the procedure with the remaining guess states for the second band (and all other

composite bands with band 2) and set that as |g2⟩ and so forth.

This concludes the initialization procedure, and the remaining gradient descent methods
5One might wish to replace the sum over q with an integral of q over the brillouin zone. In the program, we

have assumed periodic boundary conditions, so the sum is more relevant.
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are carried out using the procedures implemented by Walters et al. [72] with the exception of

the minor changes described in section A.1.

A.8 Some Notes on the Inputs and Outputs

Here we provide a short summary of some of the relevant inputs and outputs of the program

by Walters et al. as a small supplement the information provided in their documentation.

A.8.1 Reciprocal Lattice Inputs

The reciprocal lattice points of the optical lattice are given by

Gn = hnb1 + knb2

The reciprocal lattice basis vectors are defined in the program with the variable G by

G = [ [b1,1; b2,1] [b1,2; b2,2] ]

where b1 and b2 the primitive reciprocal lattice vectors given in units of 1/λ so that

bn =
1
λ

(
b1,n x̂ + b2,n ŷ

)
As a simple example, for a simple 2D square lattice, formed with a laser of wavelength λ,

we would have

b1 =
4π
λ

x̂ and b2 =
4π
λ

ŷ
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In the code, this would be defined by

G = 4π [ [1; 0] [0; 1] ]

In theory, there are an infinite number of points Gn in reciprocal space, but for computa-

tional purposes, we limit ourselves to a finite number of them. We set a cutoff Gmax, so that

only the set

{Gn : |Gn| < Gmax}

is used.

Gmax is specified by the program in units of 1/λ with the variable Gmax. Specifically

Gmax =
Gmax

λ

Note that Gmax specifies the spatial resolution of the wavefunctions and bloch waves, so one

must make sure that these functions do not vary significantly on the length scale of 2π/Gmax.

A.8.2 Setting Model System Size

We must also set the size of our system, which is taken the have periodic boundary con-

ditions. This is determined by specifying a pair of primitive vectors in fourier space that will

generate a lattice of discrete points in fourier space. This lattice of points will have the same ge-

ometry as the optical lattice potential in reciprocal space, but the points spacing will be smaller

than the reciprocal lattice. Let us denote these primitive vectors in fourier space as kmin,1 and

kmin,2. These are set with the input N, which is an integer that determines these vectors by the

formula

kmin,1 =
b1

N
and kmin,2 =

b2

N
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The primary practical requirement for N is that it needs to be large enough to avoid the

periodic boundary conditions affecting the Wannier states.

A.8.3 Lattice Potential Inputs

The potential V(r) is given to the code with a reciprocal space representation with the

values vn, where the relationship between the two is given by the following equation

vn =
1
√
Γ

∫
PC

dr V(r)e−iGn·r

where the integral is over a primitive cell (PC) in real space and Γ is the area of the primitive

cell. Likewise, we have that

V(r) =
1
√
Γ

∑
n

vn eiGn·r

In optical lattices, vn , 0 for only a few values of n. To take advantage of this, the inputs

that specify the lattice potential in the program are the Gn values for which vn is nonzero. These

values of Gn are given in the form

Gn = hnb1 + knb2

where we input the relevant hn and kn values using

hkl = [ [h1; k1] [h2; k2] · · · [hN; kN] ]

and the corresponding reciprocal lattice weights vn are given by with two variables, vi and v0.

Most of the information is proved in

vi = [αv1 αv2 · · · αvN]
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where the user is free to use any factor α that is convenient. The value v0 then specifies the

total lattice depth in recoil energies of the laser ER = h2/2µλ2 where µ is the mass of the atom.

Mathematically,

v0 =
(

max V(r) −min V(r)
)
/ER

A.8.4 A Small Glossary of Symbols

• D – the dimension D = 2 for our purposes

• N – as described at the end of the inputs section, sets the minimum values of k in fourier

space.

• M – the number of non-discarded reciprocal lattice vectors G. These are the reciprocal

lattice vectors that satisfy G ≤ Gmax

• J – the number of bands

• B – the number of neighbors considered

A.8.5 Bloch State and Energy Info

The bloch state and energy information are stored in the object bloch (of class Bloch).

Let us denote the energy associated with band j and quasimomentum q as E j,q. This value

is stored in

• E j,qn = bloch.Energy(m, n) Size = J × ND

• qn = bloch.Q.Mesh(1, n)x̂ + bloch.Q.Mesh(2, n)ŷ Size = D × ND

Denoting the Bloch function in band j with quasimomentum q by

ψ
q
j (r) = eiq·r u(q)

j (r)
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Recall that the fourier coefficients of uq
j (r) which are defined by

c(q,G)
j =

1
√
Γ

∫
PC

dr u(q)
j (r) e−iG·r (A.26)

where the integral is over a primitive cell (“PC”) with volume (area) Γ and G are the reciprocal

lattice vectors. This was previously defined in equation (A.15), and we have copied it here for

convenience. We also have that

u(q)
j (r) =

1
√
Γ

∑
G

c(q,G)
j eiG·r (A.27)

This was also previously defined in equation (A.16).

The code stores these coefficients c(q,G)
j with the following

• c(qn,Gm)
j = bloch.State(m, n, j) Size = M × ND × J

• qn = bloch.Q.Mesh(1, n)x̂ + bloch.Q.Mesh(2, n)ŷ Size = D × ND

• Gm = recip.Gk(1,m)x̂ + recip.Gk(2,m)ŷ

bloch.Hv is the potential expressed in fourier space. It has size M ×M and it is hermitian.

A.9 Hubbard Parameters

As a supplement for understanding the Bose-Hubbard model, we recommend section 3 of

reference [77]. The Bose-Hubbard (BH) hamiltonian that we are calculating parameters for is

HBH =
∑

m, n, o, p

R,R′,R′′,R′′′

[
− tmn

RR′ bm†
R bn

R′ +
Umnop

RR′R′′R′′′

2
bm†

R bn†
R′b

o
R′′b

p
R′′′

]

where bm†
R and bm

R are the bosonic creation and annihilation operators.
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Note here that in the expression for HBH, we allow for the possibility that R = R′ and

n = m which is more accurately described as a chemical potential term even though we use

the “hopping parameter” t to denote this chemical potential term. In other words, the chemical

potentials are the terms of the form tmm
RR = tmm

00 . These terms are important typically.

This program calculates the following parameters.

tmn
R0, Ummnn

00RR , Ummnn
000R , Ummmn

000R , Ummmn
00R0 , and Ummnn

R0R0

The t parameters are calculated in units of ER. The U parameters are calculated in units

of g/λD = gER/g̃ where g is the interaction coupling constant of the Gross-Pitaevskii equation

and g̃ ≡ λDER.

Note that for lattices with multiple sites per unit cell, hopping from one site in the unit

cell to another site in the unit cell will be a value tmn
00 (occurring for R = 0), where n and m

correspond to the different Wannier states in the same unit cell.

The values of the BH parameters are saved in the object ManyBody. The notation seems

very inconsistent across the board, but the documentation is clear enough. In total, we have

that

• tmn
Ri0 =ManyBody.J(m,n,i)

• Ummnn
00RiRi

= ManyBody.Ujjnn(m,n,i)

• Ummnn
000Ri
= ManyBody.U0jnn(m,n,i)

• Ummmn
000Ri

= ManyBody.U0jmn(m,n,i)

• Ummmn
00Ri0 = ManyBody.Uj0mn(m,n,i)

• Ummnn
Ri0Ri0 = ManyBody.Uj0j0(m,n,i)
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Where Ri correspond to translations of the Wannier states by the lattice vectors specified

in manyBody.Sites which are given in units of the primitive lattice vectors a1 and a2, so that

Ri = manyBody.Sites(1,i) a1 + manyBody.Sites(2,i) a2

If one wishes the check, the lattice vectors are stored in the variable lattice, specifically,

ai = λ
(
lattice.R(1,i)x̂ + lattice.R(2,i)ŷ

)
The primitive translation vectors ai of the generated lattice are defined in the code by

a1 =
2π

ẑ · (b1 × b2)
(b2 × ẑ) =

λ
√

2
x̂ a2 =

2π
ẑ · (b1 × b2)

(ẑ × b1) =
λ
√

2
ŷ

Note that the t and U values will depend on where the calculated Wannier states are located.

A.10 An Adjustment to the Potential Object Initialization

We also made some minor and performance improving changes to the Potential class.

For one, we changed the initialization input vi to viOverRootArea where

viOverRootArea =
vi
√
Γ

and where Γ is the unit cell area. Previously, viOverRootArea was named as vi and then

renormalized, so this change was primarily to minimize ambiguity and confusion in the code.

Also, we changed the Potential class so that it more precisely finds the maximum and

minimum of an initially incorrectly scaled version of the lattice potential. The found maximum

and minimum are then used to determine the fourier coefficients of the correctly scaled lattice
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that has the desired depth of v0. Previously, a grid of points on a unit cell of the lattice was

sampled and found the maximum and minimum of the sample points. We keep this step,

increasing the density of points in the sample grid of a unit cell, now using 7002 points, and we

extend the procedure to find the max and min using the extremum of a least squares quadratic

fit to a square grid of sampled points that is 0.01λ by 0.01λ. This added step is procedurally

the same as that used to identify of the local minima on the potential for the harmonic guess

states. We believe this should be quite accurate given that features cannot be too much smaller

than a wavelength. Before this change, there were small errors in the depth, but the tunneling

parameters in the bose-hubbard model would vary by about 1% as a result at v0 = 10ER.
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Appendix B

Spectroscopy Setup to Lock to 461 nm

Laser Frequency

As already mentioned in section 2.1, the 461 nm laser is locked using a spectroscopy cell.

The signal is made free of doppler broading by use of a standard pump-probe method (see for

example [78].) We specifically use modulation transfer spectroscopy [79, 80], implemented

with a resonant home-built EOM, driven with a sine wave from a RIGOL DG1022Z signal

generator at frequency 20.2 MHz. The error signal is generated using a lock-in amplifier built

from components purchased from Mini-Circuits. The spectroscopy cell setup and a picture of

the spectroscopy cell are shown in figure B.1. A schematic of the electronics for the lock-in is

shown in figure B.2 and a picture of the actual box containing most of the electronics is shown

in figure B.3

We will briefly go over some points of the spectroscopy setup. The total laser light picked

off from the full 461 nm laser output by the beam splitter is about 6 mW. This light’s frequency

is then adjusted using two AOMs. The first AOM is a single pass that lowers the beam’s

frequency by 212.5 MHz. The second AOM is used in a double pass configuration that raises

the laser beam’s frequency back up by either 845.8 MHz (for 84Sr) or 575 MHz (for 88Sr)
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Spectroscopy

To Rest
of Table

Full Laser
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Figure B.1: Left: A diagram of the optics used for the blue spectroscopy cell. This is a subset
of the optics shown in figure 2.1 of the entire laser diagram. See figure 2.1 for the meanings
of the symbols for the optical elements. Right: An image of the spectroscopy cell on the laser
table.
Diagram Credit: Anna Dardia

after both passes. This adjustment of the AOM frequency changes the output frequency of the

461 nm laser via the laser lock. After the double pass AOM, there is about 2.2 mW of laser

power. The final power in the pump beam is about 1mW and the final power in the probe beam

is about 0.3 mW.

The error signal and the DC (technically low frequency) component of spectroscopy pho-

todiode intensity are sent using two separate cables to the Digilock 110 module of our 461 nm

Toptica laser. The module then communicates with a lab computer and Toptica’s Digilock ap-

plication displays both the DC component of the spectroscopy photodiode along with the error

signal. The amplitude of the error signal is typically 120 mV peak to trough and its maximum

limits set by the input to the modules are ±1 V. The DC signal of the probe beam is useful to
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Photodiode DC

+
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0.07 - 1000MHz 
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ZFHP-0R055-S+

Figure B.2: Electronics diagram for the lock-in amplifier that we built to generate an error
signal for the stabilization of our 461 nm laser.

Figure B.3: An image of the front panel of the server rack mounted electronics box for the
461 nm spectroscopy electronics. Note that the inputs and outputs are horizontally flipped
compared to the diagram in figure B.2 and that the two unconnected “+24 in” and “-24 in”
BNCs were not used in the end. To clarify some of the labeling differences between the
front panel and figure B.2: “Spec Signal Photodiode In” is the input from the spectroscopy
photodiode; “Doppler Free Transmission Out” is the DC output of the bias tee; “Error Signal
Out” is the IF output of the mixer; and “Ref RF In” is the LO input to the mixer

observe the broad doppler limited absorption as the laser scans in that one can tune the laser

towards where the probe is most attenuated as it passes through the spectroscopy cell to find

the small doppler free peak near the bottom of this minimum. The doppler free peak in the

DC signal is visible but very small compared to the noise at our operating beam powers and

spectroscopy cell vapor pressures, so it is better to use the error signal to identify the desired

laser frequency lock point the scan range is near this point. Images of these signals on the

Digilock 110 software are shown in figure B.5.

Lastly, we note that if desirable one can observe the error signal and DC signal directly on

an oscilloscope, but typically this information is better displayed on the Digilock 110 software.
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The displayed signals will look similar to what is shown in figure B.4.

Figure B.4: An image of the oscilloscope viewing the DC signal from the spectroscopy pho-
todiode on channel 1 and the error signal on channel 2. The laser is scanning the 922nm
frequency with a triangle waveform, and here we see one full cycle of this scan (up then
down).
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Figure B.5: An image of the digilock software with the 461 nm laser set to scan. We see here
the error signal centered in red, indicating that the spectroscopy cell’s probe beam is being
scanned across the atomic resonance. The yellow trace depicts the low frequency component
of the spectroscopy photodiode, and one sees the very small doppler free peak about where
the error signal crosses 0.
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Appendix C

689 nm Spectroscopy for Laser

Stabilization

Here we will discuss the spectroscopy setup used for the stabilization of the 689 nm laser. The

optics for the spectroscopy setup are shown in figure C.1. It utilizes the exact same method

of modulation transfer spectroscopy [79, 80] that is used for the 461 nm laser as discussed in

appendix B. The primary difference of note in the optics used for the 689 nm laser spectroscopy

setup is that the pump beam’s frequency is modulated using a double pass AOM rather than an

EOM.

Double Pass AOM
2x(+80MHz)

Two 
Mirror 
Kickup

Spectroscopy
Photodiode

Non-
Polarizing
30R:70T
Beam 
Splitter

Pump Beam

Probe Beam

Two 
Mirror 
Kickup

Legend

Photodiode

Iris

λ/4 Quarter Waveplate

λ/2 Half Waveplate

Fiber port to Pol. 
Maintaining fiber

Mirror

Cylindrical Lens

Spherical Lens

Polarizing 
Beam Splitter

Beam Sampler

Optical Isolator

λ/2λ/2 λ/4

λ/4

 A
 O

 M

Red Spectroscopy Cell

SPECTROSCOPY CELL SETUP

+1

Figure C.1: Diagram of the spectroscopy optics used for the 689 nm laser.
Diagram Credit: Anna Dardia.
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Because the linewidth of the 689 nm transition is only 7.4 kHz, the optimal modulation

frequency is much lower than that used in the generation of the 461 nm spectroscopy signal.

This is the reason that generation of modulation with a double pass AOM is preferable. More-

over, the low modulation frequency allows us to utilize the digital lock-in that comes with the

control software of the TOPTICA DL pro laser that we use (TOPTICA, Product ID: DL pro

020098.)

To drive the AOM, we use a commercial signal generator (RF-Consultant Robert Yarbrough,

Model: TPI-1002-A) whose output is amplified by an RF amplifier from Mini-Circuits (Model:

ZHL-3A.) The modulation signal from our 689 nm laser controller is sent to the modulation

input of the TPI-1002-A signal generator. However, we find that we get the best error signal

in our experiment when the TPI-1002-A is maximally modulated, and the voltage range of the

modulation signal from the laser controller is insufficient to achieve this. To fix this, we incor-

porated a simple op amp circuit composed of a buffer and an inverting amplifier with a gain

of approximately 1.8 at the modulation frequency that serves to amplify the modulation input

signal of the TPI-1002-A. A diagram of this circuit is shown figure C.2.

+15V
1.5k

Output to Modulation
input of TPI-1002-A

Modulation signal
from laser controller

1.5k

470pF

-15V

+15V

-15V

Figure C.2: Diagram of the amplifier circuit for the red spectroscopy modulation signal.
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Appendix D

Spectroscopy Cell Drawings from

ANCORP

Presented in this appendix are technical drawings of the red spectroscopy cell that were pro-

vided by ANCORP during the finalizing and approval process for the custom order. If one is

interested in ordering the same or a similar design from ANCORP, these drawings can be refer-

enced as drawing number 8002365 revision A. We reproduce these drawings with permission

from ANCORP.
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Appendix E

Technical Drawings and Extra Details for

Multiple Piece Nozzle Design

Here are the technical drawings for the nozzle designs discussed in subsection 2.6.2.

The microcapillaries used in the nozzle were ordered from MicroGroup® and made of

304 stainless steel. The OD of the microcapillaries is nominally 0.0083” (min: 0.0080, max:

0.0085). The ID is nominally 0.0043 (min: 0.0035, max: 0.0050). The cut length was specified

as 0.197” ± 0.001”.

194



Technical Drawings and Extra Details for Multiple Piece Nozzle Design Chapter E

C

C  0
.1

5 
 2

.3
5 

 R
1.

50
  R3

.00
 

 
1.

50
 

 4.00  1.00 

 
2.

25
 

SECTION C-C

2.75" Rotatable
CF Flange

GTAWGTAW

GTAW

INSET A

INSET A: Detail of 
custom collar piece
SCALE 1:1  0.51 

G

G

4x
8-32 Thru
Tapped Holes

 1.00 

 
0.

77
 

 
2.

25
 

 0.50  0.50 

 
1.

37
 

SECTION G-G
SCALE 1 : 1

4x
8-32 Thru
Tapped Holes

GTAW
NOTE: WELD CAN NOT
PROTRUDE PAST 1.5"
TUBE DIAMETER

A A

B B

4

4

3

3

2

2

1

1

316L Stainless Steel

Oven Vacuum 
Chamber

DO NOT SCALE DRAWING SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO.

B
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

Figure E.1: This was shown in section 2.6.2, and we reproduce it hear for ease of comparison
with the other components.

195



Technical Drawings and Extra Details for Multiple Piece Nozzle Design Chapter E

 0
.1

0 

 0.498 

 0
.2

3 

 0.235 

 0
.1

8 

 0.17 

 0.231 

B

2x
6-32 Blind Tap 
0.10in Depth

4x 
8-32 Thru Hole
0.51in from center

2x
4-40 Thru Tap

Thru Hole 
Centered on Part

Shallow Vent

 0
.2

5 

 0.105 
 0.105 

 
0.120 

 0
.2

10
 

 0.090 

2x
4-40 Thru Hole

 0
.1

0 

 0.070 

 0.25  0.210 

4x
Vent for 8-32
Thru Hole

 1.32 

 0
.1

80
 

 0.235 

 
0.190 

 
0.170 

 0
.5

10
 

Back

4x
8-32 Thru Hole
0.510" from center

2x
4-40 Thru Tap

 0.
10

 

2x
6-32 Blind Tap 
0.10in Depth

Leave Edges Unbroken
R <0.003in
Leave Edges Unbroken
R <0.003in

 0.239 ±0.001 

 
0.190 

 0.09 

 R0.0
62

5 

 0
.0

60
 

 0
.0

2 

 0
.1

00
 

 
0.0550 

 0
.1

60
 

 R0.0625 

 0
.0

8 

DETAIL B
SCALE 4 : 1

8-32 Socket head footprint

Leave Edges Unbroken
R <0.003in
Leave Edges Unbroken
R <0.003in

Vent for 4-40
Thru Holes

0.001" Tolerance

Front

A A

B B

4

4

3

3

2

2

1

1

316 Stainless Steel

Clamp-Mount -
Triangle

DO NOT SCALE DRAWING SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1 WEIGHT: 

REVDWG.  NO.

B
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

APPLICATION

USED ONNEXT ASSY

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 
PROHIBITED.

Figure E.2: The base piece to which the channel piece (shown in figure E.3) is to be clamped
and tightened when the microcapillaries are in place. Once the nozzle is assembled, it is
attached to the interior collar piece shown in “Inset A” of figure E.1.
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Figure E.3: The U-shaped channel piece into which two wedge pieces of the form shown in
figure E.4 are to be loaded, followed by the loading of the stacked array of microcapillaries.
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Figure E.4: Sharp cornered wedges to be placed in the channel of the piece shown in figure E.3.
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Figure E.5: A scaffold to aid in assembly of the nozzle. As noted in subsection 2.6.2, I rec-
ommend that the height of the extrusion be increased from 0.296” to 0.318” to accommodate
3 extra rows
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Appendix F

Interlock to Close Gate Valve in the Event

of Elevated Pressure

As a precaution against elevated pressures in the main chamber, we designed and installed an

interlock circuit to close one of the gate valves, thereby separating the main vacuum chamber

section of our machine from the middle and oven sections. In the event of a leak in the oven or

middle sections, the interlock is designed to trigger the closure of one of the gate valves and to

keep it closed until all fault conditions are eliminated and a manual reset button is pressed.

Pressure increase in our main chamber from a leak in our chamber is of major concern. In

general, background gas pressure is a limiting factor for the maximum duration of ultracold

atom experiments because the trapped atoms will collide with the hot background gases and

be expelled from the trap. In the worst scenarios, enough air could enter the main chamber

so as to deposit a layer of water adsorbed to the surface of the chamber. If not addressed, the

slow release of atoms from this layer would enormously limit the pressure in the chamber with

an unacceptably long outgas time on the scale of years. Those with experience with ultrahigh

vacuum experiments know that this is the reason why a water bake is conducted when the

chamber is assembled. During said bake, the chamber itself is heated to above 150◦C for a
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few days while a turbomolecular pump removes gases (especially water) from the chamber.

The increased temperature dramatically accelerates the rate at which water and other volatile

compounds are released from the surfaces of chamber walls so that at the end of the process

the compounds present on the surface have either been removed or are so strongly adhered to

the surface that they are of no consequence. Needing to conduct such a bake would be a very

disruptive process for a mature experiment, requiring the dismantling of the optical setups from

around the chamber. In our case, the magnet coils would be practically impossible to remove

from around the chamber and so would need to be baked with the chamber, and the cooling

water would need to be flushed out of the magnets in the process.

The pressure in the middle and oven section are of much less concern as long as they are

not so high as to cause an increase in the main chamber. The pressures in these region are

predominantly limited by the flux of strontium atoms out of the oven and collisions with the

background gases are of much less concern for cooling with the Zeeman slower.

The gatevalves were purchased from MDC vacuum with a Kalrez elastomer seal (MDC

Model: GV-1500M-P-1, Kalrez Pneumatic). More details of their use in the machine design

are discussed in Shankari Rajagopol’s thesis in section 5.1.1 on the strontium oven [13]. The

gate valves are opened and closed by a pneumatical actuator. The pneumatic is controlled by a

solenoid that is energized by application of 120V AC power. When energized with 120V AC

power, the gate valve opens and when de-energized, the gate valve closes. The interlock acts

to apply or remove the 120V AC control power so that when a fault is detected the solenoid is

de-energized with a relay and the gate valve is closed.

To detect a fault, an analog signal from the ion gauges is used. This signal is carried over

a firewire cable. Since a BNC connector is more convenient for us, we cut a firewire cable

and connected the relevant analog signal wire to a BNC connector. The output analog signal
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Figure F.1: Left: An image of the two pressure interlock electronics boxes. The box nearer the
bottom of the image with the LEDs is the Relay Box. It indicates the fault status and applies
or removes power from the pneumatic control solenoid to actuate the gate valve. The smaller
partially obstructed box behind is the Fault Determination Box. It takes as input the ion gauge
analog voltage signal (VIG) and based on its value determines if a fault has occurred. Right:
A front view of the Relay Box.

voltage VIG from the ion gauge for a given gauge pressure reading P is designed to be

VIG = 11 + log10

( P
1 Torr

)

The interlock circuitry is divided between two electronics boxes. These two boxes with

their interconnect BNCs as finally installed above the strontium machine are depicted in figure

F.1. We will refer to them as the “Relay Box” and the “Fault Determination Box.”

Let us first discuss the designs of the Relay Box. It takes in three digital signals that

signify whether or not a fault has occurred. A digital “low” level indicates a present fault. A

digital “high” level indicates a good pressure signal status. This convention was chosen so a

disconnected BNC or signal loss would cause a fault. If a fault signal is present on one of the

three BNC inputs, the corresponding LED will light. If a fault occurs or the manual switch

is flipped, the control circuitry will latch into the fault state, indicated by the larger red LED.

When latched in the fault state, relays remove 120V AC power to de-energize the gate valve

control solenoid, causing the gate valve to close. To reset the latch and open the gate valve,

all fault signals and the manual switch must be set to open, and then the reset button must be
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pressed.

A schematic of the Relay Box circuitry is shown in Figure F.2 with a description of the

components and their function in the caption.

Now let us discuss the Fault Determination Box. As inputs, it takes the analog signals (VIG)

from the oven ion gauge and the middle section ion gauge. Each of these signals is sent to a

pair of comparators. The first comparator for each signal determines if the pressure is too high

by comparing to signal to a reference voltage. The reference voltage for the oven section is set

so that the comparator output goes low when the pressure in the oven is below 1 × 10−6 Torr.

Likewise, the reference voltage for the middle section is set to give a low comparator output

when the pressure in the middle section goes below 5.6×10−8 Torr. The second comparator for

each signal checks if the ion gauge voltage goes below 147 mV, which is taken as an indication

that the pressure signal was lost, in which case, the comparator output goes low. The outputs

of the comparators for each signal are sent to an AND gate so that if either fault condition is

present (high pressure or lost signal) the output of the AND gate, which is the output of the

box, will be low.

A schematic of the Fault Determination Box is shown in Figure F.3.

Because we only have two fault signals out of the Fault Determination Box and three inputs

to the Relay Box, we send one of the fault signals to two of the inputs of the Relay Box.

Potentially, a third fault condition could be sent to the Relay Box if desired.

We add one final note that we initially set the high pressure threshold for the middle section

higher, but we found that when the gate valve opened, it causes a small transient pressure spike

which would trip the interlock if the setting was too low.

203



Interlock to Close Gate Valve in the Event of Elevated Pressure Chapter F

LM7812

3 Copies
for A, B, C
Signals

Receptacle to
Gate Valve 

Relay Controlled
with 120V AC

120V Plug to
Wall Power

(NEMA 5-15P)

+24V +12V

GND

IN OUT

0.22µF0.22µF

AND

LM7805
+12V +5V

+5V

+5V

GND

IN OUT

0.22µF0.22µF

+24V

Fault Signal
A, B, C In

High = Good
Low = Fault

A, B, C

A
B
C

2N7000
NOT

150k 0.1µF

0.1µF

0.1µF

0.1µF

10k

10k

10k

1.5k

Red LED
Indicates 

Active Fault Red LED
Indicates

Valve Closed

+24V

Manual 
Control Switch

for Valve

2N7000
NOT

2N7000

2N7000

0.1µF

0.1µF

10k

0.1µF

10k

0.1µF

10k

1.5k

Red LED
Indicates 

Manual Valve
Closure

E Q
R
S

CD4044B
RS Latch

10k

0.1µF

+5V

Push Button
To Reset Latch

+24V

2N7000
NOT

0.1µF

1.5k

+5V

EC2-NU
Normally

Open
Relay

EC2-NU
Normally

Open
Relay

64mA
Fuse

Live Neutral Ground

Live Neutral Ground

Figure F.2: A circuit diagram showing the contents of the Relay Box. The LM78xx regulators
are used to convert the supplied 24V DC to the 5V used for the high logic level. A 5V supply
could be used instead, but a convenient 24V supply was already available in lab. The circuit
section inscribed by the box depicts the wiring for the three incoming fault signals. It contains
a 150 kΩ pulldown resistor and an aggressive low pass made with the 10 kΩ and 1.0 µF serves
to mitigate the effect of transient noise or signals that might cause an inconvenient trip. This
lowpass is used defensively in various other places for the same reason. The circuitry for the
LED control is also shown. A similar circuit is shown below the box for the manual control
switch. If any of these signals go low, they will reach the AND gate whose low output trips
the latch (CD4044B) causing its output Q to go low. When Q is low, it stops current from
flowing through the two transistors. The second transistor is redundant to help reduce the
chance of failure. In turn, the cessation of current through the reed relays’ control solenoids
causes it to go into its normally open position, thereby cutting power to the gate valve. The
second relay is again for redundancy to reduce the risk of one failing.
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Figure F.3: A circuit diagram showing the contents of the Fault Determination Box. A de-
scription of most of the components is given in the text. The LM7805 uses the 24V input
voltage and converts it to the 5V logic high level. Voltage dividers are used to set refer-
ence voltages and 0.1 µF are used to low pass signals to make the signals less susceptible to
transient signal spikes.
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Appendix G

Pneumatic Atomic Beam Shutter

In this appendix, we document a minor modification to the mechanical atomic beam shutter

made partly in Fall 2022 and partly in Spring 2022. A picture of the beam shutter setup is

shown in figure G.1. The basic idea of the beam shutter is the same as previously. A rod

extends into the atomic beam right after the oven nozzle to block the stream of atoms. The rod

is mounted to the machine on a flexible hydroformed bellows so that by bending the bellows,

the rod is moved out of the beam path.

Previously, we used a solenoid actuator to pull the rod out of the beam path. We found

over time that this actuator failed to work consistently and that the solenoids we used were

deteriorating rapidly each time we replaced them. We believe that the original bellows had

work hardened over time due to repeated bending, and so to overcome the increased stiffness

of the bellows, we replaced the solenoid actuator with a pneumatic actuator. Not long after this,

a small leak opened in the bellows, which we believe resulted from its deterioration after too

many cycles. We think that a solenoid actuator could have in principle worked adequately for

a long time with infrequent replacement of the solenoid actuator, as has been the case on the

lithium machine. However, the bellows that was on the strontium machine seems to have been

custom manufactured to be slightly shorter than the one used on the lithium machine, resulting
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Figure G.1: An overview image of the pneumatic actuator,

in more strain within the material on each actuation cycle of the shutter. In our replacement,

we used a longer bellows, that we believe is the same model as used on the lithium machine.

We continue to use the pneumatic shutter because it seems to reliably and repeatably actuate

the beam shutter since installation, but we believe that use of a solenoid would again suffice

since the replacement of the work hardened bellows.

Mechanical Components

The physical object that currently blocks the atomic beam is a modified rod shaped feed-

through (Kurt J. Lesker Co. Model: EFT0313373) that is set in the path of the atomic beam

leaving from the nozzle. The rod is modified with the addition of an affixed aluminum piece

that is visible in figure G.2. To create this, we internally threaded a short distance into a tube

shaped piece of aluminum using a tap and externally threaded the tip of the feedthrough from

Lesker. We then tightened the threaded piece of aluminum onto the copper rod so that the

resulting assembly was a longer rod with a wider diameter near where the beam is blocked.
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Figure G.2: An image of the modified feedthrough in the vacuum chamber that serves as an
atomic beam shutter. One can see the flattened part of the aluminum piece for use with a
spanner wrench.

On the aluminum piece, it was helpful to cut small parallel flat edges that a spanner wrench

can go across to tighten on the rod. As a precaution against breaking the vacuum seal of the

feedthrough, we made sure to clamp only on the rod of the feedthrough (rather than the CF

flange) during the tightening process.

The bellows that connects the feedthrough to the vacuum chamber was purchased from

Lesker (Model: MHT-CF-03.) Before installation, it is 3 inches long from end to end measured

from the outward faces of the CF flanges. When under vacuum, it compresses to a length of

approximately 2.625 inches, which is an important parameter for design of the feedthrough.

To pull the feedthrough with a linear pneumatic actuator, we use a rendition of the scotch

208



Pneumatic Atomic Beam Shutter Chapter G

Figure G.3: An image of the scotch yoke type linkage between the feedthrough and the
pneumatic actuator. A thin layer of cushioning material was adhered to the interior of the
aluminum channel to help with cushioning, but we believe it is not significantly improving
functionality.

yoke in which an aluminum piece with a channel cut into it is clamped around the part of the

feedthrough that extends out of the chamber. An image of this linkage is shown in figure G.3.

To fasten this channel to the pneumatic actuator, we use a clevis rod end (McMaster-Carr

Model: 1583K24.) Because the 1 inch length of travel of the pneumatic actuator is more than

it ideally would be, we effectively reduce the motion by cutting the channel wider (≈ 7/8 inch)

than the clevis pin (diameter 5/8 inch) that fits into it. Thus, as the actuator pulls the beam

shutter out of the atomic beam, it moves freely (≈ 1/4 inch) before making contact with the

edge of the channel to pull the shutter.

The end of the pneumatic actuator that we use is threaded with 5/8”-11 threads. In principle

the clevis rod end could be directly threaded onto this. A nut can be placed on the actuator rod

first before attaching the clevis rod end, and then the clevis rod end can be screwed on and

locked into place by tightening the nut against it. However, in practice, the location of the

pneumatic actuator mount is too far from the beam shutter for this, and we must effectively

extend the rod. To accomplish this, we use a coupling nut, also known as an extension nut
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(e.g., McMaster-Carr, Model: 90264A460) and a threaded rod (e.g., McMaster-Carr, Model:

98750A056) that we attach between the pneumatic actuator and the clevis rod end.

I recommend the use of a pneumatic actuator that has a pneumatic cushion on both ends

of the cylinder. We currently use one that is only cushion when the rod is withdrawn into the

cylinder, but a cushion when the rod is extend as well is preferred to minimize mechanical

shocks. This version can be ordered from McMaster-Carr, but must be ordered custom from

the manufacturer. The model number we were given on a quote was 6491K999, but we believe

this is a generic number for a custom pneumatic shutter of this type. The type we are using

now is similar to model number 6491K221, but we cannot confirm if we used McMaster-Carr

as the supplier when it was purchased, or if this is the exact one in use.

As can be seen in figure G.1, the pneumatic actuator is mounted on a breadboard that is then

mounted to 80/20 aluminum extrusion supports. The connection to the bread board includes vi-

bration damping mounts (McMaster Model: 9213K19) as well as pillar posts (Thorlabs Model:

RS2P.) Not much special consideration need be given to the mounting, as long as there is some

freedom in the placement of the actuator and the mechanical forces are not transferred towards

delicately aligned elements of the machine.

Pneumatics

For the pneumatic control, we use a meter-out configuration. In this configuration, we

controllably restrict the flow of the exhausted air from the pneumatic cylinder. A pneumatic

circuit diagram is shown in figure G.4. First, the air supply from the building is regulated

down to a lower pressure which helps to control the speed of actuation. This air is then split

and directed through two solenoid controlled 2-position, 3-way direction control valves that

are synchronized electronically so that only one of them passes pressurized air through at a

time, while the other one is set to vent air back through a muffler. Thus, one of the directional

control valves applies pressurized air to one side of the piston in the pneumatic actuator, while
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the other is set to vent air from the opposite side of the piston.

Between the directional control valves and the pneumatic actuator are flow control valves

(McMaster-Carr Model: 3019N128.) These flow control valves are arranged to allow air to

freely flow towards the pneumatic actuator through a check valve, while flow is restricted

through an adjustable needle valve for air flowing out of the actuator. This arrangement of

restricted flow out of the actuator is the reason for the term “meter-out.” By adjusting the

needle valves, one can control the speed at which the pneumatic actuator moves.

Lastly, we note that this implementation could be simplified with the use of a 2-position,

4-way directional control valve that replaces the function of the two separate control valves in

figure G.4. Such an alternative is shown in figure G.5
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Figure G.4: A schematic diagram of the control components that are used to realize the me-
ter-out c the pneumatic actuator. The 2-position, 3-way valves are set to flow pressurized air
into the actuator when the solenoid, indicated by the box with line through it, is energized and
set to vent air out of the actuator through a muffler when the solenoid is not energized. The
directional control valve solenoids are controlled by relays that apply or remove 120V power.
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Figure G.5: A schematic diagram of an alternative pneumatic control system.
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Appendix H

New Mexico Shutter Circuit Diagram

We will use this appendix simply to document a small circuit that we made recently to aid

in the control of a commercial beam shutter (NM Laser Products Model: LST-5VDC). This

shutter is actuated by application or removal of 5V power from a solenoid controlled actuator.

To suppress the inductive load of the solenoid, per the recommendations of the manufacturer,

we designed the circuit depicted in figure H.1. This snub circuit must handle the inductive load

when the shutter goes from open (high TTL) to closed (low TTL).

We found that this circuit sufficiently suppresses the transient voltage spike across the

solenoid. An oscilloscope trace of the voltage across solenoid is shown in figure H.2.

Finally, in figure H.3, we present images of the box that the circuit is in to show the con-

nections and indicator lights on the box.
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Figure H.1: Schematic of the control circuit.

Figure H.2: An oscilloscope trace triggered at the switch from open to close of the voltage
across the solenoid, which is equal to the voltage across the diodes.
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Figure H.3: The box with the circuit in it.
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[8] Serge Aubry and Gilles André. Analyticity breaking and Anderson localization in incom-
mensurate lattices. Annals of the Israel Physical Society, 3(133):18, 1980.
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[65] A. Hemmerich and T. W. Hänsch. Two-dimesional atomic crystal bound by light. Physi-
cal Review Letters, 70:410–413, Jan 1993.

[66] J. Sebby-Strabley, M. Anderlini, P. S. Jessen, and J. V. Porto. Lattice of double wells for
manipulating pairs of cold atoms. Physical Review A, 73:033605, Mar 2006.

221



[67] Long-Sheng Ma, Peter Jungner, Jun Ye, and John L. Hall. Delivering the same optical
frequency at two places: accurate cancellation of phase noise introduced by an optical
fiber or other time-varying path. Optics Letters, 19(21):1777–1779, Nov 1994.

[68] Tsz Him Leung. Interacting Ultracold Bosonic Atoms in Geometrically Frustrated Lat-
tices. PhD thesis, University of California, Berkeley, 2020.

[69] Thomas Hamish Barter. Quantum Simulation of the Bose-Hubbard Model with Ultracold
Atoms in Triangular Optical Superlattices. PhD thesis, University of California, Berkeley,
2018.

[70] Claire K. Thomas. Quantum Simulation of Triangular, Honeycomb and Kagome Crystal
Structures using Ultracold Atoms in Lattices of Laser Light. PhD thesis, University of
California, Berkeley, 2017.

[71] Pericles S. Theocaris and Emmanuel E. Gdoutos. Matrix Theory of Photoelasticity.
Springer Berlin, Heidelberg, 1 edition, 1979.

[72] Richard Walters, Giovanni Cotugno, Tomi H. Johnson, Stephen R. Clark, and Dieter
Jaksch. Ab initio derivation of hubbard models for cold atoms in optical lattices. Physical
Review A, 87:043613, April 2013.

[73] Nicola Marzari and David Vanderbilt. Maximally localized generalized wannier functions
for composite energy bands. Physical Review B, 56(20):12847, July 1997.

[74] Giovanni Pizzi, Valerio Vitale, Ryotaro Arita, Stefan Blügel, Frank Freimuth, Guillaume
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