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Abstract

Realizing and probing driven quantum systems with ultracold gases

by

Shankari Vani Rajagopal

Ultracold quantum gases o�er a versatile platform to study a wide range of open questions

in condensed matter physics and beyond. In particular, their controllability, isolation

from noisy thermal environments, and evolution on experimentally-accessible timescales

make them a natural choice to probe the e�ects of driving on time evolution and energy.

This thesis details the construction of two cold-atom apparatuses, a lithium machine and

a strontium machine, for quantum emulation experiments studying driven systems. Ini-

tial numerical simulations along two experimental lines are brie�y discussed, and results

from the �rst two experiments on the strontium machine are then presented. In the �rst,

a strontium Bose-Einstein condensate in an optical trap is strongly driven to emulate ul-

trafast photoionization processes; in a series of proof-of-principle experiments measuring

the momenta and energy of particles ejected from the trap, we demonstrate the viability

of this technique to study open questions in strong-�eld physics. The second experiment

realizes a tunable quasicrystal, the energy structure for which is described by the multi-

fractal Hofstadter butter�y. Quasiperiodic structures host not only phonons, but also a

higher-dimension analogue called phasons. In the experiment, we demonstrate phasonic

spectroscopy for the �rst time by directly driving one of these modes; we characterize the

coupling to the resulting excitations, and directly map a slice of the Hofstadter energy

spectrum.

xi
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Chapter 1

Introduction

We choose to cool atoms. We choose to cool atoms in this lab and do the

other science, not because it is easy, but because it is hard, because that goal

will serve to organize and measure their energies...

-John F. Kennedy, probably

Atoms were �rst predicted to condense into a degenerate state at cold temperatures

in the mid 1920s. The technological progress, spectroscopic measurements, and advance-

ment of cooling techniques that followed in the next 7 decades facilitated the experimental

observation of that e�ect: the creation of a Bose-Einstein condensate [1, 2] and then a

degenerate Fermi gas [3]. In the following years, a great deal of e�ort went into studying

and understanding the properties of these states of matter on a fundamental level.

The focus of cold atom experiments then saw movement away from studies of the

degenerate gases, and towards using them as tools to study more complicated systems in

condensed matter physics. To me, that this shift occurred is hardly surprising. A funda-

mental part of a physics education involves learning to look at a di�cult system, ignore

many of the more complicated aspects of it, and then write down a toy model to better

understand the problem. Invariably, we �nd throughout this education that these toy

models are invaluable; they do not capture all of the physics, but they often capture the
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important physics, and we can grasp much of the fundamental behavior of the system by

studying them. Cold atoms are great experimental toy models for many-body condensed

matter systems: they o�er extremely precise control over the fundamental elements of

more complicated structures (numbers, densities, spins, and interaction strengths of par-

ticles, and dimensionality and tunability of potentials) while conveniently o�ering respite

from the rather gruesome e�ects of defects, disorder, and coupling to the environment.

Additionally, once they are built, cold atom experiments are remarkably versatile, allow-

ing a wide range of experiments to be set up and broken down around them over many

years. Using cold atoms in this manner has been dubbed �quantum simulation;� its uses

have recently evolved to include noisy intermediate-scale quantum (NISQ) information

science, which explores many-body quantum physics without extreme limits on �delity.

1.1 Quantum Simulation with Neutral Atoms

Quantum simulation has seen much success in several �elds of condensed matter. The

observation of the super�uid-Mott-insulator transition [4] allowed the study of a quantum

phase transition predicted in solids, and the relative ease and low energy densities of cold

atoms systems made it relatively straightforward to study Bloch oscillations in an optical

lattice [5]. The ability to realize both random and quasiperiodic disorder in optical lattices

made it possible to study Anderson localization in a very controllable way [6]. Recently,

with the advent of quantum gas microscopy, several groups have been studying magnetic

ground states by looking at spin correlations [7, 8, 9, 10, 11]. The advent of degenerate

Fermi gases made it possible to observe the BEC-BCS crossover, which paved the way to

the study of strongly-correlated Fermi gases and exotic superconducting behavior [12].

Quantum simulation has even expanded into the study of quantum chemistry [13].

2
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1.1.1 Driven systems

One of the most exciting developments of the past few years has been a rising interest

in driven systems- what happens to a physical system when it is periodically driven in

various regimes. These phenomena are often described by Floquet formalism, and there

are a number of general questions that naturally arise: does driving a system give rise

to dynamical phases that are otherwise unstable? What does it mean for these driven

systems to thermalize, since broken time-translation symmetry leads to lack of energy

conservation?

In our lab, we have constructed two cold atom machines over the past several years,

a lithium machine and a strontium machine. The lithium machine has been recently

focused on using Floquet engineering to study and modify the band structure of optical

lattices, and to explore prethermalization: a metastable phenomenon induced by driving

prior to thermalization. The strontium experiment, which has been my primary scienti�c

tool during the latter part of my graduate career, has focused on two di�erent exper-

imental lines, both of which try to use driving to answer questions which are di�cult

for condensed matter physicists to address. The �rst involves open questions in ultra-

fast (strong-�eld) physics, where extremely fast timescales (O(10−18 − 10−15 s)) makes

it technically challenging to answer questions regarding, for example, the timing of tun-

neling ionization and the momenta of ionized electrons. The second involves excitations

and spectral features of quasicrystals, which are incompletely understood and di�cult to

study in a solid-state context. It is �tting that the toolbox of cold atoms can be used to

spectroscopically probe exotic quantum systems, since the spectroscopic developments of

the mid-20th century laid the foundation for the development of that toolbox.

1.2 Dissertation overview

This thesis is divided into 9 chapters and 13 appendices under the following framework:
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1.2.1 Chapters

Chapter 2 contains a general overview of some theoretical ideas relevant to atomic

cooling and lattice experiments. It is meant to be a quick reference and in no way contains

complete descriptions of any topic. Chapter 3 details speci�c atomic properties for both

lithium and strontium, including level diagrams, scattering properties, and an overview

of cooling sequences. Chapter 4 is split into two main sections. The �rst details design

and construction of the lithium machine, and the second goes into each cooling stage

of lithium from the oven to BEC, including experimental parameters. Chapter 5 is

split into two main sections. The �rst details design and construction of the strontium

machine, and the second goes into each cooling stage of strontium from the oven to

BEC, including experimental parameters. Chapter 6 presents some early numerical

simulations of the experimental lines we eventually follow. Chapter 7 details the results

of our �rst strontium-based experiment emulating ultrafast physics, as well as some future

directions for that project. Chapter 8 is essentially a preprint of a forthcoming paper on

phasonic spectroscopy of a tunable quantum quasicrystal. It also includes discussion of

future directions at the end. Chapter 9 discusses other future research goals for which

we have been laying groundwork on the strontium machine.

1.2.2 Appendices

Many of the appendices will only be useful to members of the Weld Lab. Appendix A

contains notes on UHV cleanliness and assembly of CF �anges. Appendix B is a

compilation of best practices for water bakes, which we have learned and assembled over

8 of them. Appendix C discusses our lab infrastructure: temperature control, water

and electric plumbing, magnet winding, and other things of that ilk. Appendix D

includes calculations for the atomic polarizability of strontium and magic wavelength

calculations. Appendix E contains some notes on lattice instability issues we had,
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and how we mitigated them. Appendix F brie�y discusses a couple of techniques

to set up an imaging system and align lattices. It also includes images from each of

our diagnostic cameras, with labels indicating their direction/rotation. Appendix G

contains technical drawings for both machine main chambers and all surrounding custom

optical breadboards. Appendix H shows the AR curves for viewports that are on

attached to the machines. Appendix I includes technical drawings for several custom

parts I designed for the machines. Appendix J is the result of a day-long discussion with

a scientist at Paci�c Laser Equipment, detailing how to operate their waveplate rotators.

Appendix K discusses what happened when our chiller failed in November 2018, and

what we did to diagnose and �x it. Appendix L is a visual guide to the machine,

intended for an incoming student to help them �nd their way around. Appendix M

includes much of the information I have gathered from working with the strontium SHG

461 nm laser over the past seven years, including when to switch out desiccant, how to

realign and reoptimize the cavity, and what to do when it's generally making you sad.

1.3 Permissions and Attributions

1. Much of the theory included in this dissertation was adapted from Atomic Physics

by Christopher Foot [14], Bose-Einstein Condensation in Dilute Gases by C.J.

Pethick and H. Smith [15], Advances in Atomic Physics by Cohen-Tannoudji and

Guery-Odelin [16], and course notes from 8.421 at MIT [17].

2. Many of the experimental parameters for the lithium machine came from Zachary

Geiger's and Kevin Singh's theses [18, 19].

3. The theses of Florian Schreck [20] and Simon Stellmer [21] were reference guides

when we were building the machines, and remained so as I wrote this.

4. The content of Chapter 6 is the result of a collaboration with Cora J. Fujiwara,
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Ruwan Senaratne, Kevin Singh, Zachary A. Geiger, and David M. Weld, and has

previously appeared in Annalen der Physik. It is reproduced here with the permis-

sion of http://wileyrights.gms.sg/wiley_content.php.

5. The content of Chapter 7 is the result of a collaboration with Ruwan Senaratne,

Toshihiko Shimasaki, Peter E. Dotti, Cora J. Fujiwara, Kevin Singh, Zachary A.

Geiger, and David M. Weld, and has previously appeared in Nature Communica-

tions. It is reproduced here with the permission of SpringerNature:

http://nature.com/reprints/permission-requests.html.

6. The content of Chapter 8 is the result of a collaboration with Toshihiko Shimasaki,

Peter E. Dotti, Ruwan Senaratne, Mantas Raciunas, André Eckardt, and David M.

Weld.

7. The content of Appendix D is the result of a collaboration with Alexandre Cooper-

Roy and Ruwan Senaratne.
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Chapter 2

Some General and Relevant Theory

This chapter is certainly not meant to replace any number of excellent textbooks; rather,

it includes a (very) bare minimum set of ideas I found important to getting started in

AMO research. It is meant as a quick reference for the scienti�c and experimental content

of Chapters 3, 4, and 5, chapters in which I try to keep equations to a minimum. It follows

content from Atomic Physics by Christopher Foot [14], Bose-Einstein Condensation by

Pethick and Smith [15], and notes from my undergraduate AMO course [17], into all of

which I highly recommend diving.

2.1 Atoms

In order to cool and manipulate internal and external atomic degrees of freedom, one must

�rst know some things about atoms. These things include, but are not limited to, internal

states and level structure, Zeeman shifts, scattering, and properties at degeneracy. This

section is intended as a brief and general overview of these topics; any discussion speci�c

to lithium or strontium may be found in Chapter 3.
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2.1.1 Internal states and level structure

In order to calculate wavefunctions, we need to solve the Schrodinger equation:(
− ~2

2m
∇2 + V (r)

)
ψ = Eψ (2.1)

In undergraduate quantum mechanics, we learn to solve this equation for the hydro-

gen atom and perhaps the helium atom because the potential V (r) takes rather simple

forms. However, it becomes impossible to analytically solve the Schrodinger equation

for more complicated atoms due to nuclear screening and more complicated electron-

electron interactions. Instead, since we typically work with alkali or alkaline earth atoms

in AMO experiments, we use the hydrogenic or helium-like wavefunctions as ansatzes to

numerically solve for the eigenenergies of more complicated atoms.

Recall that the hydrogenic wavefunctions, tensor-producted with the electronic spin,

take the form

ψ = Rn,l(r)Yl,ml
(θ,φ)|s ms〉 (2.2)

de�ned by quantum numbers n (the principal/motional state), l (the orbital angular

momentum), S (the spin angular momentum), and ml and ms (the projections of l and s

along the z-axis). We can consider the approximation that the nucleus and the electronic

spin do not interact; this is called the central �eld approximation, and we can use it to

calculate the non-spin part of Ψ, Rn,lYl,ml
without use of any perturbation theory. Under

this central-�eld splitting, states are then identi�ed only by quantum numbers n and l.

NB: we typically use L2 = ~2l(l + 1) and S2 = ~2s(s+ 1) in notation instead.

We can then consider the e�ects of spin-orbit coupling, which arises from the fact

that charged particles with angular momentum have a magnetic dipole moment. The

proportionality constant between the angular momentum α (α = L, S, ...) and the

resulting dipole moment is typically referred to as the Lande g-factor, gα. The spin-orbit

coupling HamiltonianHso ∝ L·S. In the process of calculating the resulting energy shifts,

8
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it is useful to de�ne quantum number J = L+S, the total angular momentum, which may

take various values depending on the magnitudes and relative orientations of L and S.

The energy splittings between di�erent J-values are called �ne-structure splittings. Each

J state has (2J+1) possible projections mJ , which are degenerate without a magnetic

�eld. L, S, J , and mJ are good quantum numbers in the LS-coupling scheme, and states

may be written in Russell-Saunders notation: n2S+1LJ .

It is worth brie�y noting that there are some cases where the spin-orbit interaction

cannot be treated as a perturbation on the central-�eld energy; such is the case with

many heavier atoms like dysprosium. The energy levels of such atoms must be described

using di�erent coupling schemes, such as jj-coupling.

We can go one step further and consider interactions between J and the nuclear an-

gular momentum, I, for which the Hamiltonian HHFS = AI · J where A is the hyper�ne

constant. In the process of calculating the hyper�ne energy shifts, it is useful to de�ne

another new quantum number, F = I + J; the various values of F represent splitting of

the �ne structure manifold into hyper�ne structure; each F splits further into (2F+1)

projections mF which are degenerate at zero �eld. Good quantum numbers in the hyper-

�ne coupling scheme include I, J , F , and mF . We typically only consider one species at

a time, so I is constant. We refer to the J quantum number (the �ne-structure manifold)

using Russell-Saunders notation, and simply write states in the basis |F ,mF 〉.

There are a number of other level shifts in atoms: relativistic corrections to the

electronic kinetic energy, the Lamb shift (due to interactions with the vacuum energy),

the Darwin term (due to an e�ective potential from the uncertainty in electron position),

the quantum defect (due to e�ective shielding of the nuclear potential from inner-shell

electrons), and isotope shifts (due to changes in the nuclear mass and resulting changes

of the �nite nuclear size). These shifts are discussed in detail in a number of sources far

better than this one.

The descriptions of the forest of internal electronic states is very useful to understand
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atomic energy splittings from a qualitative perspective. However, since calculations of all

of these splittings are based on wavefunctions which become more and more approximate

as the atomic number increases, we expect the calculated energies to deviate from the

actual energies. For lithium, strontium, and any other atom one might wish to cool, we

depend on empirical measurement to ascertain the full energy spectrum.

2.1.2 Zeeman shifts

Many of the splittings above resulted from interactions between the atom and its inter-

nal magnetic �elds. The Zeeman e�ect, in contrast, describes energy splittings due to

interactions between the atom and an external magnetic �eld B. Fine structure Zeeman

splitting arises from interactions between J and B; in the low-�eld regime, where the

Zeeman splitting is smaller than the �ne splitting, the energy shift for a state mJ is given

by

EZE,FS = gJmJµBB, (2.3)

where µB is the Bohr magneton and gJ is the Lande g-factor associated with the J

manifold:

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
. (2.4)

We can similarly consider hyper�ne structure Zeeman splitting, arising from interactions

between F and B; in the low-�eld regime, where the Zeeman splitting is smaller than

the hyper�ne splitting, the energy shift for a state mF is given by

EZE,HFS = gFmFµBB, (2.5)

10
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where µB is the Bohr magneton and gF is the Lande g-factor associated with the F

manifold:

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
. (2.6)

If the coupling between the external �eld and �ne states (hyper�ne states) becomes

large enough to disrupt coupling between L and S (I and J), the splittings become

very di�erent. Due to that decoupling, |J ,mJ〉 (|F ,mF 〉) are no longer good quantum

numbers, and we instead need to use |mL,mS〉 (|mI ,mJ〉). This is called the Paschen-

Back e�ect. We will �nd that this regime becomes relevant for lithium in the presence

of magnetic �elds which cause Zeeman shifts larger than the hyper�ne energy splitting

of 800 MHz.

2.1.3 Scattering

Background scattering lengths

Evaporative cooling is driven by elastic collisions between atoms, the rate of which is set

by the atomic scattering cross section. Atomic scattering between two colliding particles

reduces to a single particle with reduced mass scattering o� of the molecular potential of

the two atoms. We treat this particle as a scattered wave with incoming and outgoing

components:

ψ = eikz + f(θ)
eikr

r
(2.7)

where f(θ) is the scattering amplitude and k is the magnitude of the scattering wave

vector.

At long range (r → ∞), the only e�ect of the potential on the wave is an overall

phase shift δl relative to a wave scattered o� of a point. We can treat the complicated

molecular potential, then, as a hard sphere with radius a which induces the same phase
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shift as that potential. If the potential is treated isotropically in the radial dimension,

we can expand the wavefunction of the scattered particle in terms of axially-symmetric

states:

ψ =
∞∑
l=0

AlPl(cos θ)ukl(r) (2.8)

where l is the partial-wave angular momentum and ukl(r) is some radially-symmetric

wavefunction which includes the phase shift. We can plug this ansatz into the radial

Schrodinger equation(
d2

dr2
+

2

r

d

dr
+ k2 − l(l + 1)

r2
− 2m

~2
V (r)

)
ukl(r) = 0 (2.9)

and solve for f(θ) to �nd the scattering cross section.

If l > 0, we see that there is an additional centrifugal potential barrier in the

Schrodinger equation. This implies that for low-energy collisions, the scattering wave-

function will re�ect o� of this barrier without any phaseshift. Thus, at the low energies

found in cold atom experiments, the only signi�cant cross-section contributions come

from s-wave (l=0) scattering.

The e�ective hard-sphere radius a which gives rise to phaseshift δ0 is de�ned as the

scattering length

a = − lim
k→0

δ0(K)

k
, (2.10)

and the scattering cross section for indistinguishable particles is calculated to be σ =

8πa2. A full and excellent treatment of the scattering problem may be found in [15],

among other great resources; Ruwan Senaratne also includes a nice treatment of it in his

thesis [22].

A positive scattering length denotes repulsive interactions while negative a denotes

attractive interactions; note that the scattering rate, dependent only on cross section

σ, is the same for attractive and repulsive interactions as long as the magnitude of a is

12
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Figure 2.1: a: Non-resonant scattering. The incident waves are depicted after scattering
o� of a δ-function at r=0, compared to scattering o� a molecular potential. At large r,
the only di�erence is a phase shift. b: Resonant scattering due to a Feshbach resonance.
In the drawing, the incident energy of the scattering wave is resonant with a bound state
of a higher-lying molecular potential, which can be tuned via a B-�eld.

the same. Background scattering interactions between particles give rise to an overall

e�ective potential in an atomic cloud. This potential, termed the �mean-�eld� potential,

is dependent on the atomic density n and scattering length a at low energies, and gives

rise to an expansion of the cloud size in the case of repulsive interactions:

UMF =
8π~2an

m
≡ gn. (2.11)

The mean-�eld interaction can lead to instability of the cloud size or formation of a

soliton for attractive interactions [23].

Feshbach resonances

This discussion so far has been relevant to the calculation of background scattering rates,

and I noted in the previous section that the molecular potential of the two colliding

particles can often be simpli�ed to a hard-sphere potential. There are cases where this

is not true; one of the most useful exceptions occurs when an excited-state molecular
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potential has a bound state close to the energy of the colliding atoms. The atoms virtually

enter the bound state to form an excited molecule before decaying back to free atoms;

during this process, the accumulated phaseshift can be very large. The relative energy

of that bound state can be tuned through zero by using a magnetic �eld.

The functional form of a Feshbach resonance is given by

a(B) = abg

(
1− ∆

B −B0

)
. (2.12)

This means that as a function of B, we can tune a from −∞ to +∞. The functional

form is approximate, and describes the scattering length very well near the resonance

but less well away from it. For an example of this, please see Fig. 3.3.

2.1.4 Bosonic degeneracy

This subsection contains a brief overview of properties of bosonic quantum gases. It does

not touch on degenerate Fermi gases; however, most good AMO texts, as well as the

Schreck thesis [20], have excellent discussions about both bosons and fermions.

Non-interacting Bose gases

Bosons can all occupy the same energy state, unlike fermions. This fact may be used

to derive the Bose-Einstein distribution, the mean occupation number of a state with

energy ε:

fBE(ε) =
1

e(ε−µ)/kT − 1
. (2.13)

µ here is the chemical potential, which is determined by the total number of particles N

and the temperature T . We can also determine the density of states for an anisotropic

3-d harmonic oscillator with frequencies (ωx, ωy, ωz), which is a good approximation for

a crossed optical dipole trap:

V =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (2.14)
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The density of states with energy less than ε is given by

g(ε) =
ε2

2~2ωxωyωz
. (2.15)

We can use this to calculate the transition temperature to a Bose-Einstein condensate

(BEC), which is the highest temperature at which we should be able to observe macro-

scopic occupation of the ground state. The transition temperature is the temperature at

which all of the particles can be accomodated in excited states. Since we want to be able

to add a particle without additional energy cost, we set µ =0 and use

N =

∫ ∞
0

dεg(ε)
1

eε/kTC − 1
(2.16)

to �nd

kTC =
~(ωxωyωz)

1/3N1/3

[ζ(3)]1/3
(2.17)

where ζ is the Riemann zeta function. The critical transition temperature for Bose-

condensation of 7Li in our 3D anisotropic harmonic trap, assuming 2 × 105 atoms, is

around 700 nK; the critical transition temperature for Bose-condensation of 84Sr in our

3D anisotropic harmonic trap, assuming 8 × 104 atoms, is around 150 nK.

Eq. 2.17 can be usefully recast to write the fraction of total atoms in the ground band:

N0

N
= 1−

(
T

TC

)3

. (2.18)

It is useful to introduce the de Broglie wavelength λDB3 = (2π~/mkBT )3/2, which can

be thought of as a metric of density in momentum space. This can be combined with

the density in real space to give the phase space density n,

ρ = nλ3
DB, (2.19)

which is of order unity at the BEC phase transition.
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Interacting Bose gases

It is possible, in some atoms with very low or tunable scattering lengths, to have a

BEC which is non-interacting. However, it is much more common for the atoms in

a BEC to interact, giving rise to super�uidity. It is simplest to treat the interacton

between particles, to 0th order, using a mean-�eld approach (see Eq. 2.11). That equation

describes mean-�eld interactions in momentum space (as a constant), but may be recast

in real space as a contact interaction: UMF δ(~r − ~r′) for particles at ~r and ~r′. This term

can be added to the Hamiltonian with the density recast in terms of the wavefunction

(n(~r) = |ψ(~r)|2), and used to write the time-dependent Schrodinger equation. With the

proper choice of global phase of the wavefunction, this simpli�es to the time-dependent

Gross-Pitaevskii equation (GPE):

µψ(~r) =

(
− ~2

2m
∇2 + Vext(~r) + g|ψ(~r)|2

)
ψ(~r) (2.20)

where µ is the chemical potential. This equation can be simpli�ed yet further if we make

the approximation that the mean �eld energy is much greater than the kinetic energy;

this is known as the Thomas-Fermi approximation, and is valid for su�ciently large, cold

clouds. The solution to the GPE is then simply

n(~r) =
µ− Vext(~r)

g
, (2.21)

which shows that the boundary of the cloud is simply set by µ = Vext. Since our traps

can often be approximated by harmonic potentials, this sets a Thomas-Fermi radius:

R2
i,TF = 2µ/mω2

i . We can solve for µ using the constraint that the integral of the density

over all space is equal to the total number of atoms, �nally giving a Thomas-Fermi radius

in direction i:

R2
i =

~ω̄
mω2

i

(
15Na

ā

)2/5

(2.22)
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where a is the scattering length and ā and ω̄ are the geometric means of ai = (~/mωi)1/2

and ωi along each trap direction. This spatial extent is useful to calculate how interaction

rates are a�ected by various densities and trap geometries.

2.2 Atom-Photon Interactions

Many cooling processes are driven by atom-photon interactions, which allow us to con-

trol both internal and external atomic degrees of freedom.1 The photons relevant to

our experimental work are typically monochromatic, but their frequencies range from

microwave/RF to optical. Light interacts with neutral atoms in one of two ways. The

�rst is radiative: atoms can absorb and spontaneously emit light if the photon energy is

near an optical transition. The �rst three subsections are dedicated to these dissipative

processes which can be used for cooling. The second is a conservative interaction arising

from atomic dipole moments induced by external �elds; the resulting interactions be-

tween the dipoles and the �elds themselves can create conservative trapping potentials.

The rest of the section will discuss these types of interactions.

The basics of radiation interacting with a two-level system�Fermi's Golden Rule,

electric �eld perturbations, the rotating wave approximation, Einstein A and B coef-

�cients, Rabi oscillations, and the optical Bloch equations�are typically treated in a

course at some point during an undergraduate and/or graduate physics education; I

leave it to the reader to familiarize themselves with those ideas, as they are the bedrock

on which AMO physics stands (and they're fun to learn about!). In this section, I instead

will provide a few de�nitions for experimentally-relevant parameters, and then discuss

cooling methods.
1Underrated band name.
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2.2.1 Optical transitions

Every optical transition between two states has a well-de�ned natural linewidth which

is related to the lifetime of the excited state prior to decay to the ground state. This

lifetime, τ , is fundamentally set by spontaneous emission; the coupling of the state to

vacuum modes is dependent on the atomic transition frequency as well as the frequency

and polarization of the emitted photon. Since the lifetime of the excited state is �nite,

there is uncertainty of the energy di�erence between the ground and excited states.

This results in natural radiative broadening of the transition frequency into a Lorentzian

lineshape. We call the width of this Lorentzian the linewidth, Γ.

It is useful to de�ne a saturation intensity, Isat. It is useful to think about this in

a schematic way; imagine a beam of monochromatic radiation impinging on a slab of

atoms in a direction z. This light will be attenuated as it permeates through the slab:

dI

dz
= −κ(ω)I(ω). (2.23)

κ is determined by absorption and emission at rates set by the optical cross section and

spontaneous emission. Isat is the impinging intensity (at the atomic resonance frequency)

which causes κ to attenuate by a factor of two; it is given by

Isat =
πhc

3τλ3
(2.24)

for resonant transition wavelength λ.

We now know some quantitative properties of the transitions. By standing on the

shoulders of spectroscopic giants of decades past, we know the absolute frequency of

light needed to drive a given transition. From the linewidth, we know how precise that

frequency needs to be to drive the transition, and approximately how much optical power

will be necessary to do so e�ciently. We can use these tools to buy or build appropriate

monochromatic light sources (lasers or RF sources), and begin to laser-cool our atoms.
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2.2.2 Radiative trapping and cooling

There are a number of radiative cooling techniques which have made it possible to achieve

atomic temperatures in the µK regime. The most ubiquitous of these is Doppler cooling.

Doppler cooling

If an atom in the lab frame is traveling with some velocity v and interacts with radiation

at frequency ω0, in the atomic frame of reference, the light will be Doppler-shifted to

ω′ = ω0−kv where k is the radiation wavevector. We can use this fact to our advantage,

detuning the light by exactly δ = −kv (red detuning) such that an atom traveling towards

the light will see a resonant frequency.

Radiation carries momentum. It follows from momentum conservation that absorp-

tion and emission events involve momentum exchange between the photon and the atom,

and this momentum exchange can exert a force on the atoms. The total force which can

be exerted depends on the momentum of the photons, ~k where k is the wavevector, as

well as on the spontaneous scattering rate:

Fscatt = ~k
Γ

2

I/Isat
1 + I/Isat + 4δ2/Γ2

. (2.25)

The maximum force imparted to the atoms by spntaneous scattering events is Fmax =

~kΓ/2, which de�nes a maximum radiative acceleration (or deceleration) based on New-

ton's Second Law,

amax =
~kΓ

2m
. (2.26)

When an atom spontaneously emits a photon, it does so isotropically in space. However,

because we have red-detuned the radiation, we have velocity-selected the atoms which

see the light as resonant such that they preferentially recoil against their direction of

motion. This e�ectively slows the atom by the recoil velocity, vrec = ~k/m, for every

scattering event. Because scattering rates scale as Γ, which is typically in the range of
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1 MHz for alkali atoms, this cooling can be quite e�ective.

The spontaneous emission of the photon occurs isotropically, implying that the emis-

sion process does not impart any mean velocity to the atom. However, the mean squared

velocity is nonzero, and scales with the number of scattering events. This leads to a

fundamental limit on Doppler cooling: TDopp = ~Γ/2kB.

Doppler cooling can be very e�ective in optical molasses con�guration, shown in

Fig. 2.2a, with 3 standing waves of red-detuned light in all the three Cartesian dimensions.

The resulting force on the atoms can be written

Fmolasses ≈ −2
dFscatt
dω

kv = −αv. (2.27)

In this form, it becomes clear that the light is acting as a damping force on the atom.

Since the light is cooling the atoms, the velocity distribution gets shifted to lower

velocities. This raises an issue with this cooling technique: once the atoms are slowed,

the Doppler shift changes and the atoms are no longer resonant with the light. Two

approaches are often used to overcome this. The �rst is chirped cooling, which requires

fast sweeps of the frequency detuning and is only e�ective on atoms which arrive at

the slower at the appropriate time. The second (more common) method is to hold the

detuning constant and use a spatially-varying Zeeman shift to compensate the changing

Doppler shift. The velocity of the atoms which start at vmax at z = 0 and end at 0 m/s

under constant acceleration a is given by

v(z) = vmax

(
1− 2az

v2
max

)1/2

. (2.28)

However, we do not typically need to slow atoms all the way to 0 m/s, but only to a

reasonable capture velocity for a magneto-optical trap (typically around 50 m/s):

v(z) = (vmax − vc)
(

1− 2az

v2
max − v2

c

)1/2

+ vc. (2.29)

We typically assume that the acceleration a is amax/2 or amax/3 to provide a safety
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Figure 2.2: a: Red-detuned light in three standing waves along Cartesian dimensions
creates an optical molasses. b: A magneto-optical trap is created by using a linear �eld
gradient (from anti-Helmholtz coils) and optical molasses with red-detuned circularly-
polarized light.

factor for the slower length. The functional form of the magnetic �eld B(z) needed to

compensate this shift is

µB(g′Jm
′
J − gJmJ)(B(z)−Bbias) = kv(z) (2.30)

at which point solenoids can be designed to match this design �eld as closely as possible.

Magneto-optical traps (MOTs)

Doppler cooling is a very e�cient cooling technique, but is not enough by itself to trap

atoms. A trap is simply a spatially-varying energy. This is excellent news, because we

can use the Zeeman e�ect to our advantage once more. We need to create a magnetic

�eld gradient, such that B is zero at the trap center and increases linearly outwards in

space. This is possible to achieve by using two coils in anti-Helmholtz con�guration,

where the coil separation z is equal to the coil radius r. This creates a quadrupolar �eld,

with con�nement twice as strong along the z-axis as along x or y. Along any direction,

the �eld, and therefore Zeeman energies, change linearly in space (Fig. 2.2b). Now we can

preferentially address Zeeman sublevels by using red-detuned circularly-polarized light:

21



Some General and Relevant Theory Chapter 2

Figure 2.3: a: Raman transitions for a λ scheme. b: Sisyphus-like cooling in the Raman-
dressed atom picture.

the light is only resonant with the atoms at a certain radius from the trap center which

are traveling with a certain velocity. Since the force exerted on the atoms is dependent

on both position and velocity, the MOT allows simultaneous trapping and cooling of the

atoms. Using 6 beams to create an optical molasses in the presence of the anti-Helmholtz

�eld allows us to form a 3d magneto-optical trap, the temperature of which is limited by

the Doppler limit.

Sub-Doppler cooling

There are various ways to get around the Doppler cooling limit, including Sisyphus

(polarization gradient) cooling. Here I will brie�y discuss gray molasses, which works

extremely well for alkalis which do not have a well-resolved hyper�ne structure. It was

�rst demonstrated for lithium in 2013 [24, 25].

Gray molasses utilizes Raman transitions, two-photon transitions involving simulta-

neous absorption and stimulated emission by an atom. A Λ scheme is shown in Fig. 2.3a;

there are two ground states and an excited state, with allowed optical transitions 1→ 3

and 2→ 3. Intense beams of opposite polarizations form polarization-gradient standing

waves in three dimensions. They are set at a blue detuning from the transition frequency

which is large compared to the transition linewidth; this light induces a coupling between

each ground state and the excited state. We can consider these states in a dressed-atom
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picture, accounting for photon coupling. The excited state 3 is unperturbed, but other

two states are now orthogonal superpositions of the ground states, once of which couples

to the light and one of which does not. We call the former the bright state B, and the

latter the dark state D. The bright state sees a pronounced spatially-dependent light

shift, while the dark state does not. The energy levels are shown in Fig. 2.3b. This

system now behaves very similarly to Sisyphus cooling. Since the bright and dark states

are not eigenstates of the kinetic energy operator, they are allowed to weakly couple to

each other; this e�ect is most pronounced at bright state energy minima. Two-photon

transitions from the bright state to the dark state are only allowed near bright state

energy maxima, due to the polarization gradient. The end result is that the atoms have

to climb potential hills, losing kinetic energy in the process.

2.2.3 Magnetic trapping and cooling

Creating a magnetic trap for low-�eld-seeking states involves making a magnetic �eld

gradient which increases in magnitude away from the trap center. Historically, this has

been done using a variety of traps: Io�e-Pritchard traps, TOP traps, QUIC traps, etc,

each with pros and cons. We accomplish this using two coils in anti-Helmholtz con�g-

uration, which creates a linear gradient. The spatial distribution of atoms in this trap

can be approximated as a Gaussian, but actually deviates slightly; the Fujiwara thesis

details the functional form of the atomic distribution. Once the atoms are trapped, it is

common to perform forced evaporative cooling from the trap by inducing RF transitions

to antitrapped states. However, evaporative cooling depends on atomic thermalization,

and there are a number of loss processes with which the elastic scattering rate has to

compete.

Atomic momenta and scattering lengths can be used to calculate the scattering cross

section σ; the momenta in a magnetic trap typically take the form of a distribution based
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Collision type Dependence on density n0

Background collisions 1
Majorana spin-�ips n0

Elastic collisions n2
0

Spin-exchange collisions n2
0

Dipolar relaxation n2
0

Three-body spin exchange n3
0

Table 2.1: Collisions in the magnetic trap

on temperature. The elastic scattering rate then follows from the atomic number density

N, temperature T, and magnetic �eld gradient G:

Γel =
N

32π

(
gFmfµBG

kBT

)3

σ(k)

√
3kBT

m
. (2.31)

This scattering rate needs to compete with inelastic processes: background losses, dipolar

relaxation, spin-exchange collisions, and 3-body losses. A comparison of the dependence

of each loss rate on density is given in Table 2.1. Background gas collisions are indepen-

dent of density, and we can work in extremely good vacuum to try to mitigate this. We

can minimize spin-exchange collisions by working in a stretched state, and since three-

body losses go as n3
0, we can work at densities at which they are suppressed. Dipolar

relaxation is the dominant loss process, but we have found that our evaporation proceeds

smoothly at the densities we use.

The other large loss rate comes from Majorana spin �ips. One of the negatives of

using a quadrupolar �eld is that the magnitude of the �eld goes to zero at the trap center.

Since there is no well-de�ned quantization axis, atoms are free to make non-adiabatic

transitions to magnetically-untrapped states. We can mitigate these loss processes by

shining a blue-detuned �plug� beam to repel atoms from the center of the trap via the

AC Stark shift, which will be discussed in Section 2.2.4.
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2.2.4 Optical trapping and cooling

This discussion will refer to the excellent treatment in [26] regarding dipole forces in

optical traps.

Any monochromatic light �eld carries with it an oscillating electric �eld with magni-

tude E at some frequency ω. We can model the atom as an oscillator; the external �eld

will induce a atomic dipole moment which oscillates at ω with a strength proportional

to E:

d = αE. (2.32)

The proportionality constant, α, is called the complex polarizability of the atom, and in

general depends on ω. The real part of alpha is proportional to the potential energy of

the atom in the light �eld, while the imaginary part is proportional to the spontaneous

scattering rate of the atoms in the light �eld. The interaction between d and E results in

a potential proportional to their dot product; this can be rewritten in terms of the light

intensity I

Udip =
1

2ε0c
Re(α)I. (2.33)

The spontaneous scattering rate may be written as

Γsc =
1

~ε0c
Im(α)I. (2.34)

The polarizability can be calculated by modeling the atom as a two-level quantum system

interacting with a classical �eld, and is dependent on a damping Γ due to spontaneous

decay from the excited state:

Γ =
ω3

0

3πε0~c3
|〈e|µ|g〉|2. (2.35)

Using a damped oscillator ansatz for α and making the rotating wave approximation,
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we �nd approximate analytic forms for the dipole potential and scattering rate:

Udip = −3πc2

2ω3
0

Γ

∆
I (2.36)

and

Γsc = −3πc2

2ω3
0

(
Γ

∆

)2

I. (2.37)

We have de�ned ∆ ≡ ω − ω0 as the detuning of the light frequency from the atomic

resonance. We see that if ∆ is large, the scattering rate falls o� more quickly than the

dipole potential, which is favorable for trapping. We also see that if the laser is blue-

detuned (∆ > 0), the sign of the potential is positive (repulsive), while a red-detuned

beam (∆ < 0) results in an attractive potential.

The simplest optical potentials take the form of a TEM00 Gaussian mode with a power

P and a minimum waist w0. The intensity pro�le of this beam is given by the function

I(r, z) =
2P

πw2(z)
e−2(r2/w2(z)) (2.38)

where w(z) = w0(1 + (z/zR)2)1/2) and zR is the Rayleigh range. This yields a potential

that looks like

U(r, z) =
−U0

1 + (z/zR)2
exp

(
−2(r/w0)2

1 + (z/zR)2

)
. (2.39)

However, at the center of the potential and at nearby low energies, we can expand this up

to 2nd order to approximate the gaussians in each direction as parabolas with maximum

depth U0, and solve for trap frequencies ωr = (4U0/mw
2
0)1/2 and ωz = (2U0/mz

2
R)1/2. For

multiple intersecting 1D optical dipole traps, the 1D trap frequencies along each direction

may be added in quadrature to get the total trap frequency.
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Figure 2.4: Optical lattices formed from interference of light in 1d (a), 2d (b), and 3d
(c).

2.2.5 Optical lattices

Two counter-propagating optical dipole traps at the same frequency interfere to form a

standing wave of light (this can be easily done using a retrore�ecting mirror). In one

dimension, the resulting potential looks like a series of stacked pancakes. Lattices may

be extended to 2 or 3 dimensions, with resulting potentials of tubes or a 3d lattice. These

potentials can be (kind of) visualized in Fig. 2.4. The potential formed from a 1d lattice

is

U(r, z) = −U0 e
−2(r2/w2

0) sin2(kz), (2.40)

where U0 is usually expressed in terms of the recoil energy ER = ~2k2/2m (ignoring

axial harmonic con�nement, which is typically weak). The eigenstates of this potential

are called Bloch states; they are the product of a plane wave and a function which has

the same periodicity of the lattice:

ϕ(n)
q (z) = eiqz/~ u(n)

q (z) (2.41)

where q is the quasimomentum2 and n is a band index. Using these wavefunctions

to solve the Schrodinger equation, we calculate energy eigenstates which are shown in
2Just as momentum is conserved in cases of continuous spatial translation symmetry, quasimomentum

is conserved in cases of discrete spatial translation symmetry imposed by the lattice.
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Figure 2.5: Eigenenergies for optical lattices exhibit band structure. The �rst 5 bands are
shown for increasing lattice depths. The lattice well can be approximated as a harmonic
oscillator potential; the dashed lines indicate eigenenergies of that approximate potential.

Fig. 2.5 for a full Brillouin zone (set by the reciprocal lattice vectors).

It is worth noting that Bloch states are completely delocalized in lattices. They can

be used to construct another set of basis states, Wannier states, which are superpositions

of Bloch states that are maximally localized to individual lattice sites. Wannier states

are the basis in which many important lattice parameters, such as tunneling rates and

local particle interactions, are calculated. There is an excellent MATLAB codebase for

calculating Wannier states and lattice parameters, which has been invaluable to us [27].

Periodic lattice modulation

Periodic lattice modulation (amplitude or phase) creates perturbations (with even or odd

parity, respectively) near the lattice minima which can allow couplings between di�erent

bands. As long as the quasimomentum is conserved, atoms (which often start in the

ground band as they are adiabatically-loaded BECs) are allowed to transition to excited

bands. Transitions to bands with the same (di�erent) parity as the initial band are much

stronger for modulations with even (odd) parity, as long as quasimomentum spread of

the BEC does not deviate too far from k = 0. This process may be thought of as a two-

photon Raman process, in which the modulation puts sidebands on the lattice frequency
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and atoms are allowed to absorb a photon from one sideband and emit into the other.

The ability to modulate lattices can be highly useful. For example, by modulating the

lattice at a range of frequencies and looking at populations of higher bands, one may

calibrate the lattice depth.

One of the cleanest ways to extract band populations from data is to use a band-

mapping procedure [28]. This process involves ramping down the lattice slowly with

respect to the bandgap; this allows energy and quasimomentum in the lattice to map

onto free-space momentum. Once the particles are free to expand in time-of-�ight, the

di�erent momenta will map onto real space.

Kapitza-Dirac di�raction

We typically calibrate our lattice depth using Kapitza-Dirac di�raction, which is the

di�raction of our coherent atomic state (a BEC) o� of a �grating� made of a standing

wave of light. During this process, a standing wave of light is pulsed for a short amount

of time, during which momentum is transferred to atoms in a way which is quantitatively

dependent on the lattice depth. The atoms expand in time-of-�ight, and we extract the

populations of each momentum state to calibrate the lattice depth.

Kapitza-Dirac di�raction can be most easily understood in the plane wave basis:

ψ(t) =
∑
n

ηn(t)e2πikz (n = 0,±1,±2, ...) (2.42)

We can write the Hamiltonian (with a potential U(z) = U0 cos2(kz) pulsed for time τ)

in this basis and introduce dimensionless parameters

α =
2ERτ

~
(2.43)

β =
U0τ

~
; (2.44)

note that α is just pulse time in units of the 2-photon recoil time. We can write the
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time-dependent Schrodinger equation as

i
dηn
dt

=
αn2ηn(t)

τ
+

β

4τ
(ηn−1(t) + 2ηn(t) + ηn+1(t)). (2.45)

If τ is much shorter than the harmonic oscillation period Tho = ~/
√

2U0ER (this is called

the Raman-Nath regime), we can neglect the �rst term of the Schrodinger equation, which

makes it much easier to solve; the resulting solution gives

ηn(t) = (−i)ne−iβ/2τJn(βt/2τ) (2.46)

where Jn are Bessel functions of the �rst kind. The population of the nth di�racted

order is then proportional to J2
n, and �tting this analytical form to our data allows

us to extract β and thus U0. It is worth mentioning that for very light atoms, it is

experimentally di�cult to operate in the Raman-Nath regime; for a lithium atom with

a pulsed 10ER lattice, the pulse needs to be less than 1.5µs. In this case, Kapitza-Dirac

di�raction can still be used, but the full time-dependent Schrodinger equation must be

solved to obtain solutions for ηn(t).

Bichromatic lattices

One of the nice things about cold atom experiments is that it is almost as easy to generate

a nontrivial lattice geometry as it is to create a trivial one. One of the potentials we

consider in our experiments is the bichromatic lattice, which is very simply two lattices,

each of a di�erent color, superposed with each other. If the period ratio is rational, the

unit cell of the lattice is �nite. If the lattice vector corresponding to the new unit cell

gets smaller, so does the Brillouin zone; the band structure gets more complicated due to

new foldings in quasimomentum-space and the resulting avoided crossings. If the period

ratio is irrational, two interesting things occur:

1. Since the potential never repeats, it displays quasiperiodic structure, which can be

treated as a type of (not truly random) disorder. This means that we can study
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physics related to Anderson localization.

2. The unit cell gets in�nitely large, and it is impossible to de�ne a band in the

traditional condensed-matter sense.

In the tight-binding limit, the Hamiltonian for a bichromatic lattice may be written

as

H = J

N∑
i=1

cic
†
i+1 + h.c. + ∆

N∑
i=1

cos(2παi+ ϕ)c†ici (2.47)

where J is the tunneling matrix element, ∆ is the disorder strength, α is the period

ratio, and ϕ is the phase between the two lattices. Plotting the energy eigenstructure of

this lattice as a function of α famously maps out the Hofstadter butter�y, and with open

boundary conditions, edge states may be observed in the calculation, traversing between

bands.

For an irrational α, this Hamiltonian exhibits an Aubry-André transition from delo-

calization to localization at ∆/J = 2. In our experiment, we happen to use a 1064 nm

lattice as our primary lattice, and a 915 nm secondary lattice as a perturbation. Fig. 2.6

shows contour lines for ∆/J for the ground band at various lattice depths.

One of the results of an in�nite Brillouin zone is that the Hamiltonian can no longer be

diagonalized in momentum space. We can calculate the resulting band structure in real

space, however. The calculations presented here use a 200 site lattice sampling around

1000 points per site, and the potential is modeled as a superposition of a 1064 nm lattice,

a 915 nm lattice, and a weak harmonic con�nement. Fig. 2.7a shows the calculated

energies for the �rst 600 eigenstates (eigenstate number is plotted on the x-axis) for

an 8ER 1064 nm lattice with varying 915 nm lattice depth. We see the e�ects of the

perturbing lattice, as minigaps start to open in the 1064 nm band structure.

Fig. 2.7 shows the inverse participation ratio (IPR), a measure of localization, for

each eigenstate at di�erent 915 nm lattice depths; higher IPR indicates a greater degree
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Figure 2.6: Contours show lines of constant ∆/J for varying 1064 nm and 915 nm lattice
depths. By �tting

of localization. At 8ER, the ground band should localize for a very low 915 nm depth,

which we see in the data. Interestingly, at intermediate secondary lattice depths, we see

discrete steps in the second band IPR which correspond to the locations of the minigaps.

This indicates the presence of a single-particle mobility edge (SPME), where a subset

of states in a band are delocalized up to some critical energy, and then localized [29].

Experimental evidence has been found for SPMEs in bichromatic lattices, though they

have never been spectroscopically detected [30].

Finally, the ability to realize quasiperiodic structures in an optical lattice system im-

mediately allows access not only to phonon-like (dipolar) excitations via commensurate

phase-modulation of both lattices, but also to phason-like excitations via phase modula-

tion of just one lattice. More will be said on this subject in Chapter 8.
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Figure 2.7: a: Real-space calculation of bichromatic energy structure over 200 lattice
sites for an 8ER 1064 nm lattice and varying 915 nm lattice depth. b: Calculation of
quantity proportional to inverse participation ratio for each eigenstate at various 915 nm
depths. Higher values indicate a greater degree of localization.
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Chapter 3

Atomic Properties of Lithium and

Strontium

Having covered some basic general theory in Chapter 2, I will now dive into particular

properties and parameters of the elements we currently use in our lab, lithium and

strontium.

3.1 Lithium

Lithium metal is a light silver, and has the texture of bubble gum tape. It is the lightest

of the metals. It is an alkali and, like many of the alkalis, reacts violently with water.

Lithium is commonly used in AMO experiments due to its relatively simple electronic

structure, and stable isotopes exist in both bosonic and fermionic �avors; because the

mass is so low, it can also tunnel through potential barriers very quickly. It shares

many properties with other alkalis, including the existence of D1 and D2 cooling lines;

however, a number of annoyances make it more di�cult to work with experimentally.

In this subsection, I will give an overview of the atomic properties of lithium; for more

information, the Gehm thesis is very useful [31]. This discussion will gloss over many
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Property Value Ref.
Atomic Number 3
Atomic Mass 7.016004 amu [32]

1.1650347712× 10−26 kg
Total Spin (Electronic) S = 1/2
Total Spin (Nuclear) I = 3/2

Table 3.1: Lithium atomic properties

properties speci�c to 6Li, the fermionic isotope, since we have thus far focused our e�orts

on 7Li.

3.1.1 General atomic properties

There are two stable isotopes of lithium, 6Li (fermionic, with 3 neutrons and natural abun-

dance of 7.59%) and 7Li (bosonic, with 4 neutrons and natural abundance of 92.41%).

Some basic properties of 7Li are listed in Table 3.1.

Both the D1 and D2 transitions lie at approximately 670.9 nm (separated by only

∼10 GHz), which is very convenient for the following two reasons:

� Only one master laser is needed to cool on both lines, given enough AOMs and

EOMs, and

� 670.9 nm is a relatively convenient wavelength at which to get direct diodes. It is

also a bright visible red, which makes alignment easy.

We can calculate many basic properties of this optical transition simply by knowing

the precise frequency [33] and lifetime [34, 35]. These are given for 7Li in Table 3.2.

3.1.2 Level structure

We designate the state of the valence electron, at least in an L − S coupling scheme,

using Russell-Saunders notation: n2S+1LJ , where N is the principal (motional) quantum

36



Atomic Properties of Lithium and Strontium Chapter 3

Symbol D1 line D2 line
Frequency f 446.8002 THz 446.8102 THz

Wavelength (vacuum) λ 670.9766 nm 670.9615 nm
Lifetime τ 27.102 ns 27.102 ns

Natural Linewidth Γ 2π× 5.8724 MHz 2π× 5.8724 MHz
Recoil velocity vrec 0.08477 m/s 0.08477 m/s

Recoil temperature Trec 3.033 µK 3.033 µK
Saturation intensity Isat 2.54 mW/cm2

Doppler temperature limit TDopp 140.98 µK 140.98 µK
Doppler velocity limit vDopp 0.4009 m/s 0.4009 m/s

Table 3.2: 7Li D line optical properties

number, S is total electronic spin, L is total orbital angular momentum, and J is total

angular momentum.

The electronic structure of lithium may be considered at three levels of complexity, at

least for experimental purposes (we will not consider quantum defects in this discussion).

The �rst is under the central �eld approximation, which considers no coupling between

the nucleus and the valence electron. In this approximation, the ground state of lithium

is 22S, and the excited state 22P .

We can then account for spin-orbit coupling, which gives rise to �ne structure. Since

the ground state has no orbital angular momentum, there is only one possible value of J,

so we label the state 22S1/2. Alignment or anti-alignment of the spin and orbital angular

momenta in the excited state, 22P , causes splitting into 22P1/2 and 22P3/2: transitions

from the ground state to the former are labeled D1, and to the latter, D2. The splitting

between these lines is 10.053 GHz. The isotopic shift between the 6Li and 7Li D2 lines

is also around 10 GHz, resulting in a �double-feature� on our spectroscopy signal which

hampers us from using it as a lock.

The �ne structure lines are further split due to interactions between the electron and

the nucleus. 7Li has a nuclear spin I = 3/2; we can label the hyper�ne states using a

new total angular momentum F = J + I. The ground state 22S1/2 splits into F = 1
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Figure 3.1: Schematic Grotrian diagram for 7Li D-line transitions, showing central �eld,
�ne, and hyper�ne splittings. Frequencies from [35]

and F = 2 manifolds, split by 803.5 MHz. The D1 excited state 22P1/2 also splits into

F = 1 and F = 2 manifolds, split by 92 MHz. The D2 excited state 22P3/2 splits into 4

di�erent hyper�ne manifolds, F = 0, 1, 2, 3, which crucially are unresolved with respect

to the 5.9 MHz transition linewidth. All of these splittings are shown in Fig. 3.1. Each

of the hyper�ne manifolds splits further into (2F+1) mF states.

Our main cooling transition, the �cycler,� is F = 2 → F ′ = 3 on the D2 line,

which should be a closed cycling transition due to selection rules. However, because the

22P3/2 hyper�ne manifolds are unresolved, there is a nonnegligible probability of driving
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g-factor State Value Ref.
gI -0.000447654 [36]
gJ 22S1/2 2.002301 [36]

22P1/2 0.6668 [36]
22P3/2 1.335 [36]

gF , 22S1/2 F = 1 -0.5011
F = 2 0.5002

gF , 22P1/2 F = 1 -0.1672
F = 2 0.1664

gF , 22P3/2 F = 0 0
F = 1 0.6673
F = 2 0.6673
F = 3 0.6673

Table 3.3: Lithium �ne and hyper�ne g-factors

F = 2→ F ′ = 2, which can then decay to F = 1 in the ground state and become dark.

To address this problem, we use a repumper which is 803.5 MHz detuned from the cycler

to drive F = 1→ F ′ = 2.

3.1.3 Magnetic �eld interactions

At low magnetic �elds (where the Zeeman shift can be considered a perturbation on

the hyper�ne splitting), F is still a good quantum number, and the energy levels shifts

linearly with B

∆E = gFmFµBB (3.1)

due to the anomalous Zeeman e�ect. The Lande g-factors gF are calculated based on

Eq. 2.6, where the g-factors gJ and gI have been taken experimentally from [36]. All of

these may be found in Table 3.3. From Eq. 3.1, it is easy to see that the energy of a given

state will increase with �eld strength if gF × mF > 1. We call states that satisfy this

condition �low-�eld seeking�, and they are magnetically-trappable in an inhomogenous

�eld; conversely, states for which gF×mF < 1 are �high-�eld seeking� and are antitrapped
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since it is impossible to generate a local �eld maximum.

The Zeeman e�ect lifts the degeneracy of the hyper�ne manifolds into (2F+1) mF

states. These states, labeled |F ,mF 〉, have di�erent magnetic moments and scattering

properties, and during various moments in the cooling process, it becomes favorable to

place all of the lithium atoms in a particular mF state by optical pumping in a small bias

�eld.

At high magnetic �elds, the Zeeman shift becomes large compared to the hyper�ne

splitting, and |F ,mF 〉 become poor quantum numbers; this is called the Paschen-Back

regime. Instead, we must work in the |mI ,mJ〉 basis, since at very large �elds, the nuclear

and electronic spins become independent. Numerically diagonalizing the Hamiltonian in

this basis gives the Zeeman shifts plotted in Fig. 3.2. At intermediate �elds, �good�

quantum numbers are di�cult to de�ne, but since the ordering of the states does not

change, we typically still refer to them as |F ,mF 〉 states. We can use these calculations

to �gure out the laser frequencies needed to image at various high �elds; they typically

land us within a few tens of MHz of the correct frequency.

We can see that some states (in particular, |F = 1,mF = −1〉) are trapped at low

�elds and antitrapped at high �elds. It is important to account for this sign change when

considering, for example, states to use for RF evaporation.

3.1.4 Scattering properties

Since the majority of cooling after gray molasses is evaporative, it is important for us to

know something about the collisional properties of certain states. Typical atomic densi-

ties for gases in these experiments range from 108 cm−3 to 1014 cm−3, which means we

can largely consider our collisions to be two-body (with one notable exception). We also

only take the lowest order of the partial-wave expansion and assume s-wave scattering;

this is a good approximation in most cases, since there is typically not enough thermal
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Figure 3.2: Zeeman shifts at low and high �elds for 22S1/2, 22P1/2, and 22P3/2.

energy to overcome centrifugal barriers.

During RF evaporation, we use the |2, 2〉 state: it is magnetically trappable, and

since it is a stretched state, the rate of (bad) spin-exchange collisions is decreased. The

background triplet scattering rate of the |2, 2〉 state was empirically ascertained to be

a=-27.4 a0 [37]. This attractive scattering length is untenable for typical ODT densities,

but �ne for the densities in the magnetic trap as long as the elastic scattering rate

Γel = 8πa2 is larger than various inelastic scattering rates. Please see Section 2.2.3.

Before optical evaporation, we use an RF pulse to transfer atoms to the |1, 1〉 state.

The background scattering length of this state is a=5.1 a0 [40] which is too small for

optical evaporation to proceed. However, the |1, 1〉 state has a wide Feshbach resonance

at B0=736.8 G, width ∆ = 192.3, and background scattering abg=-24.5 [41] (see Sec-

tion 2.1.3), which makes it possible to tune the interactions. This Feshbach resonance,

along with many other scattering properties of various lithium states, was characterized

in detail in the Hulet group [42]; their data, along with the analytical form of the �eld,
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Figure 3.3: Lithium-7 |1, 1〉 Feshbach resonance. Data points from [38], analytic form
from [39]. Inset shows zero crossing locations and slopes in detail.

is shown in Fig. 3.3. The scattering length goes to zero at 543.6 G, and the slope of the

scattering length at that point is roughly 0.075 a0/G.

3.2 Cooling stages

Here, at the nexus of the lithium and strontium sections, please enjoy Fig. 3.4, which

shows the various cooling stages for the lithium and strontium experiments. While there

are some common elements, the di�erent atomic properties of the elements require dif-

ferent cooling strategies.
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Figure 3.4: Various cooling stages for both lithium and strontium, showing where cooling
techniques diverge and converge. For more on each cooling step, please see Sections 4.2
and 5.2.

3.3 Strontium

Strontium metal is a light silver color with a slightly yellow tint. It is an alkaline earth

metal and, like many of the alkaline earths, reacts violently with water. Strontium was

�rst brought to degeneracy in 2009 and has become very popular in recent years due to its

clock transition and accessible magic wavelengths. It has very narrow intercombination

transitions, which provide a natural spectroscopic knife with which to measure energies

in experiments. The fermionic isotope, 87Sr, also has a large nuclear spin I = 9/2, which

makes it an excellent candidate to eventually study SU(N) magnetism.

3.3.1 General atomic properties

There are over 20 unstable isotopes of strontium, but 4 stable ones: bosonic 84Sr, 86Sr,

and 88Sr, and fermionic 87Sr. These isotopes and their respective natural abundances
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Isotope Abundance Type
84Sr 0.56% Boson
86Sr 9.86% Boson
87Sr 7.00% Fermion
88Sr 82.58% Boson

Table 3.4: Strontium isotopes and abundances. Values taken from [43]

may be found in Table 3.4.

Strontium is an alkaline earth metal, which means its internal states are best described

by helium-like wavefunctions: singlet states (S=0) and triplet states (S=1). Singlet to

triplet transitions are forbidden by selection rules, but due to spin-orbit coupling, there

is some small amount of orbital mixing which gives rise to narrow intercombination lines

(one of which is the celebrated clock transition).

The ground state of strontium is 1S0 in the n = 5 shell. The two main cooling

transitions address the 1P1 state and the 3P1 state. Properties of these transitions are

found in Table 3.5 [44]. Unfortunately, the 461 nm transition is not fully closed; there

is a decay channel through the 1D2 state to the long-lived 3P2 metastable reservoir, the

lifetime of which is on the order of seconds. We have to repump the atoms into a higher

state which allows decay back into the 3P1 state. From there, the atoms can decay back

to the ground state.

It is worth brie�y discussing our choice of repump wavelength. We considered many

di�erent repump schemes for this machine, iterating through |5s6s3S1〉 (640 nm/707 nm),

|5s5d3D2〉 (497 nm), and �nally landing on |5s6d3D2〉 (403.35 nm). Diodes at this wave-

length are relatively easy to come by, being close to the 405 nm Blu-ray color. However,

because of the higher n quantum number of the associated state, the branching ratios

were unknown until 2013, when a reservoir spectroscopy paper1 [45] showed di�erences

in |5s5d3D2〉 and |5s6d3D2〉 repumping e�ciency to be in the single percent range.

1This is my favorite paper ever published.
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Symbol 1S0 →1 P1
1S0 →3 P1

Frequency f 650.6855 THz 434.8291 THz
Wavelength (vacuum) λ 460.7331 nm 689.4489 nm

Lifetime τ 5.219 ns 21.4 µs
Natural Linewidth Γ 2π× 30.4953 MHz 2π× 7.437 kHz
Recoil velocity vrec 0.01023 m/s 0.00684 m/s

Recoil temperature Trec 0.5334 µK 0.2382 µK
Saturation intensity Isat 40.75 mW/cm2 3.03 µW/cm2

Doppler temperature limit TDopp 732.1 µK 0.178 µK

Table 3.5: Strontium cooling transition properties

3.3.2 Level structure

The electronic structure of strontium can be found in Fig. 3.5. The clock transition,

1S0 →3 P0, is shown along with the linewidth for the fermionic isotope only.

Nuclear spin I = 0 for all of the bosonic isotopes, so they do not have any hyper�ne

structure. The fermionic isotope, 87Sr, has nuclear spin I = 9/2; however, because J = 0

for the ground state, there is still no line splitting. Hyper�ne splitting only becomes

relevant for the excited states, and vary from around 20 MHz in the 1P1 manifold to

around 1.5 GHz in the 3P1 manifold. The full hyper�ne structure can be found in Fig. 2.3

of the Stellmer thesis [21].

The other energy shift we have thus far neglected is the isotope shift due to the

di�erent nuclear masses. For three relevant transitions, these may be found in Table 3.6,

referenced to the 88Sr transition (notation ∆88Sr(isotope)). These are easy to observe by

taking �uorescence measurements of a MOT while scanning the laser through all of the

isotopic resonance frequencies (Fig. 3.6). Also shown in the same table are the Lande

g-factors gJ for each excited state.
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Figure 3.5: Schematic Grotrian diagram for strontium transitions. Hyper�ne splitting is
not shown.

3.3.3 Scattering properties

Strontium does not have any broad magnetic Feshbach resonances, and has only a few

narrow optical Feshbach resonances [46]. We are typically limited to using background

scattering rates of the atoms. However, the inter-isotope and intra-isotope scattering

lengths vary so widely that by choosing the right species, or mixtures thereof, we can

work in di�erent interaction regimes. The scattering rates are given in Table 3.7.
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Figure 3.6: Monitoring �uorescence of the blue MOT while scanning the laser shows
signals form all four stable isotopes of strontium, which are roughly proportional to their
natural abundance.

Transition gJ ∆88Sr(84Sr) ∆88Sr(86Sr) ∆88Sr(87Sr)
1S0 →1 P1 1 -270.8 -124.8 -46.5
1S0 →3 P1 3/2 -351.49 -163.81 -62.15

3P2 → 5s6d3D2 [45] 7/6 -81 -49 -20

Table 3.6: Strontium isotope shifts and gJ -factors

3.3.4 SU(N) symmetry

It was mentioned in Section 3.3.2 that the ground state of 87Sr does not have any hyper�ne

structure because J = 0. This, in fact, is an extremely interesting scenario, because the

nuclear spin is entirely decoupled from the electronic spin even at zero magnetic �eld; this

means that spin-changing collisions are impossible. Atoms in each of the 10 nuclear spins

interact extremely similarly with atoms in the 9 other spin states (Pauli exclusion forbids
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88Sr 87Sr 86Sr 84Sr
84Sr 1800 -56 32 124
86Sr 98 164 830
87Sr 55 97
88Sr -1

Table 3.7: Strontium isotope scattering lengths

interactions with atoms with the same mF ). The symmetry of these interactions is called

SU(N) symmetry. Spin models with SU(2) symmetry, such as the Heisenberg model,

have ground states which are relatively simple to �nd in the absence of external �elds.

It becomes harder to �nd ground states for systems with SU(3) and SU(4) symmetry;

having the ability to study an SU(10) system using strontium as a quantum simulator is

extremely powerful.
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Chapter 4

Lithium Experimental Design and

Setup

This chapter encompasses many experimental details relevant to our lithium machine at

UC Santa Barbara, and is divided into 2 sections. Section 4.1 describes the construction

of the lithium apparatus, including design details for mechanical and electrical subsystems

as well as optical infrastructure and hardware. Section 4.2 discusses the implementation

of the cooling sequence for lithium, including experimentally relevant optical parameters.

4.1 Lithium Machine Design

The machine described in this section was constructed to study dilute gases of lithium,

largely following the design of the BEC5 machine in the group of Wolfgang Ketterle at

MIT; a Solidworks representation may be found in Fig. 4.1. It is one of the few lithium

machines which still employ RF evaporation out of a plugged magnetic trap. The basic

features of this design are:

� Ability to generate magnetic �elds at 800 G to access a Feshbach resonance, and

�eld gradients up to 450 G/cm for magnetic trapping.
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Figure 4.1: Overview of the lithium machine design.

� Good optical access for MOTs, sub-Doppler cooling, optical dipole traps, and op-

tical lattices.

� Ability to switch between isotopes 7Li and 6Li.

� Space for RF antennae for RF evaporation and state transfer

� Ultra-high vacuum to achieve BEC lifetimes longer than 10 s.

As I ceased full-time work on the lithium machine in late 2014, section 4.1.5 is meant as

a brief overview which will gloss over many of the experimental challenges and di�culties

of implementation; I strongly encourage reading the lithium theses of Zach Geiger [18],

Kevin Singh [19], and Cora Fujiwara [47] for more complete descriptions.
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Figure 4.2: (a) shows a top-down view of the lithium oven manifold, such that the
positions of the angle valve (1) and ion gauges (2) may be noted. (b) shows a side view
of the same with a clearer view of the (3) the nozzle �ange, (4) 45 l/s ion pumps, (5) the
coldplate feedthrough, (6) the transverse cooling section, (7) the atomic beam stopper
feedthrough, and (8) the gate valves separating the oven manifold from the Zeeman
slower. Please see Fig. 4.5 for locations of di�erential pumping tubes.

4.1.1 Oven

The lithium oven manifold was designed to maximize �ux of gaseous lithium into our

main chamber, and built from both 316 and 304 stainless steel alloys incorporating o�-

the-shelf and custom parts. The manifold is shown in Fig. 4.2. It consists of an atomic

lithium source, a cold plate to cut o� widely-diverging parts of the atomic beam, a �rst

stage of di�erential pumping, a transverse cooling stage, an atomic beam shutter, and

a second di�erential pumping stage. It also includes two gate valves which separate the

oven from the UHV part of the machine and allow it to be baked separately; these gate

valves are not all-metal valves, but use Kalrez elastomer which outgasses much less than

Viton. The lithium oven was baked in late 2013 and, following a setback described later

in this section, baked again in late 2018, according to procedures outlined in Appendix B.

In this section, you will �nd information about lithium vapor pressure and �ux, our

atomic beam nozzle, di�erential pumping, and the atomic beam shutter; discussion of

transverse cooling may be found in section 4.2.1. Many of the part numbers for items

found in the oven may be found in Table 4.1.
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Table 4.1: Lithium oven part numbers

Function
Company/Part
Number

Purchased From Notes

Ion Pumps (2)
Gamma 45S-DI-
2H-SC-N-N

Gamma
Fine after 08/2018
vacuum breach

Ion Pump Con-
trollers (2)

Gamma SPC-1-
US110-232 Digitel
SPC

Gamma
Built-in gauges not
so great

Ion Pump Ca-
bles(2)

Gamma SCP-SC3-
SC 3m SAFE-
CONN STAN-
DARD

Gamma

Ion Gauges
Agilent/Varian
UHV-24P B-A

Ideal Vac
Thoria-Iridium �l-
aments replaced
10/2018

Ion Gauge Con-
troller

Agilent XGS-600 Agilent

Ion Gauge Cables
(2)

Agilent R32453010
for XGS-600 Con-
troller

Agilent

Cup Band Heater
Tempco MI-PLUS
MPP02902

Tempco
1.5� × 2�; J-type
TC

Flange Band
Heater

Tempco MI-PLUS
MPP02903

Tempco
2.75� × 1�; J-type
TC

Nozzle Band
Heater

Tempco MI-PLUS
MPP02904

Tempco
2.75� × 1.5�; K-
type TC

Oven Heater Con-
troller

TPC-3000 Tempco
Watch the TC
types.

Feedthroughs
Lesker
EFT0313373

Lesker
Cold plate and
beam shutter

Beam shutter
solenoid

Uxcell
a1405100ux1279

Amazon/eBay Max current 10A

Angle Valve
MDC AV-150M-11,
Kalrez Manual

MDC
Hand-tightened; no
torque sealing

Gate Valves (2)
MDC GV-1500M-
P-1, Kalrez Pneu-
matic

MDC
Closed when un-
powered
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Vapor pressure and �ux

The lithium reservoir is a 2.75� CF half-nipple, the cup of which was machined out of a

solid piece of stainless steel, currently loaded with around 18-20 g of solid lithium (non-

enriched). We required the �ux out of the oven to produce around 1 × 1010 atoms/s in

the main chamber, as a baseline to achieve our target MOT loading rates. In order to

�gure out at which temperature we needed to operate the oven to reach this �ux, we

considered the vapor pressure of lithium. Lithium has a relatively low boiling point of

around 454 K; we will only quantitatively consider higher temperatures here. We can use

the Antoine equation (a derivation of the Clausius-Clapeyron equation) to estimate the

vapor pressure (in bar) as a function of temperature (in K): log10Pvap = A−B/(T +C),

using parameters A = 4.98831, B = 7918.984, and C = −9.52 [48]. However, it is nice to

use empirical results when available; Pvap is given here in Torr, while T is in Kelvin [31]:

log10 Pvap = −10.34540− 8345.574

T
− 0.00008840T − 0.68106 log10 T . (4.1)

The results are plotted in Fig. 4.3 in units of Torr. We operate the reservoir at 450◦C

and gradually increase the heat up to the oven exit at 550◦C. Assuming a temperature

of 500◦C for the lithium gives a vapor pressure of 5.8 × 10−4 Torr. Let us assume for

a moment that our oven exit is a 1 cm aperture. We can then use the Hertz-Knudsen

equation

Φ =
αNA√

2πMRT
(Pvap − Pvac) (4.2)

to solve for the maximum �ux (sticking coe�cient α =1) of the gas Φ through the

aperture as a function of the di�erence between the vapor pressure Pvap, background

pressure Pvac ≈ 0, molar mass M , and temperature T , giving an approximate �ux of 1.4

× 1014 atoms/s.

However, there are two issues with this number. The �rst is that when we operate at
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Figure 4.3: Li vapor pressure as a function of temperature. Dot indicates our operating
point.

such high temperatures, the average velocity from the Maxwell-Boltzmann distribution

will be much higher than any reasonable MOT capture velocity, necessitating a Zeeman

slower. For the sake of argument, let's say we build an extremely e�cient Zeeman slower

which cools 50% of our atoms, providing a �ux of 7 × 1013 atoms/s. That number now

represents the entire �ux out of a 1 cm diameter aperture, over 2π steradians; herein lies

the second problem. The number that matters to us is the �ux in the center of the main

chamber around 2 m away, which results in an e�ective �ux of around 3 × 109. Simply

increasing the temperature further would result in a shorter oven lifetime, an outcome

we wished to avoid.
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Figure 4.4: (a):A Solidworks schematic of the heated components of the lithium oven:
the reservoir cup, �ange, elbow, and nozzle. (b): Inset shows microcapillary detail in
nozzle design. (c): Image of microcapillary alignment in a constructed nozzle.

Nozzle

Instead of simply using an aperture at the oven exit, we instead used a custom nozzle

designed by Ruwan Senaratne which used an array of microcapillary tubes to collimate

the beam. Details may be found either in his thesis [22] or in the resulting publication

in Review of Scienti�c Instruments [49], but here are some salient features in brief:

� 304 stainless steel microcapillaries with a large length:diameter aspect ratio of 50

allows atoms with large angular divergence to be �recycled� back into the oven.

� Hexagonal packing into a triangular wire-EDM-cut aperture enforces co-parallelism

of the microcapillaries.
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� Nozzle provides a measured �ux of around 1.4 × 1014 atoms/s in a collimated beam

with half-angle divergence of 1.2 degrees.

� Lifetime of a 25 g source should be extended to several decades.

The nozzle is kept at 550◦C, su�ciently hotter than the reservoir to ensure that the

microcapillaries do not clog. The CF connections for the atomic oven cup, elbow, and

nozzle all use nickel gaskets, rather than the traditional copper ones, because lithium

quickly corrodes copper gaskets. These nickel gaskets are made from the alloy 201 from

Vacs SEV, which is the only company from which we order for a number of reasons: a)

the gaskets are slightly thicker than comparable parts from MDC and Lesker, b) 201 is

rated to above 600◦C, while the more common alloy 200 is only rated to around 350◦C.

Because 304 stainless steel is not hard enough to cut into nickel gaskets, these few steel

parts alone were machined from 316 stainless steel. A schematic showing the nozzle

relative to the oven reservoir, as well as an image of the microcapillary packing, may be

found in Fig. 4.4.

Setback: At some point during the summer of 2018, someone accidentally changed

the thermocouple type setting on the nozzle from J-type to K-type. This resulted

in the nozzle being the coldest part of the oven for over a month. We believe that

as the lithium was heated and cooled, it clogged and unclogged the microcapillaries

and several grams ended up pooled in the chamber on the cold side of the nozzle;

we are unsure of the exact mechanism by which this happened. Enough lithium

built up that it reached a copper gasket and ate away at it, and when we debugged

the problem and turned up the nozzle temperature, the corroded gasket gave way

and broke vacuum. That gasket has been changed to nickel, to guard against such

human error in the future. Watch your TC types.
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Di�erential pumping

Once the atomic beam exits the nozzle, it travels through two stages of di�erential

pumping, which are simply two regions of low conductance between the 3 main oven

sections, which are labeled in Fig. 4.5. This two-stage pumping design was based on an

early MIT design [50], and is necessary to support pressure di�erences between our main

chamber, where we try to maintain pressures on the order of 10−11 Torr, and our atomic

beam source production, where pressures can reach into the 10−7 Torr regime.

In order to look at this more quantitatively, we consider a region of gas R1 at high

pressure P1 which is connected via conductance C12 to a region R2. R2 is at some low

pressure P2 and is being pumped on at speed S2; both regimes may be considered in

the molecular �ow regime, where the mean free path of particles is much larger than

any characteristic dimension of the chamber. The dominant gas load in R2 is P1C, and

so the total pressure P2 is simply P1C/S2. We do, however, need to be careful about

our de�nition of pumping speed; an ion pump may have a pumping speed Sion, but if it

is connected to the main part of the chamber in series with vacuum part (an elbow or

nipple, for example) with conductance Cion, the e�ective pumping speed is given by S−1
eff

= S−1
ion + C−1

ion. We can then use the Knudsen formula in the molecular �ow regime to

calculate the pressure ratios between R1 and R2.

In our machine, we have regions R1 (which includes a 45 l/s ion pump), R2, (which

also includes a 45 l/s pump), and R3 (the main chamber, which includes a 75 l/s ion pump

and a titanium sublimation pump); all regions are marked in Fig 4.5. We can consider

the conductance C23 to be the conductance of the di�erential pumping tube in series with

the Zeeman slower tube, which is long and narrow. Both pumps are connected to the

chamber via 2.75� CF elbows. The di�erential pumping tubes themselves are narrow 6�

long, 0.25� OD, 0.18� ID tubes which are welded to disks in 2.75� CF standard nipples

to keep them aligned with the atomic beam path. The Zeeman slower is around 0.5 m
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Figure 4.5: Regions of the Li oven manifold under di�erent pressures. Figure shows a
section view of the manifold, cut along a plane intersecting the atomic beam; di�erential
pumping tubes may be seen between each section.

long, with OD 0.75� and ID 0.68�. We calculate P1/P2 = 100 and P2/P3 = 800-1000,

depending on estimations of the pumping speed of the titanium sublimation pump and

e�ective conductance of the main chamber.

Atomic beam shutter

The atomic beam shutter is used to mechanically open and close the atomic beam path

to the main chamber; it is typically open while the MOT is loading, and closed otherwise.

It is constructed from a copper feedthrough and custom stopper, and mounted on a small

hydroform bellows. The stopper is actuated by a pull-type solenoid (see Table 4.1) which

uses a large spike of current to actuate the shutter and a smaller holding current to keep

it open, avoiding any problems with overheating.
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Figure 4.6: Maxwell-Boltzmann distributions for Li

4.1.2 Zeeman slower

At the exit of the oven manifold, we have an atomic beam at a temperature of around

500◦C, and we would eventually like these atoms traveling below a reasonable MOT

capture velocity vc of around 50 m/s. Under the assumption that the atoms behave like

classical particles, we can simply use a Maxwell-Boltzmann distribution to estimate the

fraction of the atomic �ux which will be slower than vc. We recall that the Maxwell-

Boltzmann distribution is

fMB(v)d3v =

(
m

2πkBT

) 3
2

exp

(
− mv2

2kBT

)
d3v (4.3)

and we typically assume that the angular distribution is spherically symmetric, allowing

us to treat d3v as v2dv sin θdθdφ, which we can integrate over solid angle to retrieve the

Maxwell-Boltzmann speed distribution:

fMB,speed(v) =

(
m

2πkBT

) 3
2

4πv2 exp

(
− mv2

2kBT

)
. (4.4)
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However, since we are using a nozzle to generate our �ux, we cannot assume angular

isotropy; the velocity distribution will actually be skewed towards a higher velocity,

since there will be a higher �ux of faster atoms. Thus, we instead need to write d3v

as vzv2dv sin θdθdφ, where vz = v cos θ is the velocity along the direction of the atomic

beam.

We can then normalize and rewrite our new speed distribution, which is no longer

Maxwellian, to describe an e�usive beam:

fbeam,speed(v) =

(
m√

2kBT

)2

v3 exp

(
− mv2

2kBT

)
. (4.5)

Both of these probability distributions are plotted in Fig. 4.6. Using m = 7mp and

T = 500◦C, we integrate both distributions up to vc to �nd probabilities PMB,speed(v <

vc)=3.8 × 10−5, and Pbeam,speed(v < vc)=9.4 × 10−7. From these calculations, we con-

cluded that we needed a Zeeman slower to slow a larger fraction of our atomic beam to

below vc.

Our design target capture velocity for the Zeeman slower was 1000 m/s, allowing

us to capture around 10% of the atomic �ux from the oven (shown as shaded region

in Fig. 4.6). Higher targets would have allowed us to capture more atoms, but were

infeasible due to the large magnetic �elds and detunings required. We elected to go with

an electromagnetic design rather than a permanent magnet design, due to the ability to

turn o� the �eld and the relative ease of winding a tapered solenoid.

In the following sections, I discuss details of the �eld design, solenoid winding and

electronics, and water-cooling considerations. The optical details of the Zeeman slower

and post-slower transverse cooling may be found in section 4.2.1.

Zeeman �eld design

Zeeman slowers are typically designed in one of three ways: increasing-�eld, decreasing-

�eld, or spin-�ip. Increasing-�eld slowers start at low �eld and end at an extremely high
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�eld, which can cause fringing-�eld problems at the MOT position; they also require

large laser detunings, corresponding to the entire Doppler shift of the fastest atoms.

Decreasing �eld slowers are nice in that they typically end at low �elds and require

relatively smaller detunings; however, these �elds can result in continued slowing of the

atoms after the intended end of the slower, resulting in a broadened atomic velocity

distribution. Low-detuning slower light also could potentially disrupt MOT loading.

Rather than either of these designs, we chose to build a spin-�ip slower. The slower

typically starts at some high-magnitude �eld, pass through zero-�eld, and end at a

moderately high-magnitude �eld of opposite sign, e�ectively giving us the best of both

decreasing- and increasing-�eld slowers. Spin-�ip slowers are not without their problems;

since the �eld passes through zero, there will no longer be a quantization axis de�ning

atomic spin, leading to possible �ips to the non-cycling F = 1 manifold. This means

we need to address atomic transitions in the slower with our repumping frequency in

addition to the cycling frequency. Additionally, because the sign of the magnetic �eld

�ips, the polarization of slower light e�ectively �ips from σ+ to σ−; because of this, it is

advisable to allow the atoms a reasonable amount of time at zero-�eld to allow them to

repolarize.

We can calculate that the Doppler shift of 671 nm light seen by atoms at 1000 m/s

is 1.49 GHz, and by atoms at 50 m/s is 74.5 MHz. The Zeeman shift of lithium on

the cycling |F = 2,mF = 2〉 to |F ′ = 3,m′F = 3〉 transition is 1.4 MHz/G, yielding a

required overall ∆B =1.011 × 103 G. However, we can choose an overall detuning of our

slower light to shift the maximum and minimum �elds such that they are more easily

experimentally accessible. We chose a detuning of 400 MHz red of the transition, which

allow the maximum �eld to be 779 G and the minimum to be -232 G.

As discussed in Section 2.2.2, there is a maximum deceleration of the atoms which is

constrained by the �nite scattering rate of the atomic transition. This imposes a lower

limit on the length of the slower. We assume that the maximum acceleration in the
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Figure 4.7: Lithium Zeeman slower: designed and measured �elds

laboratory is half of the ideal maximum acceleration, due to experimental imperfections,

and recover that our slower length should be around 0.62 m. We can then calculate the

ideal pro�le for our slower, plotted as a dashed line in Fig. 4.7, assuming a slower light

detuning 400 MHz red of the atomic resonance.

We used the same wire described in Appendix C.5 to wind the solenoids for the

slower: alloy 101 OD 0.1875� wire with a wall thickness of 0.032�, insulated with Daglass

insulation. Some test coils were wound using thermally-conducting electrically-insulating

Duralco NM25 epoxy; the resulting e�ective thickness of each wound layer of wire was

0.2�. Using this e�ective size, Zach Geiger used MATLAB to simulate various tapered

solenoid designs to produce the required �eld pro�le, allowing the atoms extra time at

zero-�eld to fully repolarize. The resultant expected �eld pro�le may be found in his

thesis; the wire pro�le is shown in Fig.4.7.
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Figure 4.8: Lithium Zeeman slower simulations for an unshimmed slower (left), showing
atoms with di�erent velocity classes �escaping� the slower at positions corresponding to
�eld imperfections between coils, vs. a shimmed slower (right).

Slower Coil Power Supply Design Current Actual Current1

A Sorenson DLM8-75 65 A 31.7 A
B Sorenson DLM8-75 45 A 56.3 A
C Acopian 0-8 V 40 A 27 A 29.5 A
D Acopian 0-8 V 64 A 72 A 44.0 A

Table 4.2: Lithium slower currents

Solenoid winding and electronics

The slower was wound in 4 sections, labeled A, B, C, and D; the wire pro�le in Fig. 4.7

is shaded to show the demarcations. The �eld was designed to run currents shown in Ta-

ble 4.2; the �eld pro�le of the wound solenoids was measured and is plotted as a solid line

in Fig. 4.7. However, eventually the currents were all optimized empirically to maximize

our MOT loading rate. The �eld produced by just the slower coils is unfortunately not

perfect, particularly where the di�erent sections abut each other; there are some bumps

in the �eld pro�le which deviate from the ideal value by around 25 G (35 MHz). At these

points, the �eld no longer compensates the Doppler shift as the atoms are slowed, and

the slower �leaks� atoms. Zach Geiger did some simulations to study the velocity classes

we would lose if we did not shim out the bumps in our �eld; Fig. 4.8 shows the velocity

classes captured for an unshimmed slower (A) compared to a shimmed slower (B). Based

on this, we added small many-turn 22 AWG Kapton-insulated motor-wire shims between

each larger slower section and varied the currents using benchtop power supplies. The
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only shim that improved MOT load rate, and the only one which remains connected now,

is the shim between slower sections A and B (where the measured pro�le dip is largest).

During machine operation, the slower supplies are switched on and o� using solid-state

relays from Crydom and high-power diodes from Powerex (part numbers may be found

in the Geiger thesis [18]). The power supplies are connected to the coils via custom-made

lugs which press onto the stripped square wire leads with set screws, and mate to 10AWG

wire also via set-screws. When everything is connected, we get a sizeable �ux of atoms

into the main chamber at speeds at or lower than MOT capture velocity.

Setback: In the summer of 2014, an alarming smell caught our attention.a One of

the slower set-screw connections to the wire had come loose; the resultant higher

impedance of the connection had led to higher power dissipation and then oxidiza-

tion of the wire conductor, and the cycle had repeated until a wire was burned and

smoking. We keep a close eye on and retighten all of those slower connections, and

for any higher currents (e.g. for MOT coils) are careful to use crimp connectors.

Use crimp connections early and often.
aMany impending disasters in our lab have been prevented thanks to keen senses of smell,

which have also aided us in the acquisition of free food over the years.

Water-cooling considerations

The water �ow rate needed in the turbulent �ow regime to dissipate heat from square

wire with a given side-length, copper cross-sectional area, hydraulic diameter, length,

and pressure di�erential can be found in various books [51]; this �ow rate, along with

the power dissipated in the wire and the speci�c heat capacity of water, can be used

to calculate the expected temperature rise. These calculations for our slower sections

indicate that only slower section B requires water-cooling (see Geiger and Senaratne

theses [18, 22] for more detail on these calculations).
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Figure 4.9: (a) shows a isometric view of the lithium oven manifold, such that the
positions of the post-slower transverse cooling section (1) and titanium sublimation pump
(2) may be noted. (b) depicts a top view of the same with a clearer view of the (3) ion
gauges, (4) angle valve, (5) RGA, and (6) ion pump. It also shows the relative angles of
the viewports around the chamber.

4.1.3 Main chamber

Once our atomic beam is slowed, it is captured in a MOT at the center of the main cham-

ber. I will leave details concerning MOT parameters and optimization to section 4.2.2;

this section will discuss main chamber design and considerations, MOT magnet construc-

tion and mounting, shim coils, and breadboard design.

Main chamber design

The main chamber is the heart of the experiment, where lithium is cooled from a MOT to

degeneracy. Technical drawings for the MOTmain chamber may be found in Appendix G.

The lithium main chamber, shown in Solidworks schematic in Fig. 4.9, was based on

the design of the BEC5 main chamber at MIT, custom-machined at the UCSB Physics

Machine Shop, and electropolished by local company Electro-Matic. It is made entirely

from 316 stainless steel, the magnetic permeability of which is much lower than that

of 304 alloy. Generally speaking, it consists of a round stainless steel chamber with
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several viewports around the top, bottom, and sides, connected to an L-shaped �chimney�

through a wide rectangular tube. At the bottom of the chimney there are ports for two

ion gauges, an angle valve, a residual gas analyzer (RGA), and a 75 l/s ion pump, and

at the top of the chimney there is a port for a titanium sublimation pump. In the

middle of the chimney, at the back of the main chamber, there is a 2.75� CF �ange which

allows propagation of light down the length of the slower. There are also several tabs

welded onto various chamber locations so that it can mated to supports to an optical

table; we bought supports such that the center of the machine viewports sit 12.6� above

the optical table. This was intended to minimize vibrational instability, and indeed we

haven't noticed any great issues from mechanical resonances; however, it does make it

extremely di�cult to access the bottom viewport of the machine.

Recall from the beginning of Chapter 4 that we need to realize magnetic �elds at

800 G to access a Feshbach resonance, and �eld gradients up to 450 G/cm for magnetic

trapping. Practically speaking, the importance of these items, both to cooling atoms

and running experiments, means that we need to prioritize magnetic access over optical

access. We accommodate this by designing re-entrant (�bucket�) windows for the top and

bottom of the chamber; the drawings for these may also be found in Appendix G. These

316SS bucket windows mate to 10� CF �anges, with additional tapped holes machined

around the top surface to hold the MOT magnets in place. The buckets have an outside

diameter of 6.50� and extend 3.82� into the chamber, and a 3.00� viewport sits in the

center of the bucket; we can then design our MOT coils to �t inside the bucket very

close to the atoms, allowing us to make large �elds and gradients. The bucket windows

also each have a small 1.33� CF �ange welded to the outside to attach RF feedthroughs,

as well as 4 small tabs with tapped M4 holes welded to the inside, to allow RF loops

intended for state transfer. The viewports themselves are fused silica polished to λ/8

�atness, and coated for 323 nm, 532 nm, 671 nm, and 1064 nm; the AR curve may be

found in Fig. H, also in Appendix H.
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In order to maximize optical access as much as possible, rather than arranging a

potpourri of small 2.75� and 1.33� viewports at various angles around the sides of the

chamber, we decided to place 6 large CF viewports, (2) 4.50� and (4) 6.00�, around the

chamber. The 4.50� viewports are placed orthogonally to both the atomic beam/slower

direction and the direction of gravity; the 6.00� viewports are placed on the same plane

normal to gravity, but rather than cutting an angle 45◦ from both the 4.50� axis and the

slower axis, these viewports sit at 52.5◦ from the 4.50� axis, and 37.5◦ from the slower

axis. This angle was chosen because at the time, in addition to meeting an orthogonality

condition for 1�-diameter MOT beams, there was some interest in conducting experiments

with triangular and hexagonal lattices, which would have required beams at 120◦ relative

to each other. The angled viewports split the di�erence, allowing 45◦ MOT beams as

well as 2 mm-waist lattice beams at 60◦. These angles may be seen in Fig. 4.9B.

All of the 6.00� viewports as well as the west-facing 4.50� viewport were chosen to be

zero-length fused silica viewports from Kurt J. Lesker Company, but custom-made with

316SS �anges and coated for 323 nm, 532 nm, 671 nm, and 1064 nm (see Appendix H for

the Lesker-designed AR curve).2 The last 4.50� viewport was designed as an imaging axis,

with a narrow re-entrant window designed for an objective with a fairly short working

distance. The objective we ended up purchasing was an Optical Specialties 10X Plan

APO OKHNL10 NIR with working distance 35 mm. However, this short focal length

resulted in a problem, which was that the minimum bucket length required to place

the objective 35 mm from the atoms resulted in cutting o� MOT beams placed at 45◦;

we would either need to compromise on the MOT beam size or the angle. Based on

calculations which indicated that MOTs should still function �ne even if their beams

largely deviate from orthogonality [52], we decided on the latter. This ended up being

a poor decision, as we later found that adding a fourth MOT �helper� beam along the
2When the viewports actually arrived, Lesker had forgotten the 323 nm coating; rather than wait

another few-month lead time for new ones, we forged ahead with what we had. This experience led to
1/4 of the infamous Lesker signs.
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4.50� axis signi�cantly boosted the load rate.

The 2.75� CF viewport along the slower axis, called the slower window, is made from

316SS and fused silica and coated for 671 nm only. It is enclosed, to the extent possible,

in blue spring steel and thermal insulation, and kept at 140◦C to mitigate buildup from

the impinging atomic beam. There is also a Thorlabs 405 nm LED which we found helps

desorb lithium (via laser-induced acoustic desorption, or LIAD) from the window surface;

we have found that turning the diode on leads to a measurable pressure spike in the main

chamber, and have successfully used it to clean viewports on our 671 nm spectroscopy

cell. We have found this preferable to designs incorporating in-vacuum mirrors for the

slower beam.

The chimney on the main chamber was designed to optimize conductance to the main

ion pump, a 75 l/s Varian Starcell pump from Agilent. Because we were (maybe overly)

concerned with lines-of-sight and numbers of atomic �bounces� between the atomic cloud

and the ion pump, the pump was ordered with custom optical ba�es. Details of the ion

pump as well as other parts in the lithium main chamber may be found in Table 4.3.

Main chamber assembly proceeded smoothly, with one notable exception: the bucket

windows needed to be installed on the chamber while simultaneously winding RF loops

(33 mm × 111 mm), which we intended to use for spin-�ip transitions in experiments.

In order to do this, custom (UHV-safe) copper connectors were designed to connect the

wire to the RF feedthroughs on the bucket windows. The wire needed to be routed such

that it never shorted to the chamber, and the connections to the inside of the bucket

windows were made with ceramic screws, nuts, washers, and beads. Figure 4.10 shows

all three re-entrant windows through one of the 6.00� ports, as well as the two RF loops

wound in place.

The lithium main chamber was baked in late 2013 (see Appendix B for details) and

pressure of 1.0 × 10−11 were achieved. However, there was an issue with the side view-
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Table 4.3: Lithium main chamber part numbers

Function
Company/Part
Number

Purchased From Notes

Ion Pump
Varian VacionPlus
75 Starcell Pump
9191440m006

Agilent Optical Ba�es

Ion Pump Con-
troller

Varian Minivac
Fischer HVConnec-
tor 9290191

Agilent

Ion Pump Cable
HV Bakeable Ca-
ble 13' w/interlock
9290705

Agilent

Ion Gauges
Agilent/Varian
UHV-24P B-A

Ideal Vac

Ion Gauge Con-
troller

Agilent XGS-600 Agilent

Ion Gauge Cables
(2)

Agilent R32453010
for XGS-600 Con-
troller

Agilent

TiSub Cartridge
Varian Filament
TSP 9160050

Agilent
Attached via 2.75�
to 6� reducer

TiSub Cable
Agilent 9240730,
3.6m

Agilent
Also used for Sr
machine

TiSub Controller
Agilent 9290032
with RS232

Agilent
Also used for Sr
machine

Residual Gas Ana-
lyzer

ExTorr XT100M ExTorr
Typically left dis-
connected

Angle Valve
MDC 314003, All-
Metal

MDC
Torque-sealed ac-
cording to chit
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Figure 4.10: Lithium main chamber bucket windows (top, bottom, and side) and now-
defunct in-chamber RF loops.

port coatings3, and we decided to rebake in the summer of 2014 after replacing the

a�ected windows. Unfortunately, after the bakes, the atmosphere-facing side of the RF

feedthroughs had become so brittle that they immediately broke when we attempted to

attach them to external electronics. Thus, the RF loops languish sadly in the lithium

chamber, and all RF is applied from outside the vacuum.

MOT magnet design and construction

The magnets described in this section will be referred to as �MOT coils�, but it is impor-

tant to keep in mind that they serve multiple functions: they create the �eld gradients

necessary to both trap a MOT and magnetically trap the atoms, but they also create
3This led to another 1/4 of the infamous Lesker signs
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Figure 4.11: Lithium MOT coil directions of current �ow (anti-Helmholtz con�guration).

Coils Con�guration Field Produced Peak Field (500A)
Inner (1-4) Helmholtz 1.72 G/A 860G
Outer (5-8) Helmholtz 1.75 G/A 875G
Inner (1-4) Anti-Helmholtz 0.516 G/cm/A 258 G/cm
Outer (5-8) Anti-Helmholtz 0.33 G/cm/A 165 G/cm

Table 4.4: Lithium MOT �elds

the Feshbach �elds necessary to tune scattering length during optical evaporation and

experimental sequences. Since they are required to create both �at uniform �elds and

linear �eld gradients, we use two coils placed on either side of the atoms with a separation

necessary to satisfy the Helmholtz criterion: coil separation z is equal to the coil radius

r0. By �ipping the direction of current in one of the coils, we should be able to switch

between anti-Helmholtz and Helmholtz conditions.

Strictly speaking, the Helmholtz condition can only be met for in�nitesimally small

wires; any �nite size will result in some part of the current not satisfying the separation
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requirement, thus leading to some unwanted curvature of the �eld. The currents were

simulated on Mathematica for varying geometries to give us a sense of the behaviors of

the 0th, 1st, 2nd, and 3rd derivatives of the �eld in both anti-Helmholtz and Helmholtz

con�gurations; these geometries were constrained by the dimensions of the bucket win-

dows, which allowed a maximum OD of 6.4�, a minimum OD of 3.1�, and a minimum

separation of around 1.9�. Each coil was eventually designed to have an ID of 3.1�, with

a cross section of 32 turns: 4 turns in ẑ × 8 turns in r̂, with every set of 4 turns in ẑ ×

2 turns in r̂ being one continuously-wound solenoid. The inner 4 radial coils are referred

to as coils 1-4, and the outer 4 are referred to as coils 5-8; we thus have two leads each

(an input and output) for pairs 1 and 2, 3 and 4, etc. These coils were mounted 6.7 cm

away from each other to avoid mechanical noise from the magnets a�ecting the chamber,

and measurements were taken ex-situ to look at the resultant �elds (gradients) in G/A

(G/cm/A). A summary of these can be found in Table 4.4, as well as the peak values

when the magnets are run at 500 A. Summing the contributions from all 8 coils, we can

see that we can readily reach the �elds and gradients we need.

The curvature of each coil was also measured around the same time. The outermost

coil met the Helmholtz condition with minimal curvature, but the contributions to the

curvature from each set of coils all had the same sign, leading to some noticeable �eld

curvature which we can measure in the chamber by looking at atomic behavior. Miti-

gating it requires some clever wiring and new sets of coils to compensate. In the future,

we should try to consider the curvatures of each coil separately and design them to have

opposite signs as much as possible, so we can ease the process of curvature cancellation.

For better accounts of these ventures and all of the measurements taken, I refer the reader

to any of the lithium theses, the Fujiwara thesis in particular, as well as the �Lithium

Useful Info� binder in our lab.

The coils were wound in the same way as the Zeeman slower solenoids described

in Section 4.1.2, the only di�erence being that rather than winding the coils around a
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Figure 4.12: Lithium MOT magnet epoxy potting

brass tube, we wound a custom piece of aluminum machined to have the proper OD and

covered by Kapton foil for easy removal.4 We then had to �nd a way to securely mount

each coil in the machine. Our solution, following the advice of others in the community,

was to �pot� the magnets in a large pool of epoxy with (3) 1/2�-13 316SS set screws. We

designed an adapter plate which could mate these 3 screws to the tapped holes on the

top of the bucket window. We wrapped Kapton �lm and paper around the magnets to

contain the epoxy as much as possible, and designed a rig to keep the adapter plate level

with the magnet, and the screws as normal as possible to both. We then poured in the

same epoxy which we used for the magnet winding, and allowed it to set. During a test

run (Fig. 4.12A), we prepared a large batch of epoxy and had di�culty getting it to set

properly; we later used many small batches (Fig. 4.12B), to much greater success.

The coils are run at up to 500 A, which presents some di�culties both in terms of

thermal management and electrical power. The results of thermal calculations (details of

which may be found in the Senaratne thesis) assuming 500 A of current necessitates the

use of high-pressure water cooling. The ends of each of the leads was soldered to copper
4�Easy removal� ended up being 3 people synchronously beating the magnet o� of the aluminum piece

with rubber mallets.
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Component Part Rating
Inner Coil Supply TDK Lambda ESS 20-500 20 V, 500 A
Outer Coil Supply TDK Lambda Genesys 20-500 20 V, 500 A
Isolation Ampli�ers AD215BY-ND

IGBT Powerex CM600HA-24A 1200 V, 600 A
Ringdown Diode Vishay Spectrol VS-SD1100C12C 1200 V, 1400 A

Varistor Littelfuse V661BA60 1050 V, 70 kA
H-Bridge Relay Kilovac LEV200A4NAA Contactor 900 V, 500 A

Earth Shim Supply Acopian YL06MC270C6
Applied DC Shim Supply GWInstek Benchtop

Shim MOSFETS IRL3103PBF 900 V, 64 A
Shim Diodes VFT1045BP-M3/4W 45 V, 10 A

Table 4.5: Lithium electronics for high currents

tubing for water cooling in the same way as the slower solenoids, and the cooling lines

were connected to the water manifolds detailed in Appendix C.2. The current carried in

the electrical connections required that we use 3/0 wire, which is di�cult to work with.

The lugs we initially used were as susceptible to the same set-screw-loosening problems

as the slower solenoid lugs, if not more so due to the larger currents running through

them. The lugs were redesigned to connect a copper compression lug to a signi�cant

length of copper tubing, and all of the water connections were redone to lengthen the

copper tubing to at least 2�. The copper compression lug then allows mating to 3/0 wire

in a mechanically- and electrically-secure way, preventing �res in our lab.

The MOT coils are powered by two 10 kW power supplies, which was e�ectively the

most powerful we could �nd at 208 V 3-phase power (we do not have 480 V supply in

our lab). The outer turns (5-8) on both the top and bottom coils are powered by a TDK

Lambda Genesys 20-500, while the inner turns (1-4) on top and bottom are powered

by a TDK Lambda ESS 20-500. Both supplies exhibit similar ramping speeds, so we

can consider the inner and outer turns e�ectively as one large coil. The currents are

controlled via analog voltage lines, which connect to the power supplies via isolation

ampli�er circuits to avoid ground loops.
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The lithium cooling sequence requires fast manipulation of magnetic �elds and �eld

gradients (quantitative values may be found in Section 4.2). In brief, we require high

�eld gradients for a MOT, low uniform �elds for gray molasses, very high gradients for

magnetic trapping, and then very large uniform �elds for thermalization during optical

evaporation; successful cooling, therefore, entails a lot of high-current switching in mag-

nets which have extremely large inductance. Using IGBTs and ring-down diodes enable

us to turn o� our MOT coils in tens of µs. Due to the large amount of power dissipated,

both the IGBTs and diodes are water-cooled with Lytron cold plates (aluminum plates

with press-�t copper tubing for water). The switching also generates a large induced

spike in electromotive force, against which we protect our power supplies by using varis-

tors. The �eld must then switch back on quickly for magnetic trapping. This is achieved

by using a capacitor bank, based o� of an MIT design [53]. Charging the capacitor bank

for a few seconds allows ramp-up to four times the MOT �eld gradient in 100 µs. In order

to switch our �eld con�guration from anti-Helmholtz to Helmholtz so we can access the

Feshbach resonance at 737 G, we switch the polarity of the bottom MOT magnet using a

relay circuit, which is e�ectively an H-bridge. Part numbers for all of the main chamber

electronics may be found in Table 4.5; circuit diagrams and discussion of thermal stability

concerns may be found in the Geiger and/or Fujiwara theses [18, 47].

RF antenna

Since our in-vacuum antenna feedthroughs broke after two bakes, we needed to design

an external antenna to apply all of our RF �elds. Many of the antenna design details

can be found in the Geiger thesis [18]. We went through many iterations but settled on

a spiral loop design, the characteristic inductance and capacitance of which yielded an

approximately �at response from a gigahertz roughly down to 800 MHz. It was built

with �at copper ribbon cable soldered onto SMA connectors and characterized using

a small motor-wire test loop and spectrum analyzer; a custom 3-d printed mount was
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Figure 4.13: Top-down view of main chamber. The RF antenna (connected to the coaxial
cable in lower right) is held in place by a custom 3d-printed mount directly above the
viewport. The potted MOT coils and MOT coil mounting plate are also visible.

also designed to hold the antenna in place inside the top bucket window. To drive the

antenna, we use a Minicircuits VCO and a 200 W Ophir 5020 ampli�er; to protect the

electronics, we also send the RF through a high-power circulator and terminator, both

from Fairview Electronics.

Shim coils

Earth's magnetic �eld provides a constant background of around half a Gauss underneath

any �eld or gradient we produce in lab. This means that if we are ramping up a �eld

gradient, as we do during magnetic trapping, the location of the �eld zero will move in
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space as a function of the gradient. This is untenable, as we actually need to �plug�

our magnetic trap with a 15 µm-waist beam to prevent Majorana spin-�ip losses (see

Sections 2.2.3 and 4.2.5). To overcome this problem, we need to compensate for the

earth �eld (and any other stray �elds from, for example, a neighboring lab) with sets

of Helmholtz shim coils. To be able to compensate a �eld in an arbitrary direction, we

need three sets of transverse coils. In practice, we actually wind two sets of coils in each

dimension: the �rst is used to shim out background �elds, while the second can be used

to apply small DC bias �elds for e.g. optical pumping.

These shims are typically wound on supports which are built in-situ after the ma-

chine is up and running; they are designed from U-channel aluminum which has been

sandblasted and coated with Plastidip to prevent wire shorts. It becomes much easier to

build supports and wind coils for a square geometry; we can calculate that the Helmholtz

condition can still be met for square coils with side length d for separation z = 0.5445d.

We use the same 22AWG Kapton-insulated motor wire for these earth shims as we do

for the slower shims, and wind a few decades of turns around the machine in-situ. These

coils typically run about 1 A from linear power supplies and are turned on and o� with

MOSFETs and ring-down diodes, which allows us to switch small �elds quickly and with

very little noise.

Breadboard design

Every machine needs more breadboards all the time, because extra optical space is always

useful. For the lithium machine, we designed four large breadboards which were attached

to the optical table and to each other, but were independent from the machine. They

are all made from MIC6 aluminum alloy, which is extremely stable compared to other

aluminum alloys and retains its �atness when tooled. The three breadboards which

attach to the optical table are 1.25� thick with a �atness tolerance of 0.030� and cast

with the grain along the longest direction; the top breadboard, which attaches to the
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Figure 4.14: Lithium breadboard design

two side breadboards, is 1.00� thick with the same tolerance and grain. The breadboards

were ordered from a local Alcoa distributor, and machined according to our speci�cations

by the UCSB Physics Machine Shop. The design includes standard 1/4�-20 holes along

a 1� grid, as well as various cutouts to allow beams to pass through. They are mounted

on 80/20 and custom-designed optical table mounting feet, such that the center of 2� tall

optics on the breadboards aligns roughly with the center of the main chamber. The design

was tested for vibrational stability using Solidworks simulations, and was designed such

that the majority of mechanical resonances were solidly above 1 kHz. The breadboards

are shown in Fig. 4.14. Technical drawings may also be found in Appendix G.

4.1.4 671 nm laser

The 671 nm laser system is the workhorse of the lithium experiment. This section will

describe the castle of 671 nm light sources we use to generate the frequencies required

to cool lithium atoms. It will not include laser table diagrams; for the full laser table
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Figure 4.15: Lithium D1 and D2 saturation-absorption spectroscopy

layout, please refer to the Singh thesis [19], and for the subsystem layouts and frequency

shifts, please refer to the Geiger thesis [18].

Master laser and spectroscopy

The master laser is a Toptica TA-Pro ECDL+MOPA system which uses an LD-0670-35-

AR-2 671 nm diode (the diode and grating assembly were replaced in late 2016; the new

diode has a max current of 119 mA). We measured the linewidth to be around 500 kHz

by performing a self-heterodyne measurement. The internal mirror which is typically

used to shunt a little bit of light to an auxiliary port was replaced almost as soon as

we bought the laser with a high-re�ectivity mirror, as we found we needed as much TA

seed power as possible. The TA-Pro was rated for 500 mW when purchased; the output

decayed to 300-320 mW near the diode's maximum current after the �rst few months of

operation, and has held constant over the past few years.

A small fraction of the light produced by the master continues to a spectroscopy cell,

which was designed by Zach Geiger. This cell was loaded with a small amount of lithium

in an inert bu�er gas of argon. The cell was pumped down to 10 mTorr and operated at
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350◦C, conditions which were eventually chosen to set the mean free path of lithium in

the cell small enough so that it would not coat the windows, and large enough so that

the atomic density of the accessible lithium cloud gives us a reasonable spectroscopic

signal. The saturation absorption spectroscopy signals showing 7Li F = 1 and F = 2

ground states and crossover signals for the D1 and D2 lines may be seen in Fig. 4.15, on

top of the Doppler-broadened absorption pro�les. As expected from the level structure,

the �ne structure splitting is 10 GHz, while the hyper�ne splitting is 813.5 MHz. Recall

that the isotope shift for lithium is around the same as the �ne-structure splitting; we

actually see the 6Li D2 line almost overlapped with the 7Li D1 line. We measure the

linewidth of the Doppler-free peaks to be around 30 MHz, about 5 times the linewidth of

the transition. This broadening comes from unresolved excited-state structure. We use

a Toptica Digilock lock-in ampli�er module to modulate the probe frequency and lock

the master laser frequency to the 7Li D2 crossover.

Tapered ampli�ers

We purchased a 500 mW 671 nm BoosTA from Toptica at the same time as the master.

The output power has also drifted down to about 300 mW with around 30 mW of seed

power. We also developed a home-built TA design which has turned out to be remarkably

stable for 671 nm chips, using Eagleyard EYP-0670-00500-2003-CMT02-0000 chips. They

were largely developed by Kevin Singh; the designs and drawings may be found in an

appendix of his thesis [19].

The master laser is used to seed the BoosTA, the output of which is used for the

MOT cycling transition, as well as one of the home-built TAs, the output of which is

used for the MOT repumper transition. A small amount of light is chipped o� of each of

these beam lines and mixed on a cube for tranverse cooling (see Section 4.2.1).

We also use a TA on the machine table to generate light for gray molasses.
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Slave lasers

We use 2 slave lasers in the 671 nm setup; both of them are seeded with around 200 µW

of power, and produce around 100 mW. We used HL6535MG diodes in Arroyo 224 TEC

TO-Can mounts and Thorlabs isolators IO-5-670-VLP. These diodes natively lase at

around 660 nm, but we pull their temperatures to make them lase around 10 nm higher.

One of the bene�ts of using slaves is that they are a highly non-linear frequency �lter:

we can use them after EOMs to select the ampli�ed sidebands. For the gray molasses

system, we use a 9.2 GHz EOM to cool on the D1 line, use a slave to �lter and amplify

the correct sideband, amplify the light further using a TA, and then use another EOM

to add a sideband for two-photon transitions (more detail can be found in Section 4.2.3).

We also use a slave laser and an EOM on the machine table to generate Zeeman slower

light.

4.1.5 532 nm and 1064 nm lasers

Here are brief descriptions of the far-o�-resonant laser systems used for the lithium ex-

periment; again, the lithium theses from this group may be consulted for more detail,

including full optical setups.

532 nm light

During magnetic trapping and RF evaporation, Majorana spin-�ips can lead to signi�cant

atomic loss near the �eld zero. (see theory in Section 2.2.3). To prevent this, we use a

532 nm laser, blue-detuned from the 671 nm transition, to exert a repulsive AC stark

force at the �eld zero, e�ectively �plugging the leak� in the center of the magnetic trap.

This light is produced by a Lighthouse Photonics Sprout-G 10 W laser, which is focused

to a 15 µm waist. We found that retention of the Gaussian mode and beam shape was

very important to e�cient plugging of the trap. Using an AOM changed the mode enough
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to make it an untenable solution for fast mode-switching. Instead, we use a Paci�c Laser

Equipment RSC-103E waveplate rotator to turn the beam power from 10 W to 300 mW

in 200 ms, and then use a physical beam shutter to block the beam entirely after optical

evaporation. We use Thorlabs fused silica V-coated YAG lenses to focus the beam, since

they have better thermal properties at high incident power.

The beam is directed into the chamber using a mirror with picomotor adjustment,

and roughly focused onto the atoms using an imaging system and dichroics. Once de-

pletion from the beam can be seen on the atomic cloud, the picomotors are used for �ne

adjustment.

1064 nm light

Like many other groups, we use 1064 nm light for both optical dipole traps (ODTs) and

lattices. We use an Orbits Lightwave 60 mW laser (Ethernal Slow Light model)5 to seed

a 50 W Nufern ampli�er (NUA-1064-PD-0050-D0) with 60 dB output isolation; this gives

us a maximum of around 35 W at the atoms. The beam path sits on the machine table

in a small enclosure made from aluminum, providing an additional layer of protection

against IR to the rest of the machine table and to humans in the lab.

The 1064 nm light is shaped and focused by fused silica V-coat YAG lenses to mini-

mize thermal lensing issues. We initially used 1 mm-aperture Intraaction AOMs (ATM-

801DA6) to switch some of the 1064 nm beams. However, we found that the thermal

properties of this AOM were not good enough for such high powers, which led to a great

deal of pointing noise. We switched to solely using the 2 mm-aperture models ATM-

802DA6, which helped signi�cantly, but also found that dissipated power trapped in the

enclosure still led to some thermal drift. We began to forced-air-cool the 1064 nm enclo-

sure using small computer fans, which helped thermal stability; they can be TTL'd o�
5We are currently using the strontium NKT seed for the lithium experiment, as the Orbits broke

about a year ago (see Section 5.1.7). The Orbits has been repaired and returned to us, but has not yet
been replaced on the lithium machine due to activation energy.
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during times when we need excellent mechanical stability.

The power directed to the ODTs versus the lattice beams is controlled by two Thorlabs

waveplate rotators. One of the ODT beams is directed into the chamber using a mirror

with picomotor adjustment, to keep the combined crossed trap as deep as possible.

4.1.6 Cameras

We use several cameras for several di�erent imaging axes. The main camera, used to

take the majority of images for experiments, is a PCO.edge 5.5 CMOS camera set up

with a magni�cation of 2.5 (di�raction-limited spot size of 5.5 µm) and looking along

the vertical (gravity) direction. In addition to this, we use several auxiliary cameras to

monitor �uorescence and aid in beam alignment. These auxiliary cameras are all Basler

aCA1920-25um CMOS cameras set up with varying magni�cation.

4.2 Lithium Cooling

This section will discuss details of each step in the lithium cooling sequence, including

detunings and saturation parameters. For details on construction, please see the previous

section.

4.2.1 Transverse cooling and zeeman slower

Transverse cooling stage 1

After the nozzle, the atomic beam passes through a coldplate to block any widely-

diverging atoms; the beam may be seen �uorescing due to slower light in Fig. 4.16.

Immediately after this, we have a section of 2D optical molasses on the D2 line to help

collimate the beam further. This transverse cooling section addresses the atoms over a

longitudinal spatial extent of 3-4 cm; we can do a back-of-the-envelope calculation to
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Figure 4.16: The atomic beam �uorescence from slower light is shown in the cold plate
section of the oven. This axis provides nice access to take tranverse absorption measure-
ments to characterize the atomic beam.

estimate the number of scattering events which can potentially occur over that distance,

and �nd that it is large enough to necessitate cooling with both cycling and repump

light for optimal e�ciency. The cycler light operates at a detuning of about 3.7Γ and

a saturation parameter s ≈ 0.3, while the repump light operates at a detuning of 5.4Γ

with around a quarter of the power; these parameters were all set empirically with the

constraint of the amount of power we have available. When adjusting the balance of the

beams, we found that in only one of the four transverse directions did our cooling have

any e�ect (vertical from the top); at its best, we saw improvement in the MOT loading

rate by around 30%. We suspected that the direction of the beam was angled slightly

opposing gravity, such that only that beam helped cool atoms towards the center of the
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chamber. This cooling stage is being reoptimized post-2018 bake.

Zeeman slower parameters

Full details of the Zeeman slower design and magnetic �elds may be found in Section 4.1.2.

As noted in Section 4.1.4, our slower light is generated by seeding a slave laser with

200 µW of power to generate around 100 mW. Recall from Section 4.1.2 that the slower

�elds were designed for a detuning of around -400 MHz; we then empirically optimized

this detuning to -389 MHz. This light then passes through a home-built EOM to add

sidebands at 813.5 MHz, almost equivalent to the hyper�ne splitting6, which e�ectively

introduces some fraction of repumping light to the slower beam. To keep from having

problems with blue-detuned sidebands, the 0 order of the EOM was chosen to be -

389 MHz from the cycling transition, and the +1 order was chosen to have the same

detuning from the repumping transition. The -1 order is then too far red-detuned to

a�ect the atoms. Cubes and waveplates are used to clean up the polarization of the

beam. By the time the light enters the chamber, we use around 33-34 mW of cycler

power (around 2 × Isat at the slower window) and 8-9 mW of repump power. The beam

is weakly focused to about the size of the atomic beam at the nozzle.

Transverse cooling stage 2

After the slower, we have a second section of 2D optical molasses on the D2 line to help

collimate the beam further (see information on the �rst stage in section 4.2.1). This stage

helps us address what could otherwise be a concerning �beam explosion;� since slower

greatly reduces the mean atomic beam velocity in the longitudinal direction but increases

velocity spread in the transverse directions due to spontaneous emission recoil events, the

angular divergence of the atomic beam at the slower exit is much larger than it was at

the slower entrance. Having a second stage of transverse cooling helps to maximize the
6See Section 4.2.7 for why we don't use the hyper�ne splitting.
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number of atoms which make it to the center of our main chamber and get captured in

the MOT. We again have both cycling and repumping light; the cycler light operates at

a detuning of about -3.7Γ and a saturation parameter s ≈ 0.15, while the repump light

operates at a detuning of -5.4Γ with around the same amount of power; these parameters

were set empirically. Unlike in the �rst stage of transverse cooling, we �nd that all four

transverse directions have a signi�cant e�ect on cooling, and any misalignment or lack

of power balance in the beams results in harming our atomic �ux rather than helping it.

When it is fully optimized, we see improvement in the MOT loading rate by a factor of

three.

4.2.2 Magneto-optical trap

From this point onwards, all of the cooling is done at the center of the main chamber.

Fig. 4.17 shows all of the beams and their relative locations.

As noted in Section 4.1.3, we used coils mounted in re-entrant windows and run in

anti-Helmholtz con�guration to generate �eld gradients. We run the power supplies at

a relatively low current to create �eld gradients of around 20 G/cm. As noted in Sec-

tion 4.1.4, the MOT light is sent from the lithium laser table to the machine table using

a 2:6 non-polarization-maintaining single-mode �ber splitter (custom from Oz Optics),

which allows us to separately �ber-couple the cycler and repumper light. The repump

light is detuned from the transition by -5.4Γ, while the cycler is detuned by -5.8Γ. The

four horizontal MOT beams typically have around 8 mW of cycler and 2-3 mW of re-

pumper, while the two vertical beams have around 14 mW cycler and 5-6 mW repumper;

the di�erence in power balance was simply chosen to preserve symmetry as much as

possible given imbalance in the 2:6 �ber splitter. Later, we found we needed to add

�helper beams� (see Section 4.1.3); these operate at a combined power of around 30 mW,

of which around 1/3 is repumper. The total power in the MOT is around 110 mW, of
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Figure 4.17: MOT, gray molasses (GM), plug, optical dipole trap (ODT), lattice, and
vertical imaging beams (IMG) and their relative locations around the main chamber.
Each beam is labeled on its respective side of entry into the chamber; retrore�ections are
neither depicted nor labeled.

which 80 mW (s ≈ 8.5) is cycler and 30 mW (s ≈ 3.2) is repumper. The MOT is loaded

for about 10 s.

During the last 28 ms of the MOT, the �eld gradient is ramped from 20 G/cm to

100 G/cm. The cycler detuning is then reduced to -2Γ, the cycler power decreases by a

factor of two, and the repumper decreases by a factor of four. In this �compressed MOT�

stage (cMOT), atoms are driven towards the center of the MOT before going dark due

to lack of repumping light, increasing the spatial density of the cloud. This stage also in-

creases the temperature of the cloud, but the next cooling step�gray molasses�addresses

this problem. It is worth noting that the position of the cMOT macroscopically moves
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Figure 4.18: 7Li MOT in center of chamber.

as a function of magnetic �eld gradient if the balance between intensities in the MOT

arms is poor, leading to signi�cant loss. Since we cannot tune the power balance using

our �ber splitter, we instead compensate the intensity by slightly focusing or defocusing

the MOT beams.

4.2.3 Gray molasses

Gray molasses is a type of sub-Doppler cooling technique, some background for which

may be found in Section 2.2.2. The technique was �rst demonstrated for lithium in the

Salomon group in 2013 [24, 25]. Recall from that chapter that the gray molasses technique

depends upon having a three-level system (we use a Λ scheme, but similar techniques
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Figure 4.19: Time-of-�ight imaging after gray molasses cooling. ODs greater than 4 rail
the camera sensor.

may be used for a V scheme). We run our gray molasses on the D1 line (2S1/2 →2 P1/2);

the ground manifold hyper�ne splitting |F = 1〉 and |F = 2〉 realizes the two low-energy

states, and the excited state is |F ′ = 2〉. Addressing these two transitions creates coherent

superpositions of the ground states: a bright state which couples to the excited state, and

a dark state which does not. In order to realize this coupling, it is important that both of

the optical beams are su�ciently detuned from the excited state such that single-photon

transitions are suppressed. We operate both beams at +6.5Γ (blue) detuning from the

excited state.7

The gray molasses light is produced by a TA, the seed for which has been shifted by

9.2 GHz through an EOM and ampli�ed through a slave laser. The TA light then passes

through a second home-built EOM to add 1-2% repumping sidebands at 813.5 MHz. The

gray molasses beam in the horizontal plane is in retrore�ected bowtie con�guration to

create standing waves in x and y; the vertical beam is a single retrore�ected beam. The

beams are aligned to the position of the MOT at the cMOT �eld gradient, to maximize

eventual overlap. Each beam contains 40-45 mW of power, giving s ≈ 20 for a 0.25�

radius beam.8 Applying the gray molasses beams for around 1ms reduces the cloud

temperature to 60 µK. From this point, it is di�cult to laser-cool further. Lithium has a

narrow-linewidth transition at 323 nm with a low Doppler-cooling limit, which has been
7We tried varying their detunings relative to each other, but achieved the best cooling results at 0

relative detuning.
8Since we free space-couple the mode out of a TA, the mode is not a perfect Gaussian, so we can

only estimate the saturation parameter.
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used to create a MOT [54]. As mentioned earlier, an unfortunate snafu with viewport

coatings makes this di�cult for us, but given enough power, we may still be able to do

this with losses on the order of a few %.

4.2.4 Optical pumping

In order to trap the sub-Doppler-cooled atoms magnetically, we need to ensure that they

are in the magnetically-trappable |F = 2,mF = 2〉 state. The choice of a stretched state

signi�cantly reduces the probability of spin-changing collisions to anti-trapped states.

We optically pump our atoms on the D1 line, since the excited-state manifold on the D2

line is not well-resolved. We e�ectively want to address the same transition frequencies

as we do for gray molasses, but also want to ensure σ+ polarization so that we are

pumping atoms into higher spin states (∆mF = 1). However, if we used the exact same

two-photon-transition detunings as the gray molasses beams, we would still be driving

a stimulated emission process, conserving angular momentum and resulting in a net

∆mF = −1. Instead, we add a relative detuning between the beams of about 1Γ, which

results in spontaneous emission but still allows us to use e�ectively the same optical path

and setup. The amount of power in the repumping sideband is increased such that we

have around 50 mW of cycler power and 25 mW of repumper in the vertical gray molasses

arm. The ideal pulse length for the optical pumping light was empirically found to be

450 µs, which allowed nearly 100% transferred to |2, 2〉 with only minimal heating and

cloud expansion to 100 µK and 2 mm radius.

4.2.5 Magnetic trap and RF evaporation

We use a capacitor bank (referred to in 4.1.3 and outlined in detail in lithium theses)

to snap on a magnetic �eld gradient of 422 G/cm, which corresponds to an e�ective

trap depth (across the extent of the optically-pumped cloud) of around 5 mK. Once
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the atoms are magnetically trapped, we can proceed with RF evaporation, which is

discussed in Section 2.2.3. Our RF evaporation utilizes the Zeeman shift in the magnetic

trap as well as the ground state hyper�ne splitting transition (803.5 MHz at zero �eld),

resulting in spatially-dependent transitions from the magnetically trapped |2, 2〉 state to

the magnetically untrapped |1, 1〉. The RF is applied through the antenna discussed in

the RF Antenna section of 4.1.3. Our sweep begins around 1 GHz, higher than any

frequency resonant with our cloud, and then sweep down to just above the zero-�eld

resonant frequency, between 805 and 806 MHz, in four stages. As this sweep occurs, the

�eld gradient is lowered to around 42 G/cm, which maintains a density high enough to

allow relatively fast thermalization, yet low enough to avoid signi�cant three-body losses.

Since we use a quadrupolar trap design rather than, for example, a Io�e-Pritchard

trap, our magnetic trapping region contains a �eld zero. As discussed in Section 2.2.3, at

low magnetic �elds, the Larmor frequency of the atoms approaches the rate of change of

the �eld. The atomic quantization axis becomes poorly de�ned, and atoms can undergo

spin-�ips to untrapped states; crucially, this e�ect is most pronounced in the center of

the trap, leading to losses in the coldest, most dense regions of the atomic cloud. The

Larmor frequencies can be calculated to de�ne some trap radius below which these spin-

�ip losses become signi�cant. In our trap, that �region of death� is between 5-10 µm. We

use our 532 nm laser, discussed in Section 4.1.5, focused to a 15 µm waist at the center of

the trap, to repel atoms from that region. As noted in the shim coil discussion in 4.1.3,

we need to properly shim our background �elds such that the region of death does not

move as the �eld gradient changes.

By the end of RF evaporation, we typically have around 60 million atoms at about

10 µK in the |2, 2〉 state. However, in order to achieve denser clouds at colder tempera-

tures, the atoms need to thermalize faster. The |2, 2〉 state has an unfavorable (attractive)

scattering length of -27 a0. To cool further, we need to put atoms into the |1, 1〉 state

which has an accessible Feshbach resonance. This should allow us not only to switch to

91



Lithium Experimental Design and Setup Chapter 4

Figure 4.20: Atoms held in a crossed optical dipole trap are allowed to expand for various
times of �ight. A region of repulsion is visible at longer TOFs; this corresponds to the
location of the 532 nm plug beam.

a repulsive scattering length, but also to tune its magnitude, allowing extremely e�cient

evaporation. Since |1, 1〉 is not magnetically trappable, this evaporation must proceed

out of an optical dipole trap.

4.2.6 Optical dipole traps and evaporation

We use a 90◦ crossed optical dipole trap to capture atoms out of the magnetic trap

post-RF evaporation. Each power-stabilized beam contains about 6 W of 1064 nm light

focused to a 90 µm waist, such that each ODT has a depth of around 23 µK and the

crossed ODT frequencies are (ωx,ωy,ωz) = 2π × (590, 590, 830) Hz.

Once the atoms are trapped, we perform a slow Landau-Zener RF sweep to switch

the atomic spin state to |1, 1〉. Since this is the same transition which was being driven

for RF evaporation, we can use the same frequency sources and antenna. In the presence

of a weak bias DC �eld, we sweep the frequency from 809.6 MHz to 807.5 MHz over

65 ms, which results in approximately 98% of the atomic population in |1, 1〉. During

this sweep, we switch the MOT coils to Helmholtz con�guration (see discussion in 4.1.3)

and afterwards turn on a strong DC �eld to access the Feshbach resonance. We do not

use any resonant pulses to blow away atoms which were not transferred to the |1, 1〉 state;

we do not �nd that this hurts the atom number.

The scattering lengths of lithium near the Feshbach resonance were characterized
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by the Hulet group at Rice [42, 38]; see Fig 3.1.4. Using this information, we initially

calibrated the currents for our DC �elds by looking for the expected scattering length

zero-crossing at 543 G. During the RF sweep, we run our power supplies at around 400 A,

yielding a �eld around 730 G with an associated scattering length just under 300 a0.

We can then proceed with optical evaporation. We use an exponential ramp over

4.5 s with a time constant of 2.25 s, during which time the power drops to around 2 W

in each beam. At the end of the evaporation, we are typically left with around 2 × 105

atoms with a condensate fraction of 95% or greater.

4.2.7 Imaging

There are a number of important considerations to be taken into account when imaging

lithium atoms. I will leave it to the lithium theses to go into the gory details on our

detunings and optical setups, but will brie�y list a few concerns below.

� At low �eld, we image on |F = 2,mF = 2〉 → |F ′ = 3,m′F = 3〉. However,

calculating detunings based on the ground state splitting of 803.5 MHz does not

take into account the unresolved excited state manifolds; using a �center-of-mass�

splitting of 813.5 MHz to account for the F ′ = 2 to F ′ = 3 splitting allows us to

image much more e�ciently.

� Repumper light is also required during imaging to give us a strong absorption signal.

� There are times when we take data and need to image a cloud at high �eld. As

discussed in Section 3.1.3, we can no longer use an LS coupling scheme to de�ne

�good� quantum states |F ,mF 〉 at these high �elds; instead, we work in the Paschen-

Back regime and consider states |mI ,mJ〉. We �nd that the energy splitting at high

�eld for the transition |mI = 3/2,mJ = −1/2〉 → |mI = 3/2,mJ = −3/2〉 is equal

to the |F = 2,mF = 2〉 → |F ′ = 3,m′F = 3〉 frequency (within a linewidth or so)
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and well enough resolved that we do not need a repumper to image.

Given the above considerations, we set up multiple imaging paths with di�erent fre-

quencies to address transitions at various magnetic �elds, while trying to optimize those

paths for power. This often involves playing tricks with multiple AOM orders. We plan

to eventually upgrade to a separate ECDL so that we can match imaging frequencies

continuously over a broad range of interaction strengths.

4.2.8 Final experimental thoughts

The lithium team has spent a long time thinking about solving various thermomechanical

problems with MOT coils, designing circuits to work at extremely large currents, �gur-

ing out which beams require picomotor alignment precision, generating architectures to

modulate AOMs very quickly and precisely, and working with novel lattice setups, among

other things, and their scienti�c results are widely varying and very interesting. Their

theses include a lot of technical conclusions which were the result of many months of

struggle, and are de�nitely worth a read for anyone beginning to work with this atom.
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Chapter 5

Strontium Experimental Design and

Setup

This chapter encompasses many experimental details relevant to our the strontium ma-

chine at UC Santa Barbara, and is divided into 2 sections. The �rst describes the

construction of the strontium apparatus, including design details for mechanical and elec-

trical subsystems, while the second discusses the implementation of the cooling sequence

for strontium, including experimentally-relevant optical parameters. Each subsection will

closely mirror the structure of its counterpart in Chapter 4.

5.1 Strontium Machine Design

The machine described in this section was constructed with an intent to do quantum

simulation experiments with degenerate gases of strontium. A Solidworks representation

may be found in Fig. 5.1. Some of the features of its design include

� An angled oven and Zeeman slower to preserve optical access through larger view-

ports.
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Figure 5.1: Overview of the strontium machine design.

� Cage-mounted MOT optics to preserve breadboard space for experimental setups.

� Flexibility to switch between all (bosonic and fermionic) isotopes 84,86,87,88Sr.

� All-metal gate valve for eventual expansion to science chamber.

� Ultra-high vacuum to achieve BEC lifetimes longer than 10 s.

Much of the work described in this section was done alongside Ruwan Senaratne,

whose thesis also includes a lot of useful information about the strontium machine [22].

5.1.1 Oven

The strontium oven manifold was designed much in the image of the lithium oven manifold

to maximize �ux of gaseous strontium into our main chamber, and built from both 316
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Table 5.1: Strontium oven part numbers

Function
Company/Part
Number

Purchased From Notes

Ion Pumps (2)
Gamma 40S-DI-
2H-SC-N-N

Gamma
Pump near atomic
source baked out
late 2016

Ion Pump Con-
trollers (2)

Gamma SPC-1-
US110-232 Digitel
SPC

Gamma

Built-in gauges not
so great, replaced
controller for pump
near atomic source,
late 2016

Ion Pump Ca-
bles(2)

Gamma SCP-SC3-
SC 3m SAFE-
CONN STAN-
DARD

Gamma
Replaced cable for
pump near atomic
source, late 2016

Ion Gauges
Agilent/Varian
UHV-24P B-A

Ideal Vac

Ion Gauge Con-
troller

Agilent XGS-600 Agilent

Ion Gauge Cables
(2)

Agilent R32453010
for XGS-600 Con-
troller

Agilent

Cup Band Heater
Tempco MI-PLUS
MPP02902

Tempco
1.5� × 2�; J-type
TC

Nozzle Band
Heater

Tempco MI-PLUS
MPP04123

Tempco
2.75� × 1.5�; K-
type TC

Oven Heater Con-
troller

TPC-3000 Tempco
Watch the TC
types.

Feedthroughs
Lesker
EFT0313373

Lesker Beam shutter

Beam shutter
solenoid

Uxcell
a1405100ux1279

Amazon/EBay
Max current 10A,
replaced Mar 2019

Angle Valve
MDC AV-150M-11,
Kalrez Manual

MDC
Hand-tightened; no
torque sealing

Gate Valves (2)
MDC GV-1500M-
P-1, Kalrez Pneu-
matic

MDC Fail closed
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Figure 5.2: (a) shows a top-down view of the strontium oven manifold, such that the
positions of the angle valve (1) and ion pumps (2) may be noted. (b) shows a side
section view of the same with a clearer view of the (3) gate valves, (4) atomic beam
stopper feedthrough (5) ion gauges, (6) transverse cooling section, and (7) the nozzle
�ange. Please see Fig. 4.4 for a schematic and image of the nozzle and atomic reservoir.

and 304 stainless steel alloys incorporating o�-the-shelf and custom parts. The manifold

is shown in Fig. 5.2. It consists of an atomic strontium source, a transverse cooling

section, a �rst stage of di�erential pumping, an atomic beam shutter which doubles

as another transverse cooling section, and a second di�erential pumping stage. It also

includes two gate valves which separate the oven from the UHV part of the machine and

allow it to be baked separately; these gate valves are not all-metal valves, but use Kalrez

elastomer which outgasses much less than Viton. The strontium oven was baked in late

2014 and, after we ran out of strontium, again in late 2016, at which point we redesigned

the transverse cooling section.

As can be seen in Fig. 5.2, the oven sits at a 16◦ angle to the optical table. The

decision to design it this way was based on viewport considerations in the main chamber,

and did not signi�cantly a�ect any considerations in oven design. It did lead to some

changes in Zeeman slower design, which will be discussed in subsection 5.1.2.

In this section, I will discuss strontium vapor pressure and �ux, as well as di�erences

between our oven and the lithium design. There is a subsection for the atomic beam
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Figure 5.3: Strontium vapor pressure based on a number of di�erent sources: CRC [55],
the Smithsonian Physical Tables [56], Asano et. al [57], Boerboom et. al [58], de Maria
et. al [59], and Priselkov et. al [60]. We use the CRC values, which �ts points across tem-
peratures from 298 K to 2500 K to within ±5% error. The dot indicates our approximate
operating point.

shutter; though this machine incorporates an atomic beam nozzle and di�erential pump-

ing, this section will contain pointers to Chapter 4 where they are discussed in more

detail, as many of the design considerations were similar. Discussions of our transverse

cooling may be found in section 5.2.1. Many of the part numbers for items found in the

oven may be found in Table 5.1.

Vapor pressure and �ux

The strontium reservoir is a 2.75� CF half-nipple custom-welded onto an elbow to make

one continuous 90◦ part. It was originally loaded with 25 g of strontium, but is now
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loaded with 100 g after the initial 25 g ran out after 2 years of running the machine. In

order to �gure out at which temperature we needed to operate the oven, we considered

the vapor pressure of strontium, and later checked the operating temperature of other

groups as a guide for what was reasonable. Strontium sublimates into a gas rather than

boils. There have been several experimental measurements and corresponding �ts for

the vapor pressure equation, several of which can be found in Fig. 5.3. We use the

CRC equation, which �ts points across a large temperature range with less than ±5%

error [55]:

log10 Pvap = 14.232− 8572

T
− 1.1926 log10 T , (5.1)

where Pvap is given in pascals and T is in Kelvin. We operate our reservoir at 600◦C

using a band heater, a temperature which was empirically set to give us a MOT loadrate

of 5 × 106 84Sr atoms/s, and use a microcapillary array nozzle to collimate the beam at

the oven exit (more details of which can be found in Section 4.1.1; a schematic and images

may be found in Fig. 4.4). The nozzle is kept at 650◦C, also with a band heater, to ensure

that the microcapillaries do not clog. Since we have a custom combined reservoir cup

and elbow, we do not have a place to attach a third band heater to ensure a monotonic

gradient between the cup and nozzle. In its stead, we wrapped a heating tape around

the curved section in case we ever needed additional heat, but we have never needed to

use it. The CF connection for the atomic oven cup/elbow and nozzle uses nickel gaskets,

rather than the traditional copper, out of worry that strontium will corrode copper in

a manner similar to lithium. These nickel gaskets are made from the alloy 201 from

Vacs SEV, which is the only company from which we order for a number of reasons: a)

the gaskets are slightly thicker than comparable parts from MDC and Lesker, b) 201 is

rated to above 600◦C, while the more common alloy 200 is only rated to around 350◦C.

Because 304 stainless steel is not hard enough to cut into nickel gaskets, these few steel

parts alone were machined from 316 stainless steel.
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Taking the equilibrated atomic temperature to be the nozzle temperature of 650◦C

and using the total nozzle area as our aperture size, we �nd that the nozzle should be

producing around 1.7 × 1015 atoms/s. At �rst glance, this seems much higher than

we should need, and we should be able to run at a lower temperature to preserve oven

lifetime. Unfortunately, the fraction of these atoms which are our preferred isotope, 84Sr,

is only 0.0056, yielding an e�ective �ux of 9.4 × 1012 atoms/s.

There are two reasons why the ratio of the oven �ux to the MOT loadrate is not as

e�cient for the strontium machine as it is for lithium.

� The nozzle output pro�le does have a pedestal with broad angular divergence in

addition to the collimated beam. We saw the e�ects of this pedestal �rsthand when

baking the oven in 2014; during that bake and the following two years, the view-

ports (intended for transverse cooling) along the beam path immediately after the

nozzle got coated with layers of strontium, which eventually took on a mirror-like

sheen and prevented us from getting transverse cooling beams into the chamber.1

When we rebaked the chamber to load more strontium, we added nipples to those

viewports so that the parts of the atomic beam with large divergence only hit

stainless steel.

� Our transverse cooling is not as optimized as it could be. Between the pedestal

mentioned above creating a large �ux of uncollimated atoms in the transverse cool-

ing section and the extremely high saturation intensity (Is ≈ 40 mW/cm2), we

have always been power-limited. We cooled in one of the two transverse dimen-

sions after the �rst di�erential pumping tube, as this solves the pedestal issue. We

recently switched to using multimode �bers, which now allows us enough �ber-

coupled power to cool in the other transverse dimension in the intended transverse
1LIAD with 2 W of 405 nm light, which we use to clean lithium o� of windows, does not work for

strontium. Using a much higher intensity, a pulsed laser for example, may work better, but we are
unsure.
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cooling area. Unfortunately, both of these could still bene�t from more power. We

would also likely be helped by a transverse cooling stage after our Zeeman slower,

but our machine incorporates no such section, and such a section in the strontium

machine would be less e�ective than the for the lithium machine due to the higher

mass.

Atomic beam shutter

Recall that the solenoid which drives our atomic beam shutter is a pull-type, which

means that it pulls and holds the shutter open upon actuation, but does not actively

push the shutter back to its original position. For some reason, the hydroform bellows

that constitute part of our atomic beam shutter began to deform soon after our bake,

such that the shutter did not entirely block the atomic beam in the closed position. We

hung a 400 g counterweight o� of the shutter feedthrough and then adjusted the solenoid

actuation current to compensate for the extra weight. This has been serving us well for

several years. The �rst solenoid gave way in March 2019 after about 2.5 years of use,

and was replaced with the same model.

It is di�cult to get a clear sense of our MOT load rate: strontium atoms quickly fall

into the magnetically-trapped metastable 3P2 state so MOT �uorescence is not a good

guide, and the low abundance of 84Sr makes it di�cult to directly image a magnetic

trap for that isotope. Our directly-imaged magnetic trap load rate is around 1.2-1.4 ×

108 atoms/s for 88Sr atoms, resulting in around 6-7 million 84Sr atoms trapped in 10 s.

We have found this to be more than enough to create nicely-sized BECs.

5.1.2 Slower

At the exit of the oven manifold, we have an atomic beam at a temperature of around

650◦C, and we would eventually like these atoms traveling at a reasonable MOT capture
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Figure 5.4: Maxwell-Boltzmann and atomic beam speed distributions at 650◦C. Shaded
region indicates fraction of atoms that designed slower should capture.

velocity vc of around 50 m/s. Under the assumption that the atoms behave like an ideal

gas, we can simply use a Maxwell-Boltzmann distribution to estimate the fraction of

the atomic �ux which will be slower than vc. We recall that the Maxwell-Boltzmann

distribution is

fMB(v)d3v =

(
m

2πkBT

) 3
2

exp

(
− mv2

2kBT

)
d3v (5.2)

and we typically assume that the angular distribution is spherically symmetric, allowing

us to treat d3v as v2dv sin θdθdφ which we can integrate over solid angle to retrieve the

Maxwell-Boltzmann speed distribution.

fMB,speed(v) =

(
m

2πkBT

) 3
2

4πv2 exp

(
− mv2

2kBT

)
. (5.3)

However, since we are using a nozzle to generate our �ux, we cannot assume angular

isotropy; the velocity distribution will actually be skewed towards a higher velocity,

since there will be a higher �ux of faster atoms. Thus, we instead need to write d3v

as vzv2dv sin θdθdφ, where vz = v cos θ is the velocity along the direction of the atomic
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beam.

We can then normalize and rewrite our new speed distribution, which is no longer

Maxwellian, to describe an e�usive beam:

fbeam,speed(v) =

(
m√

2kBT

)2

v3 exp

(
− mv2

2kBT

)
. (5.4)

Both of these probability distributions are plotted in Fig. 5.4. Using m =84mp and

T =650◦C, we integrate both distributions up to vc to �nd probability Pbeam,speed(v <

vc)=9.4 × 10−5. From these calculations, we concluded that we needed a Zeeman slower

to slow a larger fraction of our atomic beam to below vc.

Our design target capture velocity for the Zeeman slower was 570 m/s, allowing us to

capture around 53.4% of our atomic �ux (shown as shaded region in Fig. 5.4). We elected

to go with an electromagnetic design rather than a permanent magnet design, due to the

ability to turn o� the �eld and the relative ease of winding a tapered solenoid. At the

time we were designing the machine, AO Sense had just come out with their commercial

Sr oven using a Zeeman slower and 2D MOT. Other groups had not tested the design yet,

and since we had just designed and built a slower for the lithium machine, we decided to

do the same for the strontium machine.

In the following sections, I discuss details of �eld design, solenoid winding and elec-

tronics, and water-cooling considerations. The optical details of the Zeeman slower may

be found in section 5.2.2.

Zeeman �eld design

As mentioned at the beginning of this chapter, the oven and Zeeman slower were designed

at a 16◦ angle to the optical table. The largest implication of this decision is that the

projection of the MOT fringing �elds along the longitudinal slower direction becomes

quite large, increasing in magnitude from 0 G to 600 G. Since this �eld already existed

and we knew our MOT currents approximately, we decided to modify that section slightly
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Figure 5.5: Sr Zeeman slower, showing the ideal designed slower �eld and measured �elds
for each section of the slower. The pro�les of each solenoid are also shown, to scale on
the x-axis.

and add a decreasing �eld section to create a spin-�ip slower, designed to begin capturing

atoms at 570 m/s and slow them to 50 m/s with a laser detuning of 750 MHz.

One of the problems with cooling atoms is that it is possible to change the velocity

of the atomic beam from positive to negative, e�ectively turning the atoms in the other

direction. This is easier to do for heavier atoms within the constraints of reasonable

Zeeman slower lengths. The �eld required to slow the atoms to 50 m/s is shown in

dashed red in Fig. 5.5; the dotted extension is the �eld required to slow the atoms to

0 m/s. By extension, if we did not have a way of stopping the slowing, the atoms would

begin traveling with a negative velocity due to the magnitude of the MOT fringe �eld.

We thus decided to wind a small coil with the express purpose of stopping scattering from

slower light. We constrained the current of this coil to be equal to the MOT currents so

we could use the same power supplies, which earned it the nickname �miniMOT�. The

performance of the slower is extremely sensitive to the miniMOT position.
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Figure 5.6: Image showing slower B and the miniMOT in relation to the MOT coils.

Fig. 5.5 shows the total measured �eld along the slower direction from the slower

entrance to the main chamber exit, as well as the contributions from various solenoids

and their winding pro�les. Fig. 5.6 shows an image of Slower B and the miniMOT coils

relative to the MOT coils on the chamber.

Solenoid winding and electronics

We used the same wire described in Appendix C to wind the solenoids for the slower: alloy

101 OD 0.1875� wire with a wall thickness of 0.032�, insulated with Daglass insulation,

epoxied using thermally-conducting electrically-insulating Duralco NM25.

The slower was wound in three sections according to the methods outlined in Ap-
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Slower Coil Power Supply Design Current Actual Current
A Acopian Y08LXU4000 35 A 38.1 A
B Acopian Y08LXU4000 25 A 28.1 A

MiniMOT PowerTen P63C-15440 352 A 134 A

Table 5.2: Strontium slower currents

pendix C.5, which we label slower A, slower B, and miniMOT. Table 5.2 shows the

power supplies we use, our design currents, and the currents we empirically set to opti-

mize MOT load rate. The miniMOT was originally run in series with the top MOT coil,

but we eventually realized that the MOT load rate was optimized running the miniMOT

at a much lower current of 134 A, so we moved it to its own power supply and now use

an analog input to control the current. The power supplies are electrically connected to

the coils via custom-made lugs which press onto the stripped square wire leads with set

screws, and mate to 10AWG wire via set-screws as well. The miniMOT is connected to

its power supply via the same 3/0 wire we use for the MOT coils. Slower sections A and

B are connected to Crydom D1D40 relays and Powerex CS240650 diodes (similar models

to those we use to switch the lithium slowers on and o�). However, in practice, we do not

�nd that the fringing �eld makes a large di�erence, thus we do not switch the currents.

The miniMOT section, which runs a much larger current, produces a large fringe �eld

which we initially wanted to switch using an IGBT/relay circuit. However, in practice,

the cooling stage during which those magnets turn o� lasts around 500 ms, so the analog

input rampdown time of 10 ms is more than enough to switch.

Fig. 5.6 shows two of the three wound coils on the Zeeman slower (section B and

the miniMOT), as well as the top MOT coil which contributes most signi�cantly to the

fringing �eld. We included a bellows in the spin-�ip section to allow for adjustment

between the oven and main chamber, as well as to allow for some thermal expansion

during bakes. We wound a shim between slower B and the miniMOT, but we have never

found it helpful.
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Water-cooling considerations

The water �ow rate needed in the turbulent �ow regime to dissipate heat from square

wire with a given side-length, copper cross-sectional area, hydraulic diameter, length,

and pressure di�erential can be found in various books [51]; this �ow rate, along with

the power dissipated in the wire and the speci�c heat capacity of water, can be used

to calculate the expected temperature rise. These calculations for our slower sections

indicate that only the miniMOT requires water-cooling (see Geiger and Senaratne theses

for more detail on these calculations). However, we water-cool all three sections. Water

connections are described in more detail in Appendix C.6.

5.1.3 Main chamber

Once our atomic beam is slowed, the atoms are captured in a 461 nmMOT at the center of

the main chamber. I will leave details concerning any MOT parameters and optimization

to section 5.2.3; this section will discuss main chamber design and considerations, MOT

magnet construction and mounting, shim coils, and breadboard design. A non-exhaustive

list of part numbers for the main chamber may be found in Table 5.3. The strontium

main chamber was baked in December 2014, and typically sits at a pressure of around 3

× 10−11 Torr.

Main chamber design

The main chamber is the heart of the experiment, where strontium is cooled from a

MOT to degeneracy. Technical drawings for the strontium main chamber may be found

in Appendix G. The strontium main chamber, shown in Solidworks schematic in Fig. 5.7,

took some inspiration in its �turret�-like design from the Chin group at University of

Chicago, and was machined and electropolished by A&N Corporation. It is made entirely

from 316 stainless steel, the magnetic permeability of which is much lower than that of 304
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Figure 5.7: (a) shows a isometric view of the strontium slower and main chamber, such
that the positions of the (1) Zeeman slower, (2) ion pump, and (3) drop ports may be
noted. (b) depicts a top view of the same with a clearer view of the (4) angle valve, (4)
ion gauge, (5) titanium sublimation pump, and (6) all-metal gate valve.

alloy. Generally speaking, it consists of an o�-the-shelf Kimball 8.00� spherical octagon

with (1) 8.00� CF viewport, (8) 2.75� viewports, and (16) 1.33� viewports around the top

and sides. The base of the octagon is connected to a turret chamber which has another

large viewport at its base. The turret chamber includes low-conductance ports for an

ion gauge, ion pump, and titanium sublimation pump. It also has (4) 2.75� viewports

placed at 90◦ around the bottom of the chamber, for future drop experiments. There are

several tabs for supports to attach to an optical table; we bought supports such that the

vertical center of the chamber sits 17.72� above the table. This is higher than the lithium

machine sits; while it resulted in a tradeo� in mechanical stability (which did a�ect us

later and which we had to �x), we learned our lesson from the lithium machine design

and are grateful for the extra space.

Recall from the beginning of Chapter 5 that we need to prioritize optical access over

magnetic access. The ground state of strontium 1S0 is nonmagnetic, and the highest

�eld gradients we need are only around 55 G/cm for the initial blue MOT stage of

cooling; in contrast, strontium has a number of optical transitions which are scienti�cally
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Table 5.3: Strontium main chamber part numbers

Function
Company/Part
Number

Purchased From Notes

Ion Pump
Gamma 75S TiTan
CV 75S-CV-62-SC-
N-N

Gamma
Double 6.00� and
2.75� ports

Ion Pump Con-
trollers

Gamma SPC-1-
US110-232 Digitel
SPC

Gamma
Built-in gauges not
great

Ion Pump Cables

Gamma SCP-SC3-
SC 3m SAFE-
CONN STAN-
DARD

Gamma

Ion Gauges
Agilent/Varian
UHV-24P B-A

Ideal Vac

Ion Gauge Con-
troller

Agilent XGS-600 Agilent

Ion Gauge Cable
Agilent R32453010
for XGS-600 Con-
troller

Agilent

TiSub Cartridge
Varian Filament
TSP 9160050

Agilent
Attached via 2.75�
to 6� reducer

TiSub Cable
Agilent 9240730,
3.6m

Agilent
Also used for Li
machine

TiSub Controller
Agilent 9290032
with RS232

Agilent
Also used for Li
machine

Angle Valve
MDC 314003, All-
Metal

MDC

Torque-sealed ac-
cording to chit,
attached to ion
pump

All-Metal Gate
Valve

VAT 48132-CE44-
AAM1, DN40

VAT
Pneumatic actua-
tor
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interesting for varying reasons. Balancing these considerations, we decided to make our

MOT magnets very large to sit away from the spherical octagon, and were very careful

about how we assigned usage for each viewport.

Optical viewports

In general, the 1.33� viewports are used for laser cooling (atomic/slower, blue MOT,

repump, and red MOT beams), the 2.75� viewports are used for optical dipole traps and

lattices, and the 8.00� viewports are used for both.

All of the optical viewports were bought from Kurt J. Lesker company. The vast

majority were custom-made from fused silica and 316SS. They were then sent directly to

Optical Filter Source (OFS), who designed specialized coating curves for us and coated

the windows for 403 nm, 461 nm, 497 nm, 640 nm, 689 nm, 707 nm, and 1064 nm (at

the time, we were not sure which repumping line we might use). The AR curve may be

found in Appendix H. There is one 1.33� viewport which is extremely di�cult to access

due to other optics and the Zeeman slower; this viewport and its diametric opposite were

purchased from Lesker as uncoated sapphire with custom 316SS �anges, to allow us to

address strontium atoms on the |5s5p3P2 → 5s4d3D2〉 2920 µm mid-IR transition which

is important to some long-term scienti�c goals.

One of the 2.75� viewports is attached to the main chamber via an intermediate

all-metal gate valve, which will eventually be used to isolate the main chamber while a

science chamber is added to the machine. The science chamber design will be discussed

in more detail in Chapter 9.

The Zeeman slower viewport is o�set from the spherical octagon by a 3� long 1.33�

CF nipple. To keep strontium from sticking to it, we designed a special cap with an

optical-quality window to �t over the viewport (similar to the MOT cagemount caps

described in the next subsection) and create a pocket of trapped air. We heat this cap

to 140◦C, which has largely helped us avoid strontium coating on the window.

111



Strontium Experimental Design and Setup Chapter 5

Setback: When we were �rst leak-checking the strontium main chamber, we found

that several of the 1.33� CF �anges were leaking.a What we eventually found was

a manufacturing defect: the edge of the glass-to-metal seal, usually recessed below

the bolt/washer plane of the �ange, extended just above that plane on some of the

viewports. When we eventually tightened the bolts down, the washers overlapped

with that seal and very slightly broke them.b These issues were compounded by

the fact that copper gaskets tend to stick to the 1.33� CF �anges and are very

di�cult to remove, leading to an irretrievably-destroyed viewport, and that the

viewports are very closely-spaced on the spherical octagon, leading to di�culty in

isolating problematic viewports. Were we to do this again, we would use silver-

plated gaskets. Additionally, we might have immediately used blanks, rather than

replacement viewports, to track down leak sources. Take great care with 1.33�

CFs.
aThere is still a small leak (or virtual leak) somewhere in the machine, resulting in the pressure

increasing from 3 × 10−11 Torr to around 9 × 10−11 Torr over 5-6 months. This is not ideal but
when this happens, we simply run our TiSub pump again and recover low pressures immediately.

bThus resulting in the other 1/2 of the infamous Lesker signs.

MOT cage-mount optomechanics

One of the unique aspects of this machine is its cage-mount MOT optomechanical sys-

tems. We designed these for in-coupling and retro-re�ected blue and red MOT beams,

and also use a slightly modi�ed design for the repump; schematics may be found in

Fig. 5.8, and a list of parts we used for them is in Table 5.4. The drawings for the cage

mount may be found in Appendix I. Some notable features include cutouts to �t over

1.33� CF bolts, and three points of contact with the �ange to maintain stability. The

in-coupling mounts give us two angular degrees of freedom but not two more typically-

desired positional degrees of freedom; we have found that this is still okay, as the center
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Figure 5.8: a: Viewport adapter for MOT and repump cage-mount optomechanics, used
in designs b, c, and d. Technical drawing may be found in Appendix I. b: MOT
retrore�ection setup. Part numbers indicated for mirrors. c: Repump light input setup;
light enters from a low viewport. d: MOT light input setup; light enters from a high
viewport. Part numbers indicated for collimating lenses.

of our magnetic trap is su�ciently centered within the chamber to ensure a large overlap

with the MOT beams. Since each MOT beam is retro-re�ected, we also have beam-

focusing degrees of freedom so that we can match intensities in case of power losses in

the retro path. We only use one (rotatable) λ/4 waveplate in the in-coupling setup and

one (non-rotatable) λ/4 waveplate in the retro setup; this is all we require since we use

polarization-maintaining �bers. We have not seen any major stability issues with these

cage mounts, and they save us a great deal of optical breadboard space. The main down-

side is that we have to make sure the �bers' polarization-maintaining ability is always

good, requiring that we check them every few months.
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Setup Function Part Number Purchased from
Cage Rods SR1 Thorlabs

Waveplate Holder SP02 Thorlabs
MOT Waveplate WPC212Q Foctek
Retro Kinematic Mirror Mount KC05-T Thorlabs

Mirror 84-419 (461 nm) Edmund Optics
84-439 (689 nm) Edmund Optics

Cage Rods SR1.5 Thorlabs
Rot. Waveplate Holder SRM05 Thorlabs

Waveplate WPC212Q Foctek
Kinematic Mirror Mount KC05-T Thorlabs

Coll. Lens Holder SM05V05 Thorlabs
MOT Coll. Lens LA1289-A (461 nm) Thorlabs
Input 49-660 (689 nm) Edmund Optics

Locking Adjustment SM05T10 Thorlabs
Spacer SM05L10 Thorlabs

Fiber Coupler Adapter SM05T1 Thorlabs
APC Coupler SM05APC Thorlabs
Cage Rods SR0.5 Thorlabs

Cage Rod Mates SRSCA Thorlabs
Waveplate Holder SP02 Thorlabs

Repump 90◦ Kinematic Mirror Mount KCB05 Thorlabs
Input Mirror BB05-E01 Thorlabs

Fiber Coupler Adapter AD1109 Thorlabs
Fiber Coupler F280APC-A Thorlabs

Table 5.4: MOT cage mount components

MOT magnet design and construction

The MOT coils for the strontium machine have much less alignment sensitivity than

the lithium coils, owing to strontium's non-magnetic ground state. Since the coils are

used to create the MOT �eld gradient and the magnetic trap gradient, we only operate

them in anti-Helmholtz con�guration and care little about the �eld curvature. We use

two coils placed on either side of the atoms with a separation necessary to satisfy the

Helmholtz criterion: coil separation z is equal to the coil radius r0. (more on theoretical

considerations can be found in Section 2.2.3).
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Figure 5.9: Strontium MOT coil directions of current �ow

Coils Field Produced Peak Field (352A) Set Current Voltage Drop
Inner (1-4) 0.081 G/cm/A 28.48 G/cm 288 A 12.9 V
Outer (5-8) 0.062 G/cm/A 21.83 G/cm 289 A 14.1 V

Table 5.5: Strontium MOT �elds

The currents were simulated on Mathematica for varying geometries to give us a

sense of the behaviors of the 0th, 1st, 2nd, and 3rd derivatives of the �eld in both

anti-Helmholtz con�guration; these geometries were constrained by the dimensions of

the spherical octagon, which allowed a minimum separation of 5.25�. Each coil was

eventually designed to have an inner diameter (ID) of 9.1�, with a cross section of 32

turns: 4 turns in ẑ × 8 turns in r̂, with every set of 4 turns in ẑ × 2 turns in r̂ being one

continuously-wound solenoid. The inner 4 radial coils are referred to as coils 1-4, and the
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outer 4 are referred to as coils 5-8; we thus have two leads each (an input and output)

for pairs 1 and 2, 3 and 4, etc. These coils were mounted 5.25� away from each other,

and measurements were taken in-situ to look at the resultant gradients in G/A/cm.2 A

summary of these can be found in Table 5.5; we calculated that we would have to run

these coils at 352 A to achieve a �eld gradient of around 55 G/cm, which is what other

groups were using at the time [21]. Winding the coils proceeded in the same way as

described in Appendix C.5; we designed and machined new custom mandrels and jigs to

accommodate coils with a much larger ID.

Mounting the coils is quite di�cult. With a 9.1� ID, the bottom coil is topologically

captured; it does not freely move over the spherical octagon, so we needed to wind and

place the coil over the turret prior to attaching the octagon on top. To hold the coils

in place, we designed special mounts that mate to custom-tapped holes in the top and

bottom spherical octagon 8.00� CFs, and hold each coil in place in 4 places. The mounts

have tapped holes in the top, bottom, and sides, through which plastic set screws hold the

magnets �rmly in place. Drawings for the mounts can be found in Appendix I. Because

these magnets are externally mounted and we do not have reentrant windows, we did not

need to pot these coils in epoxy.

The coils are designed to run up to 350 A, which presents some di�culties both in

terms of thermal management and electrical power. The results of thermal calculations

(details of which may be found in the Senaratne thesis [22]) assuming 350 A of current

necessitates the use of high-pressure water cooling. The ends of each of the leads was

soldered to copper tubing for water cooling in the same way as the slower solenoids, and

the cooling lines were connected to the water manifolds detailed in Appendix C.2. The

electrical connections on these magnets are the same as the old lug designs described

for the lithium machine: they have compression-�ts secured via set-screw onto stripped

square wire leads, and large set-screw attachments for 3/0 wire. These lugs have su�ered

2These measurements were taken at half of the required current, 176 A, and scaled accordingly.
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Component Part Rating
Inner Coil Supply PowerTen P63C-25400 25 V, 400 A
Outer Coil Supply TDK Lambda 30-5003 30 V, 500 A
Isolation Ampli�ers AD215BY-ND
Earth Shim Supply GWInstek Benchtop

Applied DC Shim Supply Disconnected

Table 5.6: Strontium MOT electronics

from the same connection problems mentioned as a �setback� in the Chapter 4, and we

have had issues with the wire burning due to resistive heating. Additionally, the locations

of the power supplies relative to the strontium main chamber result in an extremely large

voltage drop over the lengths of 3/0 cable, which typically sit at around 60◦C (very close

to their maximum rating) when the machine is running. Strontium graduate student

Peter Dotti has updated designs using compression lug connections and water-cooled

copper tubing instead of long lengths of 3/0 wire, but this will be a future upgrade. In

the meantime, we have tightened everything extremely well, switched some connections

from set-screw to crimp-type (as they have gone bad), and continued to stay visually and

olfactorily aware of them.

The MOT coils are powered by 208 V 3-phase power supplies (we do not have 480 V

supply in our lab). The outer turns (5-8) on both the top and bottom coils are powered by

a 15 kW TDK Lambda,4 while the inner turns (1-4) on top and bottom are powered by a

PowerTen P63C-25400. Both supplies exhibit similar ramping speeds, so we can consider

the inner and outer turns e�ectively as one large coil. The currents are controlled via

analog voltage lines, which connect to the power supplies via isolation ampli�er circuits

to avoid ground loops.
4We initially wanted to use this supply for the miniMOT as well, thus the higher voltage rating
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Shim coils

Earth's magnetic �eld provides a constant background of around half a Gauss under-

neath any �eld or gradient we produce in lab. This means that when we decrease our

�eld gradient from the blue MOT to the red MOT (see Section 5.2.5), the position of

the magnetic trap center can move, resulting in large atomic losses. To overcome this

problem, we need to compensate for the earth �eld (and any other stray �elds from, for

example, a neighboring lab) with sets of Helmholtz shim coils. To be able to compensate

a �eld in an arbitrary direction, we need three sets of transverse coils. In practice, we

actually wind two sets of coils in each dimension: the �rst is used to shim out background

�elds, while the second can be used to apply small DC bias �elds if needed.

These shims are typically wound on supports which are built in-situ after the ma-

chine is up and running; they are designed from U-channel aluminum which has been

sandblasted and coated with Plastidip to prevent wire shorts. It becomes much easier

to build supports and wind coils for a square geometry; we can refer to Section 2.2.3 to

�nd that the Helmholtz condition can still be met for square coils with side length d for

separation z = 0.5445d. We use 22AWG Kapton-insulated motor wire for these earth

shims, and wind a few decades of turns around the machine in-situ. Our DC bias �eld

shims are currently disconnected; our earth shims can run up to 3 A, but we typically

use currents lower than 1 A to cancel the earth �eld.

Breadboard design

For the strontium machine, we designed four large breadboards which attached to the

optical table and to each other, but were independent from the machine. They are all

made from MIC6 aluminum alloy, which is extremely stable and therefore retains its

�atness when tooled. The three breadboards which attach to the optical table are 1.25�

thick with a �atness tolerance of 0.030�, cast with the grain along the longest direction;
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Figure 5.10: Strontium breadboard design

the top breadboard, which attaches to the two side breadboards, is 1.00� thick with the

same tolerance and grain. The breadboards were ordered from a local Alcoa distributor,

and machined according to our speci�cations by the UCSB Physics Machine Shop. The

design includes standard 1/4�-20 holes along a 1� grid (tapped from the top and bottom),

as well as various cutouts to allow beams to pass through. They are mounted on 80/20

and custom-designed optical table mounting feet, such that the center of 1.5� tall optics

on the breadboards aligns roughly with the center of the main chamber. Our standard

optics height in the lab is 2�, but this was not possible for the strontium machine due to

the proximity of the bottom MOT coils; we operate at a standard height of 1.5� instead,

which often necessitates using 0.5� pedestal pillar posts and machining our own adapter

mounts for various optics. This design, unlike that for the lithium breadboards, was not

tested for mechanical stability using Solidworks simulation tools. We have actually had

some mechanical stability problems, which resulted in needing to add several 45◦ braces
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between the table, 80/20 supports, and breadboards themselves (see Appendix E). The

breadboards are shown in Fig. 5.10. Technical drawings may also be found in Appendix G.

5.1.4 461 nm laser

The 461 nm laser provides cooling light for the broad |1S0〉 → |1P1〉 30.5 MHz transition.

The master laser is a Toptica SHG-Pro, consisting of a 922 nm ECDL, a tapered ampli�er

(TA) producing approximately 1 W of 922 nm power, and a frequency-doubling bowtie

cavity, as well as many beam shaping optics. The laser was rated to 600 mW when

purchased (the TA was producing 1.5 W of 922 nm power at that time), but has been

outputting 400 mW of 461 nm light (as measured on a thermal power meter head) fairly

stably since 2014. The doubling cavity uses a Pound-Drever-Hall lock to lock to the

ECDL; this lock uses both slow feedback (a Toptica PID module) and fast feedback (a

Toptica FALC module). For more on the 461 nm internal setup, please see Appendix M.

Unfortunately, the 922 nm light almost exactly coincides with a water absorption line.

This means that unless the cavity stays dry, the power attenuation in the cavity will result

in much less blue power output and a di�cult time locking the cavity. Since our campus is

by the ocean, we have to be particularly careful changing the cavity desiccant; it typically

needs to be switched out with a frequency between once every couple of days (in rainy

weather) and once every few months (typically). We have considered �owing dry nitrogen

through the cavity, but it would involve machining the laser lid; the activation energy is

too high. Over the years, we have had several adventures with this laser, including dirty

cavity mirrors and cavity PZT replacement. For all of the information we've learned over

the years pertaining to the usage and alignment of this laser, please see Appendix M.

The 461 nm laser setup is contained on about half of a 4' by 10' optical table, and

closely follows the layout described in the Stellmer thesis from the Innsbruck strontium

experiment [21]. In particular, we use the trick described by that group of using a
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Figure 5.11: 461 nm laser setup, showing 922 nm master and SHG cavity and all
main beam paths. Polarization-maintaining single-mode �bers are drawn in blue, non-
polarization-maintaining single-mode �bers in yellow, and multimode �bers in orange.

single-pass AOM in series with a double-pass 350 MHz AOM for our spectroscopy setup,

the latter of which allows us to quickly tune among all four strontium isotopes. We

use polarization-maintaining �bers for the MOT, imaging, and slower light; the former

two are from Thorlabs, while the latter is a special glass-capped �ber from Coastal

Connections (part no. P-FAnskFAnsk-3.8/125/3-6) to allow us to couple 180 mW of

slower light into the �ber without burning the tip. The 461 nm laser setup is detailed in

Fig. 5.11. The frequencies for each beam are detailed in Fig. 5.12.

About 20 mW of light is picked o� of the main beam path to send to a spectroscopy

cell. This cell is loaded with about 20 g of strontium in an inert bu�er gas of argon.

The cell is pumped down to about 10 mTorr and operated at 430◦C, conditions which

were eventually chosen to set the mean free path of strontium in the cell small enough
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Figure 5.12: 461 nm laser frequency diagram showing detunings of all main 461 nm
cooling and imaging beams, and how they are achieved using AOMs in single-pass (SP)
or double-pass (DP) con�guration. Changing the spectroscopy DP AOM to +287.5 MHz
allows us to switch from 84Sr to 88Sr.

that it would not coat the windows, and large enough that the atomic density of the

accessible strontium cloud gives us a reasonable spectroscopic signal. We use a Toptica

Digilock lock-in ampli�er module to modulate the spectroscopy frequency on the double-

pass AOM at 11 Hz (the cavity lock has a di�cult time following the scan through the

full scan range otherwise), and lock to the 88Sr feature as it is by far the most abundant

isotope. Because the linewidth of the 461 nm transition is so large, the Doppler signal
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Figure 5.13: 461 nm saturation absorption spectroscopy. We are able to resolve peaks
for the more abundant isotopes of Sr.

provides a very large, deep background on the saturation absorption signal, and it is

much easier to generate a nice error signal by subtracting a reference probe signal. The

saturation absorption spectrum we obtain is plotted and �t in Fig. 5.13; we obtain a �t

of around 54 MHz, which is likely the e�ect of either power or pressure broadening, but

could also be the result of �tting with Lorentzians rather than Voigt pro�les; it does not

hurt our cooling on this line. We used to have a lot of problems locking to this signal

when we were mounting mirrors on 8� tall 0.5� diameter Thorlabs posts. We recently

changed the optomechanics to include larger, more stable mounts, and became more

careful about enclosing the spectroscopy cell to block air currents; this has extended the

lifetime of the lock from tens of minutes to a few hours, and made our lives easier.
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Setback: For many years, we would see deterioration of the total power on the

laser table due to losses on the �rst couple of cubes in the beam path. At the time,

we were using Thorlabs PBS101 cubes for the entire laser table. We discovered that

400 mW of 461 nm light at 1 mm diameter is intense enough to quickly corrode the

cement at the interface of the two halves of the cube. One could consider beam-

splitting plates, but they are more di�cult to work with because unlike cubes, they

spatially translate the transmitted portion of the beam in a macroscopic way. We

eventually found a company called Casix which makes optically contacted visible

broadband PBSs. We are slowly beginning to use them on the table as our old

cubes degrade, and they work great. Be careful with high-intensity short-

wavelength light on optics.

5.1.5 403 nm laser

As mentioned in Section 3.3.2, we choose to repump along the 403 nm transition from

3P2 → 5s6d3D2. Our 403 nm master laser is a Sacher Lynx ECDL, which produces

28 mW of 403 nm power. The necessary laser setup is quite small; it sits in a corner of

the 461 nm laser enclosure. It is sent through a double-pass 350 MHz AOM and �ber-

coupled to the machine table. We do not strictly need a double-pass AOM for bosonic

isotopes of strontium; this setup exists to plan for the future use of 87Sr, for which we will

need two repump frequencies to address the large splitting between the |3P1,mF = 11/2〉

and |3P1,mF = 9/2〉 hyper�ne states. In the 403 nm laser setup, the �rst beam splitter in

the beam path is a beam-splitting plate (Thorlabs PBSW-405) in lieu of a beam-splitting

cube. This is because we see the same degradation of cement at the interface of cubes,

even with only 28 mW, due to the short wavelength. Unfortunately, it is extremely

di�cult to �nd optically-contacted cubes for 403 nm light.

The 403 nm transition has a linewidth which is alkali-like (a few MHz wide). Because

124



Strontium Experimental Design and Setup Chapter 5

it is not extremely narrow, we simply use a Fabry-Perot cavity with an FSR of 1.5 GHz

to lock the repump frequency. We send both 461 nm light and 403 nm light into the

cavity and set the cavity scan parameters to less than 1 FSR such that we see one

peak corresponding to each color of light, clearly separated. We then use NI software

to digitally stabilize the peak separation, which feeds back to the laser grating piezo

voltage. This works as long as the 461 nm laser is locked properly, and the output of

the 403 nm laser is single-mode. Unfortunately, the latter condition is often not met;

we have had numerous problems getting the laser to operate in single-mode, and often

spend a reasonable amount of time every week to �nd a stable operational mode. The

strontium experiment also shares a room with the lithium experiment, and we often �nd

that during lithium RF evaporation, the RF will a�ect the laser current such that the

frequency changes. The cavity lock thankfully mitigates this e�ect when both machines

are running, but we would like to design housing with better shielding for this laser

someday.

5.1.6 689 nm laser

Our 689 nm laser addresses the narrow 7 kHz intercombination transition |1S0 →3 P1〉.

This transition, beyond simply allowing e�cient optical cooling, is an attractive feature

in strontium experiments because its width provides the ability to probe systems with

excellent energy resolution. The following section will discuss the architecture of our

689 nm laser system. It is currently small, but has room to expand to other isotopes,

particularly 87Sr. The inspiration for the design and plans for expansion were largely

inspired by the omnibus design of the Innsbruck group [21].
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Figure 5.14: 689 nm saturation absorption spectroscopy. The entire Doppler signal is
shown as reference for the absorption percentage at 350◦C and the relative size of the
Doppler-free signal. The top inset shows the same signal zoomed-in, along with a �t to
a Gaussian and three Lorentzians. The bottom inset shows the �t Doppler-free peak in
yellow, assuming that only one transition with a Lorentzian lineshape contributes to the
peak. In practice, the peak is typically broadened due to the presence of other mJ states.
By applying a large magnetic �eld, we can smear out the contributions from those states
and obtain a narrower mJ = 0 peak. The bottom inset also shows that peak, assuming
�ts to a sum of three Lorentzians, and the residual smeared-out pedestal.

Master laser and spectroscopy

We use a 30 kHz linewidth 25 mW Toptica DLPro as our master laser. We chose this

option for the laser linewidth because while it is still wider than the natural 7 kHz tran-

sition, the Doppler cooling limit associated with it is still in the hundreds of nanoKelvin,

more than enough to e�ciently Doppler cool to high PSD. Because of the abundance

of 88Sr, we lock the master to that feature and use a castle of AOMs to achieve the

351.49 MHz frequency splitting necessary to cool 84Sr. Because of the power losses we

take on these frequency shifts, we use 689 nm TAs to generate more power.

We chip about 25 mW of power o� of a TA output to send to a spectroscopy cell.
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Spectroscopy on this transition is extremely di�cult; because the transition is so narrow,

the optical density of the strontium cloud in the cell needs to be very large. To achieve

this, we based our cell design on that outlined in the Stellmer thesis, Appendix B [21].

It is longer and narrower than our other spectroscopy cells, and we blow up the beam

to �ll the entire diameter of the tubes to maximize interaction with the atomic cloud.

The technical drawings for the current cell design, as well as one with improvements for

the next iteration of the cell, may be found in Appendix I. We also use a large powerful

magnet placed near the cell to split the mJ states, resulting in a narrower signal. The

Doppler-free signal can be seen in Fig. 5.14. We went through several iterations of

cell operation before we found a con�guration that worked. Here is a brief history, for

posterity and as warnings to anyone planning to build such a cell:

� We initially loaded about 12 g of strontium into the spectroscopy cell and pumped

down to about 0.1 mTorr. We used the DC-current resistive heating wire (SEI

10/50) recommended by the Innsbruck group to heat the atomic reservoir cup. We

could initially see a large Doppler-free signal when heating the cell cup to around

400◦C, but over a couple of months, we needed to turn the temperature up to 650◦C

to see any signal. At this time, the windows of the cell also became coated.

� We broke the vacuum, cleaned out the strontium, and baked the cell for a week,

operating under the assumption that contaminants in the cell had been reacting

with the strontium, thereby necessitating the temperature increase. We also de-

signed copper blocks attached to cooling plates, and attached them to the sides of

the cell near the windows to protect them from strontium buildup. We reloaded

12 g of Sr, baked the cell again at 200◦C, and pumped down to just under 1 mTorr.

This gave us a decent Doppler-free signal with a Doppler signal absorption around

30%.

� We found that over time, we still needed to turn the cell temperature up. We
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inevitably would eventually reach operating temperatures near 700◦C in attempts

to recover sizable saturation absorption signals, at which point the heaters would

fail. We damaged all of our heating wire and began to use heating tape powered

by variacs, which did not hurt our signal or add any noise compared to the heating

wire.

� We �nally �gured out that mass migration of strontium was a huge problem. Almost

the entire 12 g of metal, rather than cooling back to a solid in the bottom reservoir

cup, would re-form as a solid in the top of the reservoir cup and in the narrow

tube, which had the e�ect of blocking the light beams. When we saw this start

to happen, we would hit the cell with a hammer from the outside to dislodge the

metal.5 We would then start the whole temperature cycle again.

� We �nally removed the cooling blocks, which we suspect were encouraging solid

formation in the narrow part of the tube. We also attached heating tapes around

not only the center of the reservoir, but extending out several inches to both sides.

We now heat the cell to around 350◦C and get more than 50% Doppler signal

absorption. When we suspect that strontium is moving to a particular area in the

cell, we preferentially heat that area and cool the others. This has worked extremely

well, and we have not needed to increase the cell temperature for the past year.

However, there is now still a possibility that the strontium will coat the windows

over time.

We o�set our pump and probe beam by 160 MHz by putting a double-passed 80 MHz

AOM in the pump beam only, such that the laser is o�set from the transition by 80 MHz.

We then use the lock-in ampli�er built into our Toptica DLCPro controller to modulate

the frequency of the pump beam (�modulation transfer spectroscopy�) to generate an

5There were times we also picked up the entire cell and hit it against the optical table. We called
this �coaxing the strontium back home.�
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Figure 5.15: 689 nm laser setup, showing 689 nm Toptica DLPro and all main beam paths.
Polarization-maintaining single-mode �bers are drawn in blue, and non-polarization-
maintaining single-mode �bers in yellow. Spectroscopy setup is not shown.

error signal to which we can lock using the proprietary TOPAS software. We have seen

a couple of issues with the DLCPro/TOPAS which are worth mentioning. The �rst is

that the connection between the controller and the computer can be lost. This issue

is largely mitigated by using ethernet connection rather than USB. The second is that

occasionally, we begin to see digital noise on the spectroscopy signal. This is not caused

by ground loops as far as we can tell, but is usually �xed by power cycling the controller.

Tapered ampli�ers

We initially set up the 689 nm table with a single homebuilt TA, using an Eagleyard EYP-

TPA-0690-00500-2003-CMT02-0000 chip and the design described in the Singh thesis [19].

The TA is seeded directly by 100% of the master laser power, the mode of which is not
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great but which we shape to match the TA mode as well as we can. The TA initially

output 400 mW, but over a year dropped to 200 mW. At the same time, the spatial output

mode deteriorated, which made the setup worse because we �ber-couple the MOT beams.

The power stayed stable until mid-2018 when it dropped further to 160 mW, at which

point we could not operate the machine anymore. A new TA was built in November

2018 to replace the old one. Like the �rst, it initially output over 350 mW, but the

spatial mode became very poor over just a couple of months, and our power situation

again became tenuous. We eventually added the old TA back into the laser setup further

down the beam path. This �nally gave us enough power overhead to run the machine

comfortably. We added PID control to the 689 nm MOT power, which has helped with

both machine robustness and troubleshooting. The 689 nm laser table layout may be

found in Fig. 5.15.

We are not sure why our TA design seems to be particularly poor for 689 nm chips

(the 671 nm versions in the lithium setup seem to be more stable). We have plans to

develop a di�erent TA design which will allow �ne adjustment of the TA incoupling and

outcoupling lenses, which we suspect are drifting.

5.1.7 1064 nm and 915 nm lasers

For our optical dipole traps and optical lattices, we use two di�erent colors of far-o�-

resonant beams: 1064 nm and 915 nm. Since these setups are ubiquitous among neutral

atom AMO groups, I will not include laser setups in this section.

1064 nm setup

We use an NKT Koheras AdjustiK 100 mW seed in conjunction with an NKT BoostiK

�ber ampli�er to generate 15W of 1064 nm light. There were two main reasons we decided

to purchase from NKT, both of which were motivated by the lithium experiment:
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1. We had heard from various groups that running �ber ampli�ers (including the

Nuferns used by the lithium experiment) without a seed could break the ampli�er.

By purchasing the seed and ampli�er from the same company, we made sure that

there was an interlock such that if there was ever a problem with the seed, the

ampli�er would be protected.

2. The lithium machine seed, a 60 mW Orbits Lightwave, has had issues with power

stability since we bought it, and broke about a year ago. The NKT BoostiK only

requires a 10 mW seed. By purchasing a 100 mW seed in conjunction with a 75:25

�ber splitter, we ensured that even if the lithium seed broke, we could use the

NKT AdjustiK to seed the ampli�ers on both machines. This is the con�guration

in which it is currently being used.

The AdjustiK is controlled via NKT software called GraphiK, which includes useful

graphs to monitor output power. The BoostiK is controlled via a simple set of instructions

on the Hyperterminal; power output can be changed from 1 W at 0.1 A of current to

15 W at 8 A of current. The BoostiK output is directly coupled to an Oz Optics 30 dB

isolator. We add a second (Thorlabs) 30 dB isolator, after which we get around 11 W of

usable light out. The entire 1064 nm beam path is enclosed in its own aluminum case

on the strontium machine optical table. The light is shaped and focused by fused silica

V-coat YAG lenses to minimize thermal lensing issues, and we use zero-order waveplates

from Foctek and high-power cubes from Thorlabs. As noted for the lithium machine

in Section 4.1.5, we initially used 1 mm-aperture Intraaction AOMs (ATM-801DA6) to

switch some of the beams. However, we found that the thermal properties of this AOM

were not good enough for such high powers, which led to a great deal of pointing noise.

We switched to solely using the 2 mm-aperture models ATM-802DA6, which helped a

lot.

The 1064 nm beams, whether optical dipole traps or lattices, all have PID-controlled

131



Strontium Experimental Design and Setup Chapter 5

intensities.6 To switch our power between the beams meant for cooling and the beams

meant for experiments, we use waveplate rotators from Paci�c Laser Equipment. They

have a relatively slow rotation rate of 3 to 4 s/rev, but this is still faster than our optical

evaporation time, so it doesn't matter to us. For detailed instructions on how to program

and control the waveplate rotators, please see Appendix J.

The optical dipole traps for evaporative cooling are free-space coupled on the stron-

tium machine table. We use Polaris double-sprung mirror mounts and custom-designed

and machined optomechanics to bounce the light from the optical table up to the bread-

board. We also make sure that once the beams leave the aluminum enclosure, they

are as protected from air currents and vibrations as possible. The beams for exper-

iments (optical dipole traps and lattices) are �ber-coupled using high-power Thorlabs

APC polarization-maintaining �bers. We used to use Oz Optics high-power �bers which

we thought were angle-polished but were actually �at-polished; the problems arising from

using these �bers for lattices are discussed further in Appendix E, as are various other

considerations for optomechanical stability.

915 nm setup

Our 915 nm laser is a Sacher Lynx ECDL, which outputs about 100 mW. We initially

bought this laser because 915 nm is the magic wavelength for the 689 nm transition

(see Appendix D for Sr polarizability calculations); we eventually want to build two TAs

to create a 2d magic lattice for quantum gas microscope experiments. However, in the

meantime, we decided to use this laser for our phasonic spectroscopy explorations (see

Chapter 8). The ECDL currently seeds one homebuilt TA (using the same design as the

671 nm and 689 nm TAs) with an Eagleyard EYP-TPA-0915-01500-3006-CMT03-0000

chip to generate about 1 W of power. After an isolator and an AOM, this drops to around
6We have found that �cleanup� polarizing beam-splitting cubes are necessary at various places in the

1064 nm setup; this is explained in Appendix E.
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Axis Vertical ODT 1 ODT 2 Phason Expt Tight Trap Expt

Company Andor Black�y Black�y Black�y Black�y

Model iXon 897 Type 1 Type 2 Type 1 Type 2

Cicero delay (µs) 60 250 100 600 200

Mag (lenses) 1000/125 500/300 400/200 300/150 35/150

Mag type Mag Mag Mag Mag Demag

Pixel size (µm) 16.6 3.75 6 3.75 6

µm/pixel 2.075 2.25 3.00 1.875 25.714

VVA potentiometer 821 720 660 800 700

Cicero exposure (µs) 16 28 28 28 16

Table 5.7: Strontium cameras and corresponding imaging parameters. Black�y Type 1
refers to model number PGE-12A2M, while Type 2 is PGE-05S2M-CS.

700 mW. We then couple around 300 mW through a Thorlabs polarization-maintaining

�ber. The beam power is monitored after the �ber and controlled via PID. All of the

optics we use are standard E03 mirrors, B-coated optics from Thorlabs, and achromatic

doublets from Edmund Optics.

5.1.8 Cameras

We use several cameras for several di�erent imaging axes. The main camera, used to

take the majority of images for experiments, is an Andor iXon 897 EMCCD camera set

up with a magni�cation of 8 looking along the vertical (gravity) direction. This gives

us a resolution of about 2 µm/px. The objective lens for this setup, a 125 µm doublet,

extends from the top breadboard down towards the top viewport using a lens tube, Z-

translation stage for focusing adjustment, and a custom mounting jig. The jig for the

camera itself was also custom-designed to mount to the top breadboard. The imaging

path along the top breadboard, including an f = 1000 refocusing lens, is all contained in

lens tubes to minimize stray light which could result in increased dark counts. Designs

for the objective jig and camera mount may be found in Appendix I.

In addition to this main imaging axis, we use several auxiliary cameras to monitor
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�uorescence and help with beam alignment. These auxiliary cameras are all PointGrey

Black�y cameras set up with varying magni�cation. All of our cameras and imaging

setup parameters may be found in Table 5.7.

5.2 Strontium Cooling

This section will discuss details of each step in the strontium cooling sequence for 84Sr,

including detunings and saturation parameters. It steps through transverse cooling,

Zeeman slowing, the blue MOT, repumping, the red MOT stages, optical dipole trapping,

and evaporation to BEC. The general techniques discussed here are broadly applicable

to the other bosonic isotopes; 84Sr is a nice place to start because despite its low natural

abundance, it has a very favorable scattering length for optical evaporation. Cooling 87Sr

is a more complicated task. The Stellmer thesis is a nice source for discussion on the

experimental quirks associated with the fermion; new SWAP cooling techniques out of

JILA have also eased some of the technical di�culty [21, 61, 62].

5.2.1 Transverse cooling

After the nozzle, we have vertical transverse cooling in the cube originally designed for

both dimensions, and horizontal cooling in the cube which contains the atomic beam

stopper. Both of these beams are detuned from resonance by roughly -Γ/2 and coupled

from the laser table via multimode �bers, so they have strange ring-shaped spatial modes.

The vertical beam is roughly a 0.5 cm by 3 cm oval, and contains 5.5 mW of power which is

retrore�ected (saturation parameter s ≈ 0.2). The horizontal beam is roughly a 0.5 cm

by 2 cm oval, and contains 18.2 mW of power which is also retrore�ected (s ≈ 1.1).

The power balance between the two beams is set empirically to optimize �uorescence of

the repumped MOT. The two transverse cooling beams together result in a repumped

MOT �uorescence increase of roughly 100%. Fluorescence from the slower light and the
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Figure 5.16: The atomic beam and surrounding distribution �uorescence from slower
light and vertical tranverse cooling light in the transverse cooling/4-way cross section of
the oven.

vertical transverse cooling light can be seen illuminating the atomic beam (and atoms in

the �pedestal� of the nozzle distribution) in Fig. 5.16.

5.2.2 Zeeman slower

Full details of the Zeeman slower design and magnetic �elds may be found in Section 5.1.2.

As noted in Section 5.1.4, our slower light is coupled through a special glass-capped �ber

to allow us to couple 180 mW of 461 nm light, and get 130 mW of light out. The

beam is set to the proper polarization, and is magni�ed to �ll the slower tube at the
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slower exit, and is focused so that it is smaller near the nozzle (the beam convergence

is set empirically with a translation stage to optimize the repumped MOT �uorescence).

Assuming that the beam �lls the slower tube for its entire length, this corresponds to

s ≈ 1.1. Recall from Section 5.1.2 that the slower �elds were designed for a detuning of

around -750 MHz; we then empirically optimized this detuning to -744 MHz by imaging

a 88Sr magnetic trap for various slower detunings and powers.

The transverse cooling light is taken from the 0-order of the slower AOM, while the

slower light is taken from the -1-order. The power balance between these orders is set by

looking at the unrepumped MOT �uorescence.

5.2.3 Blue MOT

From this point onwards, all cooling is done in the main chamber. Fig. 5.17 shows the

locations of all main chamber beams relative to various ports.

We can de�ne a plane parallel to the optical table (normal to gravity) which passes

through the atomic cloud; call this the atomic plane. The three MOT beams are labeled

A, B, and C, and they are all detuned from resonance by approximately -Γ. A and B

are coupled in using MOT cagemount optics discussed in Section 5.1.3; since they are

attached to the 1.33� CF viewports, they are orthogonal to each other, but tilted from the

atomic plane by 16◦. MOT C enters the bottom of the chamber and exits through the top.

We try to make this beam orthogonal to both MOT A and MOT B but are limited by the

height and radius of the turret; instead of cutting a 16◦ angle through the chamber, we

can only do 11◦. This has not seemed to hurt us. We have around 5 mW on the machine

table in each beam, and all are retro-re�ected. They are all roughly collimated with

a 4 mm diameter (any slight deviations from collimation are to compensate for power

losses in the retro-re�ected beam). Our e�ective saturation parameter is 6.

The blue MOT requires an approximate �eld gradient of 42 G/cm, which also forms
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Figure 5.17: Slower, Blue MOT (A, B, and C), Red MOT (X, Y, and Z), repump, optical
dipole trap (ODT/XODT), lattice, and vertical imaging beams (IMG) and their relative
locations around the main chamber. Each beam is labeled on its respective side of entry
into the chamber; retrore�ections are neither depicted nor labeled.

a trap for magnetically-trappable states. As the MOT loads, a signi�cant fraction of

the atomic cloud becomes dark to the 461 nm light as it falls into the metastable (but

magnetically-trapped) |3P2〉 state. This is actually quite convenient, as it allows us to

load a reservoir of dark magnetically-trapped atoms, but it means that MOT �uorescence

is not a great quantitative metric of the loading rate. It also means that when aligning the

MOT beams, we need to make sure that the MOT forms at the location of the magnetic

trap to optimize loading e�ciency. We found that a good way to do this is to image the
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Figure 5.18: Photo of a 461 nm MOT

unrepumped MOT �uorescence using two di�erent cameras (looking along orthogonal

axes), and then absorption-image an equilibrated magnetic trap of 88Sr atoms along

both of those axes. This process is iterated while walking the MOT beam alignment.

Once the beam alignment is set and the loading rate is optimized, we switch back to

84Sr. As a diagnostic, we look at the 84Sr MOT �uorescence (with and without repump)

using the lattice imaging axis just after optimization, and use it as a standard candle

at the beginning of every day (this number is around 3.5 × 107 counts with background

subtracted). We typically run the MOT for around 10 s to load the magnetic trap (a blue

MOT can be seen in Fig. 5.18). We believe this gives us 6-7 million atoms in the magnetic

trap, just using natural abundance as a scaling ratio, but we cannot directly measure this.
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Once the magnetic trap is loaded, we hold it for 500 ms while ramping down the �eld

gradient to 16 G/cm; this mitigates the experimental di�culty of controllably switching

to the much-lower red MOT �eld gradients. Our temperature at this stage is around

1 mK (e�ectively set by the Doppler cooling limit of the blue MOT), and our PSD is in

the high 10−6 s to low 10−5 s.

All of the cooling parameters for the next stages�the repump, red MOT 1, and red

MOT 2�are summarized in the cooling schematic (Fig. 5.19).

5.2.4 Repumping

Once the atoms are magnetically trapped, we need to repump them back to the |3P1〉

state to cool and trap them on the 689 nm cycling transition. We do this by �ashing

1.5 mW of 403 nm light collimated at 4 mm beam waist (saturation parameter O(1))

on the magnetic trap for 3 ms. During this time, we also preemptively turn on the red

MOT 1 light to catch any repumped atoms that may escape within those 3 ms.

5.2.5 Red MOT

Strontium's intercombination transition allows us to use Doppler cooling to realize much

greater PSDs than are typically achievable without the use of sub-Doppler and evapo-

rative cooling. The 7.4 kHz linewidth corresponds to a Doppler cooling limit of around

180 nK, lower than the critical temperature of the BEC transition! Practically speaking,

we cannot cool much further than 1 µK due to experimental ine�ciencies, but this is

still cold enough to easily trap in a crossed ODT. Since these MOTs are operated on the

intercombination line, they are sometimes called intercombination or narrow-line MOTs.

We usually just refer to it as a red MOT, referring to the 689 nm transition wavelength.
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Red MOT 1

Addressing atoms with any signi�cant velocity requires working in the regime where the

light detuning is much larger than the natural linewidth (contrast this with, for example,

the blue MOT). We require the detuning of the light to balance the Zeeman shift of the

atoms. Using a Γ = 7.4 kHz linewidth, the Zeeman shift of 1.4 MHz/G, and a 5 G/cm

�eld gradient in ẑ, we �nd that regardless of the detuning, this condition is only met for

a spatial �shell� of 10 µm which is symmetric about the �eld zero7. The only thing we

can a�ect by varying the detuning is the distance from the �eld zero at which this shell

occurs. For a detuning of 6 MHz, we can address atoms in a 10 µm shell which sits an

at ẑ radius of 8 mm (the x̂ and ŷ radii will be roughly twice this, since the �eld gradient

is half as strong). We �nd that we need to modulate the detuning of the red light from

resonance down to -6 MHz, e�ectively broadening the linewidth of the laser, to create a

�comb� of light detunings which are spaced by the frequency of the modulation. Those

combs correspond to concentric shells of resonance in space, each at a slightly di�erent

radius from the �eld zero and containing a fraction of the total power. We call this

broadly-modulated atom-capturing stage Red MOT 1 (RM1).

At the start of the RM1 stage, we switch our �eld gradient from 16 G/cm to 4.7 G/cm

using analog controls (the e�ective switching time is around 10 ms, which does not hurt

us). Our RM1 detuning ranges from -10 kHz to -5.9 MHz at 40 kHz modulation frequency.

We start with 6.9 mW in the vertical MOT beam and 2.5 mW in each horizontal beam,

and linearly ramp down to 2.05 mW in the vertical and 0.75 mW horizontal; all three

beams are collimated to a 3 mm waist and retrore�ected. This corresponds to a total

MOT intensity of 28000Isat (190Isat per comb) at the beginning of capture, and 8300Isat

(50Isat per comb) at the end. This stage lasts for 200 ms, and typically results in 6-7

million atoms captured at around 35 µK (density ∼ 1010 cm−3, PSD ∼ 10−3). This is

7Note that this 10 µm number assumes an intensity I/Isat ≈ 1. By working at larger intensities, we
can power-broaden the natural linewidth by a factor of

√
1 + s to broaden that region of resonance.
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around the number of 84Sr atoms we believe are loaded into the magnetic trap over 10 s.

It is worth noting that the maximum acceleration from photon scattering is inversely

proportional to mass; for relatively heavy strontium atoms, the e�ects of gravity become

important during the red MOT. This is the main reason we preferentially divert power

to the vertical beam. Images of the RM1 stage along each imaging axis can be found in

Appendix F.

Red MOT 2

We would like to achieve as high PSDs as possible by the time we load into the crossed

ODT. While modulating the light during RM1 allows us to e�ciently capture a large

number of atoms, it also e�ectively increases the Doppler cooling limit by arti�cally

broadening the linewidth. We need to do more if we wish to cool further. The next

stage, which is focused on increasing the PSD, is nicknamed Red MOT 2 (RM2).

During RM2, the �eld gradient is gently weakened from 4.7 G/cm to 4 G/cm over

800 ms. The RM2 detuning is simultaneously ramped down and the modulation nar-

rowed: We start with detuning modulation from -470 kHz to -5.4 MHz, and linearly ramp

both the maximum and the minimum detuning to -200 kHz8 At the end of this detuning

ramp, we are left with a single frequency in our comb. We simultaneously linearly ramp

down our intensity to just a few µW in the vertical beam, and essentially no power in

the horizontal beams (I/Isat = O(1)). The acceleration from photons is no longer able

to counterbalance gravity partway through this intensity ramp, so we need to ramp up

our crossed ODT beams 1 and 2 to hold onto the atoms. We ramp both up to their

maximum powers of 4 W and 3 W, respectively, using an exponential ramp.
8If we go to smaller detunings during this stage, we immediately begin to see atomic losses, which

makes us suspicious that the laser linewidth is actually on the order of 100 kHz (corroborated by a self-
heterodyne measurement). This also limits our achievable �nal temperatures, which are much higher
than the 1 µK achieved by groups at Innsbruck and Rice, among other places [21, 63].

142



Strontium Experimental Design and Setup Chapter 5

Figure 5.20: A time-of-�ight out of a crossed ODT yields a temperature of around 12-
13 µK, a temperature we believe is limited by the linewidth of our 689 nm laser. The
slight defocusing of the ODT beam is evident at short TOFs.

5.2.6 Crossed ODT and evaporation

We typically refer to our crossed ODT beams as ODT 1 (ODT), which contains more

power (4.15 W in the enclosure, 3.8 W at the atoms) at a larger waist (65 µm), and ODT

2 (XODT), which contains less power (3.85 W in the enclosure, 3.5 W at the atoms) at

a smaller waist (50 µm). The ODT beam has a peak depth of 31 µK while the XODT

has a peak depth of 48 µK. The crossed ODT frequencies at peak depths are (ωx,ωy,ωz)

= 2π × (270, 430, 515) Hz. However, we �nd that we trap the maximum number of

atoms where the ODT is slightly defocused (on the order of 100s µm) to give a larger

trap volume, so the actual trap frequencies are slightly weaker.

After the ODT and XODT beams are ramped up during RM2, we allow the trapped

atoms to thermalize. The cloud is initially very dense, and we typically see an extremely

quick (10 ms) period of atomic loss which may be due to three-body losses, followed by

a slower (100 ms) thermalization period. We hold the atoms for 500 ms to allow these

processes to equilibrate. At the end of this hold, we are left with around 8 × 105 to 1 ×

106 atoms at 13 µK (density ∼ 1013 cm−3, PSD ∼ 10−2). The lifetime of clouds in this

trap exceeds 30 s.

We can then proceed with optical evaporation. We use an exponential ramp over 8.5 s

with a time constant of 2.25 s, during which time the power drops to around 200 mW
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Figure 5.21: We begin optical evaporation and look at condensate formation at di�erent
times during that process, allowing the atoms to expand for 7 ms so we can image the
momentum distribution. We see a clear transition from a thermal distribution to a
bimodal distribution and �nally to a cloud with condensate fraction ∼98%.

in each beam. The evaporation is extremely e�cient due to a high initial PSD and a

favorable 84Sr intra-species scattering length of 124a0; at the end of evaporation, we are

typically left with around 1 × 105 atoms with a condensate fraction of 95% or greater.

Fig. 5.21 shows images of our BEC at various times-of-�ight.
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Chapter 6

Numerical Investigations of New

Directions for Quantum Simulation

We discuss and present initial calculations elucidating two new directions for experi-

mentally exploring extreme non-equilibrium phenomena using ultracold trapped atoms:

quantum emulation of ultrafast strong-�eld physics, and coherent phasonic spectroscopy

of tunable optical-lattice quasicrystals. Both directions seek to probe what one might call

the �non-equilibrium frontier� by making use of unique features of trapped atoms such as

extreme tunability and ability to be placed arbitrarily far from thermal equilibrium. Both

are capable of exploring regimes of parameter space that cannot be straightforwardly at-

tained in solid-state experiments. Certainly other related directions of research in this

area exist as well; we have focused on these two as an indication of the exciting open

possibilities for cold-atom quantum emulation of extreme non-equilibrium phenomena.

Much of the content in this chapter is adapted from [64].
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6.1 Introduction

Ultracold atoms in optical traps are increasingly being used as tools for the experimental

study of many-body quantum systems important in other areas of physics [65, 66, 67].

Such experiments, often called �quantum emulation� or �quantum simulation,� are made

possible by the exquisite level of quantum control that can be exerted over cold-atom

Hamiltonians.

A major emerging area of interest in this �eld is the direct experimental investigation

of non-equilibrium dynamics in tunable quantum systems [68, 69, 70, 71]. Although much

has already been done in this area, unexplored frontiers remain. In this chapter we de�ne

and discuss a part of this new frontier of quantum simulation experiments: the study of

extreme non-equilibrium phenomena.

Since many if not most cold atom experiments have some non-equilibrium compo-

nent, it is worth speci�cally de�ning the scope of this work. In the context of quantum

emulation of condensed-matter physics, what we mean by an �extreme� non-equilibrium

phenomenon is one which is di�cult or impossible to realize in the solid state, for practical

or fundamental reasons. Several new directions along these lines are possible. For con-

creteness, we will focus on two such new directions for extreme non-equilibrium quantum

emulation:

1. Quantum emulation of ultrafast processes.

2. Phasonic spectroscopy in tunable quasicrystals.

Each of these directions concerns extreme non-equilibrium phenomena in the sense that

cold atom quantum emulation techniques can move beyond what is possible in condensed-

matter experiments. In the sections below we de�ne and discuss these new directions

and present the results of initial calculations elucidating the advances that are within the

reach of current experimental technology.
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6.2 Quantum emulation of ultrafast processes

The �rst experimental direction we discuss is the use of trapped atoms to understand

how electrons in atoms and solids respond to ultrafast strong electric �elds. Follow-

ing earlier proposals [68, 69], we examine the possibility of quantitatively measuring the

strong-�eld impulse response of arti�cial atoms and solids with variable pulse parameters,

interactions, and lattice geometry, to advance understanding of the behavior of matter

in pulsed-laser �elds. Such cold-atom quantum emulation of strong-�eld solid-state phe-

nomena would probe some of the fastest processes in atomic physics using some of the

slowest. This approach, which is complementary to existing experimental techniques, has

the potential to address important open questions in strong-�eld physics and to investi-

gate unexplored regimes of ultrafast-equivalent dynamics. In this section, we will begin

by motivating the proposed approach, proceed to a speci�c discussion of experimentally

feasible ultrafast quantum emulation, and then present and discuss numerical models of

simple initial experiments.

6.2.1 Scienti�c motivation: ultrafast phenomena

Revolutionary scienti�c and technological advances in ultrafast lasers have made strong-

�eld ultrafast physics a vibrant and growing area of research [72, 73]. Some exciting

prospects include real-time imaging of valence electron motion, sub-optical-cycle control

of solid-state conductivity, petahertz information processing, imaging of charge transfer

in biomolecules, and production of Floquet-Bloch states of matter. However, especially

in the solid state, our theoretical understanding of non-equilibrium strong-�eld physics is

limited. Important open questions include the precise mechanism and timing of tunneling

ionization, the e�ects of interactions and correlation, and the nature of the quantum-

classical crossover. Accurate numerical treatments are infeasible even for moderate-sized

single atoms, let alone solids. Simpli�ed models of ultrafast dynamics are widely used
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Figure 6.1: General diagram of an experiment performing quantum emulation of ultrafast
phenomena. An initial state (e.g. a two-component Mott insulator) is prepared using
standard techniques. This system is then subjected to a strong pulsed or continuous drive,
using optical or magnetic forces. Subsequent evolution under the original Hamiltonian is
followed by readout using absorptive, dispersive, or di�ractive imaging.

([74], e.g.), but their range of applicability is unknown and validation is di�cult. In

addition to these theoretical challenges, physical limitations of pulsed laser experiments

(on time resolution, pulse shape, maximum �eld intensity, net applied force, and readout)

restrict the experimental investigation of some of the most exciting prospects in ultrafast

physics: many processes occurring inside atoms and solids are still too fast for us to

see or control. Many of these limitations can be addressed or circumvented by the

complementary technique of cold atom quantum emulation.

Quantum emulation experiments often rely on the analogy between neutral atoms in

optical lattices and electrons in crystals. Although these two systems have vastly di�erent

energy densities, they can in many cases be described by equivalent Hamiltonians, which

give rise to equivalent physics. This analogy has been fruitfully used to explore equilib-

rium solid-state phenomena from Mott insulators to antiferromagnets [75, 76, e.g.], and

dynamical phenomena from quantum quenches to dynamical suppression of tunneling to
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integrability [77, 78, 79, 80, e.g.]. In the non-equilibrium context, the di�erence in energy

scales leads to a rescaling of time: the processes underlying ultrafast phenomena like tun-

nel ionization occur over milliseconds rather than attoseconds, and are thus in a sense

observable in ultra-slow-motion [68]. This greatly simpli�es experimental access to the

dynamics. It is worth noting that the low energy density of cold atom experiments also

enables freezing out of all internal degrees of freedom of the constituent atoms: prepara-

tion of an atomic sample in a single hyper�ne state (or two, to model spin-1/2 particles)

is a standard technique. This level of quantum control of internal states is what allows

for the emulation of a relatively structureless electron by a much-more-complex quantum

object such as an alkali or alkaline-earth atom.

Despite the large temporal magni�cation factor and the ease of applying arbitrary

driving �elds to cold atoms with optical or magnetic �eld gradients, very little of the

growing body of quantum emulation research has directly addressed ultrafast phenomena

in atoms and solids. Earlier work on accelerated optical lattices (e.g. [81, 82]) can be

understood as pioneering this approach. A few trailblazing theoretical proposals have

suggested the use of cold atoms to simulate gas-phase attosecond dynamics [68] and

multiphoton resonances in solids [69], and recent theoretical work has recommended the

use of cold atoms to study femtosecond dynamics in an arti�cial benzene molecule [70].

A general diagram of an experiment implementing quantum emulation of ultrafast

phenomena in a lattice appears in Fig. 6.1. Cold trapped atoms moving and interacting

in an optical lattice are often approximately modeled with a modi�ed Bose-Hubbard

Hamiltonian:

Hlatt = −J
∑
〈ij〉

(â†i âj + â†j âi) +
U

2

∑
i

â†i â
†
i âiâi +

∑
i

µiâ
†
i âi. (6.1)

Here J is the tunneling matrix element, U is the onsite atom-atom interaction energy,

µi is the site-dependent chemical potential resulting from the trap, â and â† are ladder

operators, and 〈ij〉 represents the sum over all nearest-neighbor pairs. This model,
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representing a �tunable arti�cial solid,� supports rich physics including a well-studied

quantum phase transition between super�uid and Mott insulator [75]. Generalizations

of this model, including to the case of multiple bands, Fermi statistics, or long-range or

spin-dependent interactions, are experimentally possible. External forces take the form

of a space- and time-dependent chemical potential µi(t); these are the forces used to

perform quantum emulation of ultrafast processes.

While optical lattices enable access to complex and potentially useful ultrafast solid-

state dynamics [69], many ultrafast experiments use individual atoms in the gas phase

rather than solid materials. Quantum emulation of single-atom phenomena can be done

using a tight optical dipole trap, which plays the role of the Coulomb potential of the

atomic nucleus [68]. In this context, the relevant Hamiltonian is

Htrap =
N∑
i=1

p2
i

2m
+

N∑
i=1

Vtrap(ri) +Hint +
N∑
i=1

Vapplied(ri, t), (6.2)

where pi and ri are the position and momentum of the ith atom, Vtrap is the trapping

potential which emulates the Coulombic nuclear potential, Hint describes atom-atom

interactions, and Vapplied is the time-dependent applied potential which emulates the

e�ect of the electric �eld of an ultrafast laser.

We emphasize that the goal of ultrafast quantum emulation experiments is not exclu-

sively the preparation of systems with eigenstates and response functions mapping exactly

to those of a particular atom, molecule, or solid (though interesting ideas along these

lines are already being pursued, for example in the work on arti�cal benzene presented

in Ref. [70]). A goal of equal or even greater importance is to advance our understand-

ing of general phenomena which are relevant to a broad range of far-from-equilibrium

quantum systems. We mention several examples of such general phenomena in the next

subsection. Especially with this goal in mind, the cold-atom context o�ers advantages

complementary to those of ultrafast experiments.

Two main features of such quantum emulation experiments will allow them to ex-
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plore new regimes of extreme non-equilibrium matter. The �rst unique feature is the

ten-trillion-fold temporal magni�cation factor resulting from operation in the ultra-low-

energy regime. The second feature, enabled by the well-stocked toolbox of ultracold

atomic physics, is near-complete spatiotemporal control of the energy landscape. To-

gether, these features may enable a new approach to studies of ultrafast solid-state dy-

namics. The ability to study dynamics on ultrafast-equivalent timescales has the potential

to facilitate fully quantum-mechanical emulation of light-matter interactions in regimes

well beyond the limits of existing theories and experiments.

6.2.2 Ultrafast quantum emulation experiments

The �rst step in an ultrafast quantum emulation experiment is state preparation, in

which well-understood cold atom techniques create an initial state of interest, such as

a super�uid or Mott insulator, or simply macroscopic occupation of the ground state of

a single trap. The atoms in this state serve as quantum-mechanical models of bound

electrons. The next step is illumination, in which strong pulsed or continuous drive

�elds are applied to the sample. These �elds serve to emulate the electric �eld of a

pulsed laser. They can either be the result of magnetic �eld gradients or optical �eld

gradients, and can be strongly spin-dependent. Pump-probe pulse architectures are also

straightforwardly implemented, thanks to the easily accessible experimental timescales.

In the next step, the �elds are turned o� and the system is allowed to evolve under

its original Hamiltonian. Finally (possibly after an additional probe pulse), the state is

read out. The cold atom context enables a set of readout techniques distinct from those

possible in solid-state experiments: methods like time-of-�ight momentum-space imaging,

bandmapping, optical Bragg di�raction, and tomography allow precise projection and

measurement of sample parameters at any time during or after a pulse. This opens

a path towards quantum emulation of a holy grail of ultrafast science: fully general
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attosecond-pulse attosecond-probe spectroscopy of complex correlated systems.

The �rst and simplest measurements such emulators will enable are studies of ul-

trafast photoionization (see Chapter 7. In these experiments, bandmapping or simple

time-of-�ight imaging will be used to determine �ionization yield� (unbinding of atoms

from the optical potential) as a function of the parameters of a few-cycle pulse. Even

in the gas phase this cannot be considered a solved problem: the dynamics underlying

ultrafast impulse response cannot be modeled exactly for atoms with more than two

electrons. Quantum emulation of such processes thus has an important role to play in

elucidating the underlying physics, a role complementary to that of conventional ultra-

fast experiments. To give an idea of future possiblities, we suggest a few examples of

this complementarity. The e�ects of nuclear motion can be cleanly separated from the

ionization physics, and tunneling ionization studies in the presence of only s-wave contact

interactions can serve as a direct test of approximate theories which make use of a zero-

range core potential [83]. Measurement of still-bound excited states after a pulse may

enable new probes of frustrated tunneling ionization [84]. The high temporal magni�-

cation and well-understood microscopic dynamics of the quantum emulator may provide

valuable input into the long-running debate regarding tunneling times in �eld ionization

experiments [85, 86, 87], by measuring ionization yield and the momentum of unbound

atoms as a function of time at sub-cycle timescales. Studies of strong-�eld atomic sta-

bilization [88] are an intriguing possibility. Another experiment enabled by ultrafast

quantum emulation is the study of nonperturbative multiphoton resonances in driven

lattices. While barely accessible with modern pulsed lasers, such resonances can be stud-

ied cleanly and directly in strongly driven optical lattices [69]. Other possible targets for

quantum emulation of few-cycle pulsed �elds include studies of polarization dependence

and multifrequency �elds, and the e�ects of defects or inhomogeneities. Polarization and

multicolor excitation are straightforwardly implemented using two modulated optical or

magnetic �eld gradients with variable relative phase, while defects and inhomogeneities
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can be introduced by additional optical potentials or atoms of di�erent spins or species.

Finally, interactions are a critical ingredient for a quantum emulator of ultrafast

solid-state phenomena. Because several options exist for emulation of electron-electron

interactions, an array of exciting experiments is feasible. Experiments with multiple spin

states or multiple species are a natural possibility. One exciting goal is quantum emu-

lation of the physics of recollision which underlies high-harmonic generation (HHG) in

solids [89]. Although HHG itself depends upon the charged nature of the mobile con-

stituents of matter, the recollision dynamics which result in HHG can be probed precisely

by time-of-�ight measurements of scattering halos (as in Ref. [90]). Studying halo struc-

ture as a function of pulse parameters and time should enable recollision studies with

strongly-interacting isotopes. Long-range interactions are more di�cult to realize than

contact interactions, but not impossible. For example, transitions from the metastable

triplet state of strontium can be used to engineer tunable long-range interactions via the

exchange of mid-IR photons [91]. Quantum emulation of ultrafast laser-solid interactions

in the presence of arbitrarily tunable long-range interactions would represent a truly new

capability for science.

6.2.3 Calculated performance of ultrafast quantum emulators

To provide speci�c insight into the operation of cold atom quantum emulators of ultrafast

phenomena, we have numerically modeled two simple non-interacting experiments by

integration of the time-dependent Schrödinger equation. In these and all calculations

presented in this chapter, the time-evolution operator is computed by a �nite-di�erence

method with periodic boundary conditions using the midpoint Crank-Nicolson method.

Appropriate time steps are chosen adaptively to control numerical error. For periodic

drives, long-time numerical integration is achieved by iterative application of the single-

period time-evolution operator.
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We present the results here mainly in order to elucidate the relationship between

ultrafast experiments and cold-atom experiments, and the relevance of the latter for

performing quantum emulation of the former. A crucial point underlying the motivation

for experiments of the type we discuss is that no ab-initio theoretical calculation is

capable of fully modeling the long-time dynamics of an interacting many-body quantum

system driven far from equilibrium. Because of this, a close dialogue between theory

and experiment is necessary to advance our understanding of any complex quantum

phenomenon (as has happened, for example, in recent years with experiments and theories

probing the quantum critical point of the super�uid-Mott insulator phase transition).

Thus, the interaction-free calculation results we present are intended as a starting point

for fruitful theory-experiment dialogue rather than a complete model of an interacting

physical system. We emphasize that cold-atom quantum emulation is a technique which

can complement ultrafast experiments rather than replace them. For more calculations

and discussion of expected performance of ultrafast quantum emulation experiments, see

also refs. [68] and [69].

The �rst experiment we analyze concerns the spectroscopic response of a bound sys-

tem to a single ultrafast pulse. This can be realized by loading degenerate bosons into

the ground state of a tight Gaussian-beam optical dipole trap and observing the response

to position-modulation of the trap. Along a direction x transverse to the trapping beam,

the potentials in the Hamiltonian of Eq. 6.2 are then given by

V (x, t) = Vtrap + Vapplied = De−(x−xmod(t))2/2σ2

, (6.3)

where D is the optical trap depth, σ is its waist, and

xmod = Amod sin(ωmodt). (6.4)

Here Amod is the modulation amplitude and fmod = ωmod/2π is the frequency of the

modulation.

The resulting inertial forces play the role of an electric �eld in an ultrafast experi-
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Figure 6.2: Analogy between ultrafast and atom-trap experiments. Left: Measured
resonance-enhanced multiphoton ionization spectra of pyrazine-H4 at two di�erent pulse
times (data from Ref. [92]). Right: Calculated results from a strong-�eld quantum
emulator consisting of 84Sr in a shaken optical dipole trap (waist σ is 5 µm, depth D is
100 nK, shaking amplitude Amod is 1064 nm). The unbound fraction (which corresponds
to the ionization yield) is plotted as a function of excitation frequency for two di�erent
pulse times.

ment. A more exact realization of an e�ective electric �eld could be accomplished with-

out substantially increased experimental complexity by using an applied optical intensity

gradient or magnetic �eld gradient to provide the time-varying force. This can be under-

stood as a cold-atom model of an ultrafast resonance-enhanced multiphoton ionization

spectrum like those presented in Ref. [92]. Near the Fourier-limited regime, the pulse

duration a�ects the form and sharpness of the resulting spectra; this is demonstrated for

femtosecond and picosecond excitation of pyrazine-H4 in the left panels of Fig. 6.2 (data

are taken from Ref. [92]). We have modeled a roughly equivalent cold-atom experiment

by integrating the time-dependent Schrödinger equation in the time-varying potential

of Eq. 6.3. For simplicity we have neglected interactions. The right panels of Fig. 6.2
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Figure 6.3: Two-pulse ultrafast quantum emulation in an atom trap. Calculated unbound
fraction (corresponding to ionization yield) after 2-pulse excitation is plotted versus pulse
frequency fmod and inter-pulse delay. Note the interference e�ects in the dependence on
pulse delay. Trapped species is 84Sr, trap waist σ is 5 µm, depth D is 500 nK, and
modulation amplitude Amod is 2 µm for both 20-cycle pulses.

show the dependence of unbound fraction (which corresponds to ionization yield) on

pulse frequency for two di�erent pulse lengths. The point here is not to make quantita-

tive comparisons between a single atom trap and a pyrazine molecule, but to support the

possibility of useful quantum emulation by showing that similar Hamiltonians give rise to

similar dynamical phenomena. Experiments along these lines are discussed in Chapter 7.

The second experiment we have modeled is slightly more complex; it concerns the

response of a bound system to a pair of ultrafast pulses separated by a variable delay

time. This is realized in the cold atom context in exactly the same way as the �rst

experiment, but with a di�erent modulation protocol consisting of two separated identical
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pulses. Interference e�ects of varying the inter-pulse delay are clearly visible in the

numerical results shown in Fig. 6.3; even in a non-interacting system, the features of

such spectra are not always simple to understand. The two-pulse protocol could easily

be extended to model phenomena involved in related ultrafast experiments such as those

making use of the so-called RABBIT technique (reconstruction of attosecond beating

by interference of two-photon transitions) [93, 94]. Further extensions involving varying

polarization, multifrequency �elds, partial-cycle pulses, and tunable interactions would

be quite straightforward in the cold-atom context and would add substantially to the

richness of the phenomena which could be investigated with this technique.

6.3 Phasonic spectroscopy in tunable quasicrystals

The previous section focused on quantum emulation of phenomena which occur when

matter is illuminated by intense pulsed �elds, and discussed the complementarity of

conventional and emulator-based experiments. The extreme tunability of cold-atom ex-

periments also enables the realization of extreme nonequilibrium phenomena that cannot

be studied in any other experimental context. In this section we propose and discuss one

such class of experiments: coherent phasonic spectroscopy of tunable quasicrystals.

6.3.1 Scienti�c motivation: quasicrystals and phasons

The formation, stability, excitation, and electronic structure of quasicrystals remain in-

completely understood. Open questions include the e�ects of electron-phason coupling,

the nature of electronic conductivity or di�usivity, the spectral statistics, the nature of

strongly correlated magnetic states on a quasicrystalline lattice, topological properties

of quasicrystals, and even the shape of the electronic wavefunctions [95, 96, 97, 98, 99,

100, 101, 102, 103]. Just as phonon modes arise from discretely broken real-space trans-

lation symmetry, phason modes arise from broken translation symmetry in the higher-
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Figure 6.4: Phasons in quasiperiodic optical traps. a: Cut-and project construction
of optical Fibonacci lattice, as described in Ref. [108]. The cut angle α controls the
quasiperiodicity, and translations in the direction labeled φ correspond to phasons. b:
Schematic of bichromatic optical lattice. Here the phason parameter φ is the relative
phase between the two single-frequency lattices. c: CCD images of tunable monochro-
matic and bichromatic lattices created with angled-beam interference.

dimensional space from which all quasiperiodic lattices are projected [104, 105, 106].

Phasons have important but incompletely understood e�ects on thermal and electronic

transport in real quasicrystals [107]. Because they involve long-range rearrangement of

atoms, phasons are typically not dynamical degrees of freedom in solid-state quasicrys-

tals; they are generally pinned to disorder or present as strain. The in�uence of phasons

is not understood in large part because of the experimental di�culty of disentangling

the e�ects of domain walls, crystalline impurities, and disorder from those due to phason

modes. This is of interest not only for fundamental reasons, but also because of potential

technological applications of quasicrystals' anomalous electrical and thermal transport

characteristics.

158



Numerical Investigations of New Directions for Quantum Simulation Chapter 6

6.3.2 Coherent phason driving with trapped atoms

The exquisite controllability of cold atoms makes them a natural choice for direct exper-

imental investigation of such questions. Quasiperiodic potentials that have been realized

or proposed for cold atoms include bichromatic lattices, well explored in the context

of disorder-induced localization [109, 110, e.g.], and the recently described generalized

Fibonacci lattices [108]. These two quasiperiodic structures are in fact topologically

equivalent [111]. The phason degree of freedom φ in Fibonacci lattices and bichromatic

lattices is diagrammed in Fig. 6.4.

A key experimental point is that both types of lattice enable driving of phasonic de-

grees of freedom via phase modulation of lattice beams. This enables a simple procedure

which is essentially impossible in a solid-state quasicrystal: measurement of the response

of a quasicrystal to driving phasonic modes at variable frequency and amplitude. This

would constitute a new form of lattice modulation spectroscopy, in which the modulation

e�ectively occurs in the higher-dimensional space from which the quasiperiodic lattice is

projected.

In the simplest such experiment, energy absorption from the phasonic drive could be

measured via standard time-of-�ight calorimetry. Better characterization of the e�ect

of strong phason driving is possible with experiments that move beyond time-of-�ight

calorimetry and pursue measurements using Bragg spectroscopy and (in a deep lattice)

doublon creation. This new kind of spectroscopy, impossible in other quasiperiodic sys-

tems, has the potential to allow clean and precise investigation of electron-phason cou-

pling in quasicrystals.

6.3.3 Modeling phasonic spectra

Because phasonic spectroscopy is a fundamentally new tool, theoretical predictions for

the results of such experiments are scarce. In general, one expects signi�cant di�erences

159



Numerical Investigations of New Directions for Quantum Simulation Chapter 6

Figure 6.5: Coherent phasonic spectroscopy in quasiperiodic atom traps. Plots show
calculated energy absorption as a function of frequency f and amplitude A of phononic
(top) and phasonic (bottom) excitation. Calculations were performed for a 30-site bichro-
matic optical lattice with kS/kL equal to the golden ratio (1 +

√
5)/2. Here VL = 1ER,

VS = 5ER, and kS = 2π/λYAG, with λYAG = 1064nm, ER = ~2k2
S/2m, and m taken to be

the mass of 84Sr. Each modulation was applied for 20 cycles, with the lattice phases vary-
ing in time as detailed in Eq. 8.2 (top) and Eq. 8.4 (bottom). All energies are referenced
to the energy of the ground state.

from conventional �phononic� excitation as well as signi�cant nonlinearities, particularly

in the Fibonacci lattice, as large-amplitude phasonic displacements rearrange the lattice

structure of the quasicrystal. To demonstrate the potential of phasonic spectroscopy as

a tool for investigating quasiperiodic quantum systems, we have calculated the response

of a non-interacting cold-atom quasicrystal to phasonic and phononic excitation, again

by integration of the time-dependent Schrödinger equation in a time-varying potential.
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The potential of a 1D bichromatic lattice can be written

V (x) = VL cos(kLx+ φL) + VS cos(kSx+ φS), (6.5)

where VL, kL, and φL (VS, kS and φS) are the amplitude, wavevector, and phase of the

long (short) lattice. Phasonic excitation of this lattice can be achieved for example by

making only φL time-dependent:

φS(t) = 0,

φL(t) = 2πAphason sin(2πfphasont).
(6.6)

Here we refer to Aphason and fphason as the amplitude and frequency of the phasonic drive;

these are the y and x axes of the bottom panel of Fig. 6.5. More conventional �phononic�

driving can be achieved by translating the entire potential without changing the phase

between the sublattices, for example by applying time-dependent phases as follows:

φS(t) = 2πAphonon
kS
kL

sin(2πfphonont),

φL(t) = 2πAphonon sin(2πfphonont).

(6.7)

Here Aphonon and fphonon are the amplitude and frequency of the phononic drive, and

are the y and x axes of the top panel of Fig. 6.5. The factor of kS/kL is used so that all

amplitudes are in units of the longer lattice period.

Fig. 6.5 shows the calculated mean energy in a bichromatic lattice with kS/kL =

(1 +
√

5)/2 after both phononic excitation (following Eq. 8.2) and phasonic excitation

(following Eq. 8.4). The phasonic and phononic spectra display numerous intriguing

structures and are qualitatively di�erent from one another. We saw qualitative di�erences

later on, when we realized this experiment in the lab (see Chapter 8). It should be noted,

however, that the simulations presented here were done for very di�erent parameters:

Our scaled drive amplitude for a 5ER primary lattice decreases in the experimental case,

so the results in Fig. 6.5 are expected to be power-broadened.

In keeping with our focus on extreme non-equilibrium phenomena, we have focused

here on fast (diabatic) modulation of the phasonic degree of freedom. It is worth noting
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that very slow phason modulation is also possible. The resulting dynamics are of interest

in part because adiabatic phasonic driving is expected to lead to long-range topological

pumping of edge states [108, 112] and bulk states [113]. Both the nature of mass transport

at the crossover between the diabatic and adiabatic regimes and the role of (Feshbach-

tunable) interactions are further intriguing frontiers for experimental investigation of

the proposed extreme non-equilibrium technique of phasonic spectroscopy in �nite-size

systems.
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Chapter 7

Quantum Simulation of Ultrafast

Dynamics using Trapped Ultracold

Atoms

This chapter includes the contents of our paper, �Quantum Simulation of Ultrafast Dy-

namics using Trapped Ultracold Atoms� [114] which reports experiments along the lines

proposed in Chapter 6.

Electronic dynamics at the shortest timescales are typically studied using ultrafast

pulsed lasers. We demonstrate a complementary experimental approach: quantum sim-

ulation of ultrafast dynamics using trapped ultracold atoms. This technique counter-

intuitively emulates some of the fastest processes in atomic physics with some of the

slowest, giving rise to a temporal magni�cation factor of up to twelve orders of magni-

tude. In these experiments, time-varying forces on neutral atoms in the ground state of a

tunable optical trap emulate the electric �elds of a pulsed laser acting on charged parti-

cles in a binding potential. We demonstrate the correspondence with ultrafast science by

a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control
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of the excitation spectrum by shaping the potential, observation of sub-cycle unbind-

ing dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope

phase dependence of the response to an ultrafast-equivalent pulse.

7.1 Introduction

The study of ultrafast-equivalent electronic and vibrational dynamics is a natural but

largely unexplored application of cold-atom quantum simulation techniques [115, 68, 69,

116, 117]. Quantum simulation experiments often rely on an analogy between trapped

neutral atoms and electrons in matter [66, 67, 118]. Although these two systems have

vastly di�erent energy densities and constituents which di�er in mass and charge, they can

often be described by equivalent Hamiltonians, which give rise to equivalent physics. This

analogy has been used to explore equilibrium solid-state phenomena from Mott insulators

to antiferromagnets [75, 119], and dynamical phenomena from Bloch oscillations to many-

body localization [120, 110]. Here we extend this analogy to quantum simulation of

ultrafast dynamics, with the aim of realizing an alternate experimental approach to open

questions in a vibrant and expanding area of science [72, 73, 121], testing approximate

theories [122, 123, 124, 74, 125], and pushing into experimentally unexplored regimes.

The quantum simulator we describe consists of an arti�cial atom or molecule made

from a trapped quantum gas. The analogue of the atomic or molecular binding potential

is the tunable AC Stark potential of an optical trap, and the analogue of the pulsed laser's

electric �eld is an inertial force arising from rapid trap translation. The time-dependent

Gross-Pitaevskii equation describing the evolution of the condensate wavefunction Ψ(r, t)

is [115] [
−i~∂t −

~2∇2

2m
+ V (r + α(t)x̂) + gN |Ψ |2

]
Ψ = 0, (7.1)

where m is the atomic mass, g = 4π~2as/m parameterizes interactions among N atoms,
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Figure 7.1: Quantum simulation of ultrafast dynamics. a: Schematic bound states
of Lennard-Jones, Gaussian, and 1/r potentials (o�set for clarity). b: Diagram of optical
trap (red), which is shaken in the x̂ direction to generate inertial forces on the condensate
(blue). c: Measured trap position α(t) during a pulse. d: Response to a weak pulse.
Colourmap shows density distribution after time-of-�ight as a function of time. Pulse
carrier frequency is 450 Hz, pulse envelope width is 3.76 ms, pulse amplitude is 0.6 µm,
and carrier-envelope phase is 0, as de�ned in Eq. 7.3. e: Response to a stronger pulse.
Unbinding occurs near 8 ms, after which the atoms propagate with constant velocity.
Pulse amplitude is 2.4 µm. All other pulse parameters are identical to those in d.
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as is the scattering length, and the optical potential V (r) is shaken in the x̂ direction

with waveform α(t). Crucially, the same equation also describes the evolution of the

wavefunction of an atomic electron interacting with a linearly-polarized laser �eld in the

Kramers-Henneberger frame of reference [115], taking m to be the electron mass, V the

nuclear potential including screening e�ects, and g → 0. For dipolar excitations like

those in the experiments we present, the impact of the atoms' nonzero g is minimized

due to Kohn's theorem. Very similar dynamics have been theoretically predicted [115]

for the cold-atom and ultrafast realizations of Eq. 7.1. A closely related equivalence is

described in [68]. This equivalence between the evolution of condensate and electron

wavefunctions motivates cold atom quantum simulation of ultrafast dynamics, much as

the Bose-Hubbard model motivated early quantum simulation of Mott insulators [75].

Though very little of the growing body of quantum simulation work has addressed

ultrafast phenomena, a robust toolkit exists for controlling and measuring excitations in

trapped gases. Collective excitations in Bose condensates were a major focus of early

experimental and theoretical research [126, 127, 128, 129, 130, 131], and the analogy

between degenerate trapped gases and individual atoms was noted at that time [132,

133, 115]. Ultrafast probes have recently been used to study many-body dynamics in

Rydberg atoms [134], and recent theoretical proposals have suggested the use of cold

atoms to simulate ultrafast dynamics in atoms [68, 117], molecules [116], and solids [69].

Cold gases o�er unique capabilities for dynamical quantum simulation. Due to the ex-

tremely low energy scales, the dynamics are slowed, or magni�ed, with respect to atomic

or molecular timescales by as much as twelve orders of magnitude, allowing the observa-

tion of ultrafast-equivalent processes in ultra-slow-motion [68]. This extreme temporal

magni�cation � quantum gas chronoscopy � enables simple and complete control over

all parameters of an applied force pulse, as well as straightforward measurement of the

arti�cial atom's or molecule's response, with time resolution much faster than all rele-

vant dynamics. The excitation spectrum itself can also be controlled by trap shaping.
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Using this toolkit of capabilities, we demonstrate experimentally that cold atom quan-

tum simulation can be used to probe complex phenomena of ultrafast science such as the

e�ect of carrier-envelope phase and pulse intensity on unbinding dynamics. These exper-

iments demonstrate a new application for cold-atom quantum simulation and establish

a potentially fruitful connection between ultrafast and ultracold atomic physics.

7.2 Results

7.2.1 Ultrafast-equivalent pulse synthesis

The experiments we describe use a Bose condensate of N ' 20, 000 atoms of 84Sr [135],

with a scattering length as'6.5 nm. Rapid trap translation gives rise to time-dependent

inertial forces designed to have the same approximate functional form, and the same

e�ect of driving dipole-allowed transitions, as the electric �eld of an ultrafast pulsed

laser. This is achieved by applying a trap which depends on x and t as

V (x, t) = −Vtrap · exp
[
−2(x− α(t))2/w2

]
, (7.2)

where w is the 1/e2 trap waist and

α(t) = A sech [η (t− t0)] sin [2πf (t− t0) + φ+ π] . (7.3)

Control over the pulse is e�ectively arbitrary; variable parameters include amplitude

A, carrier frequency f , pulse full-width at half-maximum τ = (2 ln (2 +
√

3))/η, and

carrier-envelope phase φ. The measured trap centre translation as a function of time

during a typical pulse is shown in Fig. 7.1c. All data reported here use pulse amplitudes

well below the trap width. The e�ective Keldysh parameter in such an experiment

is γK =
√
Vtrap/2Up, where the optical trap depth Vtrap corresponds to the ionization

energy and the ponderomotive potential Up ' mα̇2/2 is the time-averaged kinetic energy

imparted to the atoms by the pulse. The use of inertial forces enables realization of
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Figure 7.2: Spectroscopy of the quantum simulator. a: Remaining bound fraction
as a function of carrier frequency for pulses with τ = 250 ms, φ = π and amplitudes
of 0.9 µm (dotted) and 2.4 µm (solid). Note the emergence of higher-order peaks and
power broadening at larger amplitudes. b: Unbound fraction as a function of applied
pulse frequency and amplitude, for a 250 ms pulse. Lines indicate cuts plotted in panel
a.

Keldysh parameters of order unity and greater. Keldysh parameters much less than 1

could be straightforwardly attained by using a time-varying optical potential gradient

rather than trap motion to apply the simulated electric �eld.

7.2.2 Spectroscopy of tunable collective excitations

We performed initial spectroscopic characterization of our quantum simulator by applying

pulses of constant length much greater than a drive period and variable carrier frequency

f . After each pulse, the atoms that had not been unbound from the trap were counted

with absorption imaging. The resulting plots of bound fraction versus pulse frequency
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characterize the collective excitation spectra of the trapped condensate. Nonlinear e�ects

are straightforwardly probed by increasing the pulse intensity.

Excitation spectra for one particular trap are shown in the top panel of Fig. 7.2.

The resonance at ∼750 Hz corresponds to dipole oscillation in the trap and is at the

same frequency as the resonance for a non-interacting gas. As the pulse amplitude is

increased, higher modes are excited and power broadening is observed. Since our trap is

deeply in the Thomas-Fermi regime, these modes are anharmonic and strongly collective.

The bottom panel of Fig. 7.2 shows a 2D amplitude-frequency spectrogram.

The excitation spectrum can be tuned by adjusting the trap shape, enabling the study

of ultrafast-equivalent dynamics in systems with speci�c spectral characteristics such as

mode degeneracies. The results of such tuning of the excitation spectrum are presented

in Fig. 7.3. We observe good agreement with analytic predictions for dipole-allowed

collective resonance positions in the broadened and unbroadened trap [131]. Note that the

frequencies of these complex anharmonic modes are not simply rescaled by broadening,

but disperse at di�erent rates; this enables tunable creation of mode degeneracies. This

tunability of the collective excitation spectra is a key feature of cold-atom based quantum

simulation of ultrafast dynamics. Static adjustments like those demonstrated here enable

the realization of desired spectral properties, and rapid tuning of mode degeneracies could

enable the study of controllably diabatic or adiabatic dynamics. Future experiments could

use this ability for quantum simulation of molecular energy relaxation mechanisms in the

vicinity of tunable mode degeneracies similar to conical intersections [136].

7.2.3 Momentum-resolved sub-cycle unbinding dynamics

Having demonstrated quasi-CW spectroscopy of bound states with tunable energy spec-

tra, we turn to the use of this tool for quantum simulation of ultrafast dynamics dur-

ing few-cycle pulses [83]. In ultrafast streaking measurements, the electric �eld of a
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Figure 7.3: Tunable excitation spectra via trap shaping. a: Bound fraction after a
1-second pulse as a function of excitation frequency for an unmodi�ed trap. Bold dotted
lines are theoretically predicted frequencies of collective resonances expected to couple
to our drive. Labels on theory lines indicate the quantum numbers (k, β, γ), using the
notation of [131]. β and γ are parity quantum numbers, and k indicates the form of
the nodal surface for the excitation. The quantum number m is 1 for all resonances
plotted. The only inputs to this theory are the three trap frequencies. The resonance at
half the fundamental frequency is believed to be due to parametric excitation of a dipole
oscillation in the direction of gravity. Pulse amplitudes were increased from 0.6 µm at low
frequency to 3 µm at the highest frequency to maximize peak visibility. b: Evolution of
predicted resonances under continuously increasing trap broadening. Thinner dotted lines
represent resonances which are not dipole-allowed for this drive polarization. c: Bound
fraction after a 1-second pulse as a function of excitation frequency for a trap broadened
in one direction as described in the methods section.

170



Quantum Simulation of Ultrafast Dynamics using Trapped Ultracold Atoms Chapter 7

few-cycle femtosecond pulse de�ects photoelectrons produced by an attosecond extreme

ultraviolet pulse striking an atom, allowing characterization of both the pulses and the

atom [137, 138, 139]. In the quantum simulator, qualitatively similar techniques allow

high-resolution measurement of sub-cycle quantum dynamics. Here, instead of using

photoionization to terminate the dynamics, the experimenter can simply instantaneously

turn o� the trapping potential at any point before, during or after the pulse. The atoms

then propagate freely in space, and their instantaneous momenta at the time of trap

removal are mapped onto their positions after some time of �ight. Varying the time at

which the trap is removed enables measurement of the time evolution of the bound quan-

tum system with time resolution far below a drive period. This experimental technique,

while commonplace in ultracold atomic physics, represents a powerful and general tool

for the study of ultrafast-equivalent dynamics in our quantum simulator.

Fig. 7.4 presents the results of such measurements for both o�-resonant and near-

resonant pulses. The Bose-condensed atoms initially occupy mainly a single eigenstate of

the transverse trapping potential. Quantum dynamics during and after the pulse can be

tracked by direct momentum-space imaging of the atoms. Panels b and d of Fig. 7.4 show

the density distribution after time-of-�ight, integrated over the directions transverse to

the excitation, as a function of time. For a pulse carrier frequency signi�cantly below the

dipole oscillation frequency νx in the dimension of driving, the momentum of the BEC

evolves coherently during and after the pulse, as shown in Fig. 7.4b. Incoherent heating

due to the pulse is observed to be minimal on the few-cycle time scales we probe. The

atoms respond to the pulse at νx � a higher frequency than the carrier � but remain

bound. During a pulse with carrier frequency near νx, however, qualitatively di�erent

is observed. Fig. 7.4d shows momentum evolution during a near-resonant pulse for an

amplitude near the unbinding threshold. In this parameter regime, atoms do not leave

the trap all at once, but do not incoherently heat either; instead, ejection starts at the

time of the pulse peak, with additional bursts of atoms emitted during each subsequent
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Figure 7.4: Sub-cycle dynamics during o�-resonant and near-resonant pulses.
a: Trap minimum position as a function of time for a pulse with τ = 3.76 ms, f = 200 Hz,
A = 3 µm and φ = π. b: Post-time-of-�ight integrated spatial density distribution versus
trap turn-o� time during the o�-resonant pulse depicted in panel a. Here νx = 450 Hz.
c: Trap minimum position as a function of time for a pulse with τ = 3.76 ms, f = 550 Hz,
A = 1.5 µm and φ = 3π

2
. d: Post-time-of-�ight integrated spatial density distribution

versus trap turn-o� time during the near-resonant pulse depicted in panel c. Here νx =
600 Hz. e: Density distribution at the time indicated by the dashed line in panel d.
Peaks from bound and ejected atoms are visible.

half-cycle of the pulse. Fig 7.4e shows one such burst. This unbinding process models

ionization or molecular disintegration during an ultrafast laser pulse.

7.2.4 Dependence of unbinding dynamics on pulse amplitude and

carrier-envelope phase

The ability to precisely measure the population and momenta of unbound states as

a function of pulse parameters and time opens up the possibility of �exible quantum

simulation of ultrafast unbinding dynamics. As an initial application of the quantum

simulator presented herein we have measured the dependence of simulated ionization

yield or photodissociation on both pulse amplitude and carrier-envelope phase. This
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represents a complementary method of testing the e�ects of two parameters central to

numerous experimental and theoretical studies of ultrafast multiphoton ionization and

bond-breaking processes [122, 123, 124, 140, 141, 142].

Both the precise unbinding time during an applied force pulse and the �nal unbound

momentum depend sensitively and non-monotonically on pulse amplitude. In the quan-

tum simulator, the amplitude of the pulse can be straightforwardly varied over a wide

range, keeping the carrier-envelope phase, carrier frequency, and total pulse time con-

stant. As the amplitude is increased from that used in Fig. 7.4d, the unbinding dynamics

change drastically. Fig. 7.5a shows the momentum distribution of the atoms (measured

by detecting the position distribution after 2 ms time of �ight) after few-cycle pulses with

amplitudes from 0 up to 6 µm. The bottom panels show the full time evolution of the

momentum distribution during few-cycle pulses of selected amplitudes. Below a critical

amplitude, no atoms are ejected from the trap. For some intermediate amplitudes, the

behaviour mirrors that shown in Fig. 7.4d, with bursts of atoms unbinding at di�erent

points during the pulse. Above that intermediate regime, all of the atoms unbind at

one well-de�ned time and continue to move with constant momentum after unbinding.

Strikingly, as the amplitude is increased further, the momentum of the unbound atoms

reverses sign, as they unbind half a drive cycle earlier, in an oppositely-directed simulated

electric �eld.

Even for �xed pulse amplitude, the �nal state of the initially bound system after

the force pulse depends sensitively and non-trivially on the carrier-envelope phase φ

(CEP). In the pulsed-laser experimental context, the advent of few-cycle pulses with

adjustable, stabilized CEP [143] has enabled advances such as probes of the e�ects of

CEP on ultrafast dynamics [144, 145], study of interference patterns in multiparticle

ionization signals [146], and control of recollision processes in molecular ions [147, 148].

The nearly arbitrary pulse-shape control available in the cold-atom quantum simulator

makes it a �exible tool for probing the dependence of ultrafast-equivalent dynamics on
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Figure 7.5: Dependence of unbinding dynamics on pulse amplitude. a: Inte-
grated spatial density distribution after application of a near-resonant 480 Hz pulse with
τ = 3.76 ms and φ = 0 followed by 2 ms time-of-�ight, versus pulse amplitude A. b-
e: Integrated spatial density distribution versus time during pulses with the indicated
amplitude. Panels d and e have an expanded y-axis (indicated at right) to track the
unbound atoms. Note the momentum of the unbound atoms changing sign as the pulse
amplitude increases.
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CEP. Fig. 7.6 shows a measurement of post-pulse momentum distribution (again detected

via time of �ight) as a function of the carrier-envelope phase of a near-resonant applied

pulse. Changing the CEP from 0 to π �ips the sign of all forces during the pulse, and

results in inversion of the momentum of the unbound atoms. As shown in the bottom

panel of Fig. 7.6, the pulses at integer values of φ/π have sine-like character, possessing

odd symmetry under re�ection in time around the pulse centre. Pulses with a CEP of

3π/2 have cosine-like character and give rise to very di�erent unbinding dynamics at

this pulse amplitude, populating more than one momentum class of unbound atoms.

More complex dynamical phenomena are also visible in Fig. 7.6: the inward slope of the

unbound momentum as CEP increases in the neighborhood of φ = π can be understood as

the consequence of the force at the �rst unbinding peak sliding down the pulse envelope,

and the observed asymmetry between φ = π/2 and φ = 3π/2 indicates a violation of

inversion symmetry in the potential. The most likely cause of this symmetry-breaking

is slight trap aberration; this points the way to future work elucidating the e�ects of

potential shape on unbinding dynamics.

7.3 Discussion

The results presented here open the door to a broad class of quantum simulation exper-

iments investigating ultrafast nonequilibrium phenomena, with numerous possible sci-

enti�c targets. Emulation of pump-probe experiments, multichromatic light �elds, and

non-physical (for example, half-cycle) pulse shapes impossible to create with lasers would

require no techniques beyond those demonstrated here apart from changing the form of

α(t).

Additional possibilities require only modest extensions of the experimental approach

reported here. The simplest such extension would be to replace the inertial forces used

to emulate electric �elds with time-varying Zeeman or Stark potential gradient;e are cur-
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Figure 7.6: Carrier-envelope phase dependence of �nal momentum. a: Inte-
grated spatial density distribution after application of a near-resonant 450 Hz pulse with
τ = 3.76 ms and A = 2.4 µm followed by 3 ms of time-of-�ight, versus CEP. b-d: Pulse
waveforms (force versus time) for CEP values indicated in the inset.

rently actively pursuing this direction by developing a DMD architecture for use with a

450 nm beam. This would allow ultrafast quantum simulation in the regime of Keldysh

parameter γK less than one, and enable the direct experimental investigation of open

questions of current interest in ultrafast science. Potential scienti�c targets include the

creation of photoelectron vortices with circularly-polarized pulses [149], the demonstra-

tion and study of strong-�eld stabilization, wherein the ionization probability becomes

a decreasing function of pulse amplitude [88], and detailed quantitative measurement of

sub-cycle tunnel ionization timing e�ects [85, 86, 87, 150].

Other extensions to the basic technique are also possible. The use of traps with

multiple minima could enable modelling of more complex molecular con�gurations [116].

Ultrafast quantum simulation could also be pursued with small numbers of trapped

fermions [151], making a more direct analogue of atomic electrons. However, the use

of Bose condensates and the analogy of Eq. 7.1 does greatly magnify the signal, making
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experiments feasible with bosons that would be very challenging with fermions. Finally,

an expansion of the analogy underlying these quantum simulation experiments beyond

atoms and molecules could enable the study of ultrafast-equivalent dynamical phenomena

relevant to nuclear excitations [152] and strong-�eld dynamics in solids [69].

In summary, we present experimental results from a cold-atom quantum simulator of

ultrafast phenomena, including nonlinear spectroscopy of collective excitations, control

of the energy spectra of the bound states of the simulator, imaging of sub-cycle dynamics

during an unbinding process similar to ultrafast ionization, and measurement of the

e�ects on unbinding dynamics of pulse amplitude and carrier-envelope phase. Such cold

atom quantum simulation of ultrafast dynamical phenomena has the potential to enable

benchmarking of relevant theories and explorations of experimentally challenging regimes,

in an approach complementary to both ultrafast theory and pulsed-laser experiments.

7.4 Methods

Preparation of a Bose-Einstein condensate in an optical trap. During the

computer-controlled experimental sequence [153], atoms from an e�usive source are col-

limated by a nozzle [49], Zeeman-slowed, trapped and pre-cooled by sequential magneto-

optical traps using the 461 nm and 689 nm ground-state transitions, and evaporatively

cooled to degeneracy in a crossed-beam 1064 nm optical dipole trap (ODT) [135]. In

the emulation stage of the experiment, the resulting condensate of 2× 104 84Sr atoms is

adiabatically loaded into a single-beam ODT with a waist of 15 µm. The trap depth can

be varied across a wide range; a typical value used in the work presented here is 10 µK.

The s-wave scattering length of 84Sr is 6.5 nm.

Temporal magni�cation of the quantum simulator. Varying the power and

shape of the trap beam yields transverse trap frequencies νx and νz between 300 and

1000 Hz, and an axial trap frequency νy between 5 and 15 Hz. Drawing the analogy
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between the optical trap and a single hydrogen atom, the energy di�erence hνx between

the ground and �rst relevant excited states (typically '500 Hz) is analogous to the

2.47 PHz Ly-α line. Although the detailed energy spectrum of the ODT di�ers from that

of hydrogen due to the di�erent potential shapes, comparison of these two frequency

scales indicates an approximate temporal magni�cation factor of 5×1012. Emulation

of molecular vibrational excitations or cluster dynamics leads to a ratio of up to 1011

between characteristic timescales of the emulator and emulated system.

Application of time-varying inertial forces. An acousto-optic modulator (AOM)

can translate the trap centre in the x-direction (see Fig. 7.1c for axis de�nitions) at ampli-

tudes up to 6 µm and frequencies from DC up to hundreds of kHz. Because of the direc-

tion of translation and the wide separation between transverse and axial frequency scales,

the axial degree of freedom is irrelevant to the results we present. Under the assumption

that the atoms remain near the centre of the trap during the pulse, which we observe to

be true until unbinding, the e�ective applied force is mẍ = F (t) = −dV (x, t)/dx|x=0. ẍ

can be speci�ed as desired; for the particular functional form chosen, ẍ(t) has a similar

enveloped-pulse shape to x(t).

Tuning the trap geometry. Shaping of the trap is achieved most simply by pe-

riodic translation on much faster time scales than the dynamics of the BEC, so that

the atoms experience a time-averaged potential. For this purpose, the trap AOM's RF

drive frequency was sinusoidally modulated at 500 kHz, giving rise to a maximum trap

translation amplitude of 4.2±0.3 µm.
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Chapter 8

Phasonic Spectroscopy of a Tunable

Quantum Quasicrystal

In Chapter 6, I introduced ideas regarding quantum simulation of quasicrystals. In this

chapter, I present results of experiments along these lines. The contents of this chapter

constitute a draft of a paper which is currently in preparation, in collaboration with

Mantas Ra£i	unas and André Eckardt at MPIPKS [154].

Phasonic degrees of freedom are unique to quasiperiodic structures, and play a central

role in poorly-understood properties of quasicrystals from excitation spectra to wavefunc-

tion statistics to electronic transport. However, phasons are di�cult to access dynam-

ically in the solid state due to their complex long-range character and the e�ects of

disorder and strain. In this chapter I discuss phasonic spectroscopy of a tunable qua-

sicrystal, achieved by directly measuring the frequency-dependent response to phasonic

driving of a quantum gas in a quasiperiodic optical lattice. Using this technique, we

observe that strong phasonic driving excites high-order multiphoton modes more e�-

ciently than standard dipolar driving, that the critical driving amplitude for phasonic

multiphoton transitions depends only weakly on transition order, and that su�ciently
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strong phasonic driving gives rise to a broad infrared absorption feature in the quasicrys-

tal. Phase modulation enables direct mapping of the quasicrystal's energy spectrum,

allowing direct imaging of slices of the Hofstadter butter�y at varying disorder strength.

8.1 Background

Phasons are degrees of freedom unique to quasicrystals which arise from broken trans-

lation symmetry in the higher-dimensional space from which the quasiperiodic lattice is

projected [104, 105, 106, 155]. The role of phasons in determining quasicrystal properties

remains incompletely understood: open questions include the e�ects of electron-phason

coupling, the nature of electronic transport, spectral statistics, topological properties, and

even the shape of the electronic wavefunctions [95, 96, 97, 156, 99, 100, 157, 101, 102, 103].

These lacunae are in part due to the theoretical intractability of quasiperiodic condensed

matter, and in part due to the experimental di�culty of disentangling the e�ects of

domain walls, crystalline impurities, and disorder from those due to phason modes. Be-

yond the fundamental interest of such questions, they may point the way to potential

technological applications of quasicrystals' anomalous electrical and thermal transport

characteristics.

The exquisite controllability of ultracold atoms makes them well-suited to the study of

quasicrystal physics: bichromatic lattices have been used to probe quasidisorder-induced

localization [158, 109, 159], atomic temperature, density, and di�usion have been studied

in �vefold-symmetric quasiperiodic potentials [160, 161], and generalized Fibonacci op-

tical lattices have been proposed [108]. Time evolution of the momentum of a BEC has

also been probed using matter-wave di�raction in both 1D and 2D quasicrystals, with

the latter demonstrating self-similarity of the momentum structure [162, 163].

Here we report the �rst realization of phasonic spectroscopy on a quasicrystal, using

quantum degenerate 84Sr atoms in a dynamically-tunable bichromatic optical lattice. We

180



Phasonic Spectroscopy of a Tunable Quantum Quasicrystal Chapter 8
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Phononic Drive

Phasonic Drive

Figure 8.1: Schematic of experimental setup. Chamber inset shows BEC (blue) in a 1D
bichromatic lattice potential. Setups for lattice retrore�ection are shown on the right;
the PZT is shown mounted on a copper block.

drive a long-range phasonic mode via phase modulation; there are expected links between

the macroscopic picture of driving this mode and the microscopic picture of phasonic �ips

in the lattice which are correlated across a macroscopic number of lattice sites [164, 165].

We compare the results of phasonic and standard dipolar driving at a range of frequencies

and amplitudes, observing a signi�cant enhancement of multiphoton transition strengths

for phasonic drives, and measure the e�ect on the energy spectrum of of varying the

strength of the quasiperiodic component of the potential.

8.2 Experiment

The 1D bichromatic potential we use is a superposition of a primary lattice and sec-

ondary lattice formed by standing waves of laser light with wavelengths λP =1064 nm

and λS =915 nm, respectively. Ignoring contact interactions, the Hamiltonian of atoms

trapped in this potential is

Ĥ = − ~2

2m

d2

dx2
+ VP cos(2kP (x− δP ))

+ VS cos(2kS(x− δS))
(8.1)
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where ki = 2π/λi and VP and δP (VS and δS) are the depth and translation of the

primary (secondary) lattice. In the nearest-neighbor tight-binding limit for VP � VS, this

Hamiltonian becomes equivalent to the Aubry-André model, which is closely related to

the Harper model which famously describes the multifractal energy spectrum of integer

quantum Hall systems. Dipolar excitation of this lattice, related to the lowest-energy

phononic mode of the system, may be achieved by equal translation of both lattices:

δS(t) = δP (t) = Adip sin(2πfdipt) (8.2)

Adip and fdip are the driving amplitude and frequency of the dipolar drive. Moving

into the lattice reference frame, we can write the force applied to the atoms as F (t) =

F0 sin(2πfdipt) for F0 = m(2πfdip)2Adip. We may further de�ne a dimensionless driving

parameter

K = aF0/~ωdip = amωdipAdip/~ (8.3)

where ωdip = 2πfdip. To keep a �xed K, we must take Adip ∝ 1/fdip. This manner

of phase modulation has been used previously to study multiphoton excitations in a

single-color lattice [166].

Phasonic modulation may be achieved by translating only the secondary lattice:

δS(t) = Aphason sin(2πfphasont),

δP (t) = 0.
(8.4)

where Aphason and fphason are the driving amplitude and frequency of the phasonic drive.

We similarly inversely scale Aphason and fphason to enable a direct comparison to the

dipolar drive.

Our spectroscopic protocol is as follows. We adiabatically load a BEC of 84Sr into

the ground band of the bichromatic lattice. A schematic of the experimental setup may
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be found in Fig. 8.1. We then linearly ramp up the amplitude of the dipolar or phasonic

modulation for 4 ms, and continue to modulate for 16 ms at constant amplitude. We then

stop modulating and ramp down both lattices simultaneously at a rate which is adiabatic

with respect to the energy gaps of the primary lattice to achieve band mapping onto free

space momentum states [28]. This enables measurement of the fractional population of

atoms no longer in the ground band of the primary lattice after modulation. We have

performed such spectroscopy varying the drive amplitude, drive frequency, primary and

secondary lattice depths, and modulation type (dipolar or phasonic).

8.3 Results

8.3.1 Phasonic spectroscopy

We �rst contrast dipolar driving to phasonic driving. We drive at comparable �xed

dimensionless driving amplitudes, which are scaled by the depths of the lattices such that

the ground band depletion fraction of the fundamental ground→2nd band resonance is

the same for both drives. We carry out the experiment at variable primary lattice depth

and modulation frequency, while holding the secondary lattice depth �xed at 1 ER,S.

Figure 8.2 shows this comparison, plotted in terms of f on the x-axis and primary lattice

depth on the y-axis. In the dipolar case, we see excitations to higher bands which are

consistent with the primary lattice band structure. Excitations to the 3rd band are

visible but highly suppressed compared to the 2nd band resonance; we can explain this

as being due to a selection rule based on the odd parity of the phase modulation.

In the phasonic case, we see numerous multiphoton transitions, in contrast to the

phononic case. We can still see excitations of the fundamental resonances to the 2nd and

3rd bands with roughly equal strength. However, in addition to these 1st-order processes,

we see higher-order processes driven much more e�ciently. Fig. 8.2c shows the phasonic
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Figure 8.2: a: The fraction of atoms excited above the ground band by dipolar driving is
plotted for various frequencies and primary lattice depths. b: High-resolution scan of a
at 20 ER,P is taken to con�rm that any higher-order excitations are negligible. The blue
line shows data averaged over three repeats at each frequency. The magenta line is a
guide to the eye showing the theoretical expected location of the fundamental ground-2nd
band transition. c: The fraction of atoms excited above the ground band by phasonic
driving is plotted for various frequencies and primary lattice depths. d: High-resolution
scan of c at 20 ER,P is taken to con�rm that any higher-order excitations are negligible.
The blue line shows data averaged over three repeats at each frequency. The magenta
line is a guide to the eye showing the theoretical expected location of the fundamental
ground-2nd band transition as well as higher harmonics. e: Data from c plotted versus
1/f shows a broad absorption feature at large tunneling amplitudes and low frequencies.
f: Simulation of phasonic spectroscopy done in collaboration with MPIPKS.

excitation spectrum for a 20 ER,P primary lattice and a 1 ER,S secondary lattice, holding

the dimensionless drive amplitude constant. With a �ne frequency scan, up to 12th-order

multiphoton excitation processes to the 2nd band may be resolved. There is a second

anomalous feature in both of these �gures: the background depletion at low frequencies

in Fig. 8.2d is consistent with what looks like a broad continuum of excitations at large

tunneling amplitudes and low frequencies in Fig. 8.2e; by varying the dimensionful drive

amplitude Aphason, we �nd that this feature is due to numerous overlapping high-order
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Figure 8.3: a: Higher harmonic amplitude dependence, showing onset of non-perturbative
regime. Dotted lines indicate values of K for linecuts shown in b.

multiphoton transitions. In Fig. 8.2f, theoretical simulations based on time evolution of

the Schrodinger equation show quantitative agreement with experimental results without

adjustable parameters.

The increase in multiphoton resonance strength in the phasonic case is likely due to

a combination of e�ects. At low frequencies, in order to keep the dimensionless driving

amplitude constant, the real-space amplitude increases to around three lattice sites, which

for a phasonic drive adds e�ective Fourier components. A second factor which is likely

to in�uence higher-order processes is the extent to which band-coupling matrix elements

are changed for phasonic driving compared to dipolar driving, since phase modulation of

one lattice with respect to the other modi�es the eigenenergies in the rest frame of the

primary lattice in a way which does not conserve parity. It is possible that this drive does

not obey any simple parity-based selection rules, allowing much higher-order excitation

processes to occur.

We can probe further into the nature of these higher-order processes, as well as the

low-frequency number depletion, by varying K. Fig. 8.3 shows the excitation spectrum

for a 20 ER,P primary lattice and a 1 ER,S secondary lattice, varying the excitation

frequency on the x-axis and K on the y-axis. We observe the appearance of many of

the higher order resonances at some critical drive amplitude, which marks the onset of a
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theoretically-predicted non-perturbative driving regime; the subharmonic strengths are

suppressed as a function of K, but in a highly non-exponential way. We suspect that

this non-perturbative driving onset is analogous to the appearance of the high harmonic

generation plateau in ultrafast physics; we are currently working with theorists to �gure

out whether this is the case.

This is the �rst realization of phasonic spectroscopy in any context, and we observe

new e�ects which are qualitatively di�erent from the dipolar drive. This ability o�ers a

new tool to study the electronic properties of quasicrystals.

8.3.2 Tuning quasiperiodicity

We can take full advantage of our ability to spectroscopically probe quasicrystals by

changing the properties of the quasicrystal itself; the ability to start with an ordinary

crystal and slowly turn on the secondary lattice o�ers a natural probe of the e�ects of

quasiperiodicity. Tuning the period ratio and relative lattice depths, in conjunction with

the ability to spectroscopically resolve small energy gaps, would enable a direct mapping

of the multifractal Hofstadter butter�y spectrum. We can test the usefulness of lattice

phase modulation techniques to directly measure the energy minigaps associated with

the Hofstadter splitting. These minigaps are expected to support single-particle mobility

edges (SPMEs), critical energies within bands below which states are extended and above

which states are localized [29]. Experimental evidence has been found for SPMEs in a

1D quasiperiodic potential [30], though they have never been spectroscopically detected.

To probe the e�ect of emerging quasiperiodicity on an initially periodic structure,

we perform dipolar modulation spectroscopy on a 10 ER,P primary lattice with �xed K,

varying the depth of the secondary lattice. As shown in Fig. 8.4, we can clearly drive

transitions between the ground and 2nd band, as well as some transitions between the

ground and 3rd band. However, we also observe the emergence of minigaps which are
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Figure 8.4: a: By starting with a pure 1064 nm lattice and increasing the depth of the
915 nm lattice, we directly observe the e�ects of bichromaticity on the energy spectrum,
including minigaps which are hallmarks of constant-period-ratio slices through the Hof-
stadter spectrum. We see relatively good agreement with theoretical predictions based
on time evolution of the Schrodinger equation (b), although there is one excitation we
observe experimentally which is not re�ected in the theory.

the spectral hallmark of quasiperiodicity.

An immediate future step would be tuning the period ratio of the bichromatic lat-

tice from 915/1064 to something much more rational (798/1064, for example, which is

expected to exhibit much larger gaps) and looking at the spectrum. In the future, we

can consider tuning the wavelength ratio continuously to map out an experimentally-

accessible slice of the Hofstadter spectrum.

8.4 Conclusion and outlook

The realization of phasonic spectroscopy in a tunable quantum quasicrystal opens several

exciting directions for future work. Beyond tuning the period ratio to measure parts of

the Hofstadter spectrum, it is possible to operate the bichromatic lattice in a regime in

which certain bands are localized and others are delocalized [167]. This could allow us

to study the e�ects of localization on heating processes, as well as excitations near the

aforementioned SPMEs. It is also possible to expand this system to higher dimensions to

study Anderson localization in many dimensions, as well as the fractional Mott insulator
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at di�erent �llings. Additionally, the 1D system presents various possibilities to study

topological charge pumping. A recent proposal suggests Thouless pumping of bulk states

possible using phasonic driving [113], and the Hofstadter spectrum supports edge states

which may also be topologically pumped from one end of the system to the other.

We have realized a 1D quasiperiodic lattice and mapped its energy spectrum using

the �rst demonstration of phasonic spectroscopy. We have showed that in contrast to

dipolar driving, phasonic excitation can e�ciently drive up to 12th-order multiphoton

processes between bands. We have shown that in the low-frequency regime, these sub-

harmonics become evident at a critical dimensionless drive amplitude, marking the onset

of nonperturbative driving. We have used phase modulation to directly map the en-

ergy eigenstructure of a bichromatic lattice and resolved the emergence of minigaps as

quasiperiodicity is gradually introduced, e�ectively mapping a slice of the Hofstadter

butter�y spectrum and paving the way to extend that measurement to other period

ratios.
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Future Work

In this chapter, I will brie�y mention some groundwork we have laid in preparation for

future experiments on the strontium machine. Future topics along the lines of strong-�eld

quantum emulation or bichromatic lattice exploration can be found at the conclusions of

Chapters 7 and 8, respectively.

9.1 Hunting for anyons: the Kitaev chain

One of the main directions we are planning to go in the next few years is hunting for

experimental signatures of non-Abelian anyons. Anyons are a class of particle excita-

tions which have di�erent spin statistics than either fermions or bosons. They pick up

a complex phase under particle exchange which could e�ectively give the particles a

topologically-protected �memory� of how they have been exchanged with other particles;

because of this, they are the building blocks for many proposed quantum computing

architectures [168]. Despite many recent strides in our theoretical understanding of non-

Abelian anyons, they have never been experimentally detected.

One possible way to observe them depends on experimental realization of the Kitaev

chain [169]. The Hamiltonian for this model may be written in terms of fermionic creation
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and annihilation operators:

H =
N∑
n=1

−t
(
f †nfn+1 + f †n+1fn

)
+ ∆

(
f †n+1f

†
n + fnfn+1

)
− µn

(
f †nf

†
n −

1

2

)
. (9.1)

This Hamiltonian e�ectively describes a 1d tight-binding model of a p-wave superconduc-

tor. The edge states of this system are predicted to be Majorana zero-modes, a subclass

of non-Abelian anyons.

The �rst Hamiltonian term includes hopping parameter t, and describes tunneling

along the length of the chain. This is a property which is inherent to shallow optical

lattices. The second term is a pairing term describing two-particle hopping either into or

out of the chain, with associated energy ∆. The last term describes the chemical energy

contribution to the energy.

Our proposed method of implementation involves a �duck lattice� realized by interfer-

ing 4 beams in 2 dimensions, each with a well-de�ned phase relative to the others. This

geometry is shown in Fig. 9.1; the Kitaev chain is formed from the shallow potential sites,

while a neighboring chain of deeper sites provides a �reservoir� of atoms. The phases of

the beams need to be extremely well-controlled. We are currently using an extremely

precise AOM drivers from Moglabs to achieve the necessary phase control, and are build-

ing various interferometer setups to test feedback. The chemical potential and hopping

terms are easily realized in the Kitaev chains of this lattice. The pairing term translates

to two atoms simultaneously hopping out of the Kitaev chain into the reservoir, or hop-

ping into the Kitaev chain from the reservoir. This can be done dynamically via lattice

modulation, or via an interaction blockade for bosons.
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Figure 9.1: A 2d lattice potential consisting of zigzag chains is formed by interfering 4
beams with a well-de�ned phase relationship.

9.2 Quantum gas microscopy

Quantum gas microscopes have proven extremely valuable in the past decade. Since

they allow probing atoms in lattices with single-site resolution, they have enabled the

study of entanglement entropy and many-body localization [170, 171] and magnetic spin

ordering [7, 8, 9] among many other interesting topics. We have designed a QGM for the

strontium machine, are currently in the process of hydrogen-baking and constructing it.

We are planning to transport the atoms from the main chamber to the science chamber

using focus-tunable lenses from Optotune. We have already done a lot of calibration and

testing for these lenses, and look forward to adding the science chamber onto the machine

soon. The design and the objective lens are shown in Fig. 9.2.

A custom 0.8-NA objective lens was built by Special Optics to work at 461 nm and

689 nm at working distances of 1 mm air, 5 mm glass, and 4 mm vacuum. We plan to
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Figure 9.2: Solidworks mockup of a quantum gas microscope under construction for
strontium. Figure shows (1) the titanium sublimation pump, (2) an all-metal gate valve
which allows us to bake the science chamber separately from the main chamber, (3) the
objective lens, (4) ion gauge, and (5) ion pump. The design for the 5-lens objective is
shown to the right.

sideband-cool using the 689 nm transition, and preliminary calculations show that we

should be able to scatter tens of photons per atom given reasonable background pressures.

However, there is a chance these calculations are wrong. We would also like to try an

imaging technique based on a bio-imaging process called STORM [172], in which only

a few atoms are stochastically repumped from a dark state and then imaged at a time,

such that their point-spread functions are much easier to �t. This process is repeated

many times. If the atoms were trapped in the 3P2 reservoir1, one could imagine simply

repumping with 403 nm light and imaging with 461 nm light. We have designed all of

the science chamber viewports to have some wavelength �exibility in case one or more of

these imaging options does not work.
1at low �lling; at large �lling, inelastic collisions in this state could be harmful
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9.2.1 Novel cooling schemes: nuclear demagnetization

As discussed in Section 3.3.4, strontium could allow us to study the ground state of a

system with SU(N) symmetry, but there are major hurdles to accomplishing this. If such

a ground state could be realized, it still needs to be measured. The intercombination line

provides a very nice tool to probe energies, but this may not be enough to clearly resolve

any spin correlations we might hope to measure. It would be extremely nice to have

single-site resolution as an additional measurement aid. The other big hurdle is how to

achieve the temperatures necessary to see spin correlations; the Neel-order temperature

is typically in the pK regime. To this end, we have a novel idea that we are hoping to test,

which involves a combination of 87Sr's large nuclear spin and adiabatic demagnetization

refrigeration cooling (ADR), which has been demonstrated for electronic spins [173].

The basic idea of this scheme is to make use of the interplay between entropy in

kinetic and spin degrees of freedom. A relatively cold spin-mixture can be placed in a

gradient which separates the spins spatially. Once separated, the spins are cooled further

(typically evaporatively), reducing their kinetic energy. The spins are then allowed to

recombine: kinetic entropy will be converted into spin entropy, resulting in overall cooling.

The task of separating nuclear spins is not easy, but it has already been shown for 87Sr

at Innsbruck [21] using an optical Stern-Gerlach method: a red-detuned σ− beam and

a blue-detuned σ+ beam near the 689 nm resonance are o�set from the cloud and from

each other in the z-direction, and a weak magnetic �eld is applied along the direction

of beam propagation. In Fig. 9.3, we show the resulting potential and acceleration for

each hyper�ne state at a 16 G �eld; parameters can be found in the caption. For a

demagnetization experiment, we would want to attempt some optical evaporation while

maintaining the spin separation, so we also calculate the scattering rates for each spin.
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Figure 9.3: Potential, acceleration, and scattering rate for each hyper�ne spin state from
OSG beams (atoms are assumed to be at z = 0. Beams and 16 G B-�eld are pointed
along the z-direction. OSG beam parameters for the red- and blue-detuned beams are
Pr = 0.5 mW, ω0r = 120 µm, Z0r = 40 µm, δr=-800 MHz, Pb = 4 mW, ω0b = 160 µm,
Z0b = 70 µm, and δb=+800 MHz

9.3 Additional thoughts and ideas

If the future directions of ultrafast physics and bichromatic lattices are trees and the

ideas above are saplings, here are some twigs of other topics we have brie�y discussed:

� Searching for the ≈ 515 nm magic wavelength in strontium using the tunable

Ti:Sapph.

� Studies of the fractional Mott insulator once the Ti:Sapph tunable bichromatic

lattice is set up.

� Creation of arti�cial gauge �elds with fermions in �strained� (distorted/misaligned)

optical lattices.
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� Various ideas involving running lattices.

� Implementation of a Fibonacci lattice using two Ti:Sapph beams interfered at the

appropriate angle.

I'm sure I'm missing many things; there's a vast unexplored world of really exciting

physics here. I don't know- strontium's pretty cool.

The Road goes ever on and on

Out from the door where it began.

Now far ahead the Road has gone,

Let others follow it who can!
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Appendix A

Notes on UHV Cleanliness and CF

Assembly

Here is some (probably unsolicited) advice on UHV CF assembly. Everything usually

goes �ne, as long as you start from the assumption that vacuum cleanliness at UHV scales

is voodoo magic and you should just take every precaution you can because otherwise

troubleshooting will be di�cult.

A.1 Cleaning

To keep your parts UHV-compatible, you will probably want to clean them thoroughly.

We sonicated every part we possibly could (read: the smaller parts) according to the

following procedure:

1. Figure out how to suspend your part in various solutions in the sonicator, mak-

ing sure that the knife edges cannot accidentally come into contact with (thus be

harmed by) the walls of the beaker of solution. If the parts are extremely small (like

screws or microcapillaries), they may be placed in a plastic cup and then suspended

in the solution.
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2. Sonicate in a solution of 10 g Alconox detergent and 1 L of deionized water for 10

minutes.

3. Rinse in deionized water for 10 minutes.

4. Sonicate in standard lab-grade acetone (nothing fancy) for 10 minutes.

5. Sonicate in standard lab-grade isopropyl alcohol (IPA) for 10 minutes.

6. Carefully remove item from sonicator while wearing gloves. Place into aluminum

foil and wrap until ready to assemble.

If you are using any kind of ceramic or other porous material, make sure that you

bake the material properly after the sonication process. We use a little Black and Decker

toaster oven in our lab for such cleaning purposes. If you are able to bake them under

vacuum, that will certainly result in a better bake, but we have not found it necessary.

If you design any part which needs to exist in the vacuum, make sure that there are

no places where pockets of air can get trapped. Such places can result in �virtual leaks�

after the machine is baked, whereby tiny pockets of trapped gas at higher pressure can

outgas over time.

A.2 CF Assembly

Here are some general precautions we took during all CF assembly:

� Nobody who recently had a haircut or shaved is allowed to come near assembly for

at least a day/two showers.

� The space in which we are CF-assembling is usually enclosed by shower curtains

(bought at a local hardware store) to protect against dust.
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� We always wore gloves and hairnets. Occasionally, we would wear long catering-

type plastic sleeves over our forearms. Those who grew facial hair often wore beard

nets. We were liberal with glove changes.

� Any tool we brought into the enclosed space was typically wiped down with IPA

and Kimwipes.

� If we saw a speck of dust on or near a knife edge, we typically tried to gently remove

it with compressed air. If this did not work, we used the corner of an optics-grade

cloth to gently brush at the speck to see if it could be removed. If it could not, we

made a note of it for future leak-checking and moved on with some consternation.

� We try not to breathe into the chamber. We never spit into the chamber.

General assembly proceeds by placing a copper gasket between two knife edges, taking

care not to scratch the edges. The copper can be quite forgiving, although after any

amount of tightening of �anges over copper gaskets (even �nger-tightening bolts), that

gasket should not be reused. We always order from Duniway (due to good pricing, fast

lead times, and easy-to-remember part numbers), and always buy platenuts (never sco�

at something that torques itself!) and silver-plated 12-pt bolts, which makes undoing

bolts much easier post-bake if ever necessary. If we have needed any special bolts which

were not silver-plated, we bought lubricant to use during the tightening process, just in

case. Bolts always should be tightened in a star pattern, using sharpie around the �ange

to keep track of the order of bolt tightening if necessary (this is particularly helpful for

6.00� CF �anges and larger). This ensures that the knife edges eat into the gasket evenly

around the circumference of the �ange to form a good seal.

If the bolts are accessible via a torque wrench, that is by far the safest way to go

about tightening them, as overtightening can strip platenuts in the best case scenario,

tapped holes on expensive parts in the worst case. It also allows you to incrementally
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CF size Bolt torque (in-lb)
1.33� 84
2.75� 144
4.50�+ 180

Table A.1: CF nominal bolt torques

tighten each bolt in the star pattern up to the same torque. Required torque for various

CF �ange sizes is given in Table A.1. When we were young students and had to tighten

bolts which torque wrenches could not access, we used other wrenches and pulled on

them using a �sh scale, using the wrench length and scale reading to estimate torque.

We ruined several wrenches this way. Eventually, after tightening enough of them (some

of which can be checked via torque wrench), the feeling �sinks into one's bones� and the

�anges can just be tightened by hand. It helps to have a long wrench, for the most

ergonomic lever-arm.

Occasionally a connection will need to be redone, and the copper gasket can get stuck

onto one of the knife-edges when they are pulled apart. At these times, if the gasket

cannot be pulled o� by hand, we have found a pair of vise-grip pliers indispensable to

grabbing the gasket edges and carefully levering it o�. 1.33� CF �anges are the absolute

worst; if they need redoing, the gaskets almost always get stuck in our experience. Even

the vise-grip will only get 50% of the stuck gaskets o�. I intend to avoid this size �ange

at all cost in my future, but if ever I am forced to interact with one, I will insist on using

silver-plated copper gaskets.

Nickel gaskets are extremely hard compared to copper, and thus are much less forgiv-

ing; if they get any scratches on them during assembly, we typically no longer trust them

to hold vacuum. It helps a great deal to have a second pair of hands especially in this

case, so that the gasket and knife edges can be guided together as cleanly as possible.

Once we fully tighten a CF �ange, we typically do a �paper test� where we try to guide

a piece of paper between the two mated �ange surfaces. This is mostly a psychological
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thing. To be honest, connected CF �anges that look great and well-mated may have a

leak. Connected CF �anges which do not sit entirely parallel, or through which you can

clearly see a sliver of gasket, could have a great seal. It's all nonsense, so you just have

to do it to the best of your ability and see if it works.
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Appendix B

Notes on Baking to UHV

When in the course of laboratory events it becomes necessary for a cham-

ber to dissolve connections with the atmosphere and assume the ultra-high

vacuum to which the Laws of Scienti�c Inquiry entitle it, a decent respect to

the productivity of AMO science requires that lab members should bake the

machine.

-Thomas Je�erson, probably

Water and other molecules at standard temperature and pressure tend to adsorb onto

the walls of stainless steel; to achieve ultra-high vacuum, the steel needs to be baked out.

During this process, the rates of desorption inside the chamber signi�cantly increase,

allowing much faster pumping to achieve lower pressures. If you are planning to bake,

you will need some supplies, which include heating elements, ways to power heating

elements, thermocouples (TCs) to monitor temperatures, and thermocouple readout, as

well as thermally-insulating material. In this appendix, you will �nd descriptions of all

of the materials and best practices we have gathered through eight bakes.1 We do not

hydrogen-bake our chamber prior to construction/water-baking, and we have achieved

1This number of bakes, in fairness, with equal probability could lead you to believe that we are equally
either very bad or very good at baking.
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satisfactory pressures; all of the discussion below pertains to water-baking methodology

only.

B.1 Supplies

B.1.1 Heating elements and power

We use Omega Engineering Super-High Temperature Samox-insulated resistive heating

tape (the STH line), in widths that vary from 1/2� to 1� and lengths that vary from

2' to 8', for the majority of our heating during bakes. We also use band heaters from

Omega Heater (di�erent company from Omega Engineering!) on viewport �anges and

other �anges with large thermal mass, which may require more heat or attentiveness

during the bake. The band heaters from Omega Heater come with basic hose clamps

standard; we requested bayonet thermocouple adapters soldered onto them.

All of the heater electrical connections were either standard 120 V plugs or bare wire.

For the latter, we soldered quick-connect terminals to the ends.

We use a large panel along with wall-mount variacs from McMaster-Carr to power

our bakes. We have (12) 300 W variacs, (12) 600 W variacs, (8) 900 W variacs, and (2)

1200 W variacs. The leads on every mounted variac are soldered to the end of an extension

cord which has been cut in two; the other bare end of the extension cord is soldered with

quick-connect terminals. In this way, we can easily use these cords and regular extension

cords to connect the heating elements to variacs over rather large distances across the

lab.

B.1.2 Thermocouples and readout

We mainly use two types of surface-mount thermocouples from McMaster-Carr: Heavy

duty stainless-steel-cabled bayonet TCs, and exposed-probe �berglass-cabled TCs which
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we a�ectionately refer to as �the dinky ones.� Both have bare-wire leads. We plug them

into readout boxes USB-TC from Measurement Computing. Each box can read out up to

8 TCs and work with any TC type (though we solely use J-type for bakes); we typically

use somewhere around 6-7 boxes, thus up to 56 thermocouples for a bake of half of the

machine (either the oven or the mainchamber). The USB-TC boxes are great because

they come with Matlab drivers and libraries which work with only minimal con�guration.

We also bought one nice handheld TC reader for other locations.

We typically work Solidworks drawings into a Matlab GUI, which I wrote for the �rst

few bakes and was improved upon by Cora Fujiwara in 2018. This GUI interfaces with all

of the USB-TC boxes to update temperature readings once every couple of minutes, and

incorporates a plot to see trends over time, whether there are any trouble spots which

are colder or hotter than the mean temperature of the bake, etc. We were able to simply

stream the desktop or teamview into the computer to monitor the bake from home, once

we reached steady state.

B.1.3 Thermal insulation

The materials we typically use for bake insulation are copious amounts of aluminum

foil, and some type of �berglass insulation. We initially used McMaster-Carr high-

temperature insulating sheets, but after �nding a recommendation for Superwool blanket

in Appendix B of the Stellmer thesis [21] and trying it out with our spectroscopy cells,

we switched to that as our insulation of choice. It tends to be better at insulating, is

friendlier to the environment, and is softer/nicer to work with and mold than �berglass.

While it is mildly less irritating to the skin, I still recommend heavy precautions to cover

exposed skin when working with it, unless you wish to be covered in microcuts.2

2We typically wore full-length pants, labcoats, and gloves, with velcro or masking tape around the
wrists to ensure no gaps between the latter two. We also wore face masks.
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B.1.4 Other

In cases where we wanted to more carefully thermally protect certain regions of the

table, we also used conformable Aerogel insulation to protect optics and lasers near the

insulated chamber, and heat-re�ecting insulation sheets to push away radiated heat from

e.g. a mainchamber when an oven was being baked.

We used 3.5 Mil Kapton tape for any necessary adhesion.3 We also buy �exible wire

mesh to protect our viewports.

B.2 Thermal Considerations

There are some main thermal considerations to take into account when baking, some of

which are absolute and some of which are relative. Many of our viewport AR coatings

were rated to 200◦C or 250◦C, and the glass-to-metal seals on the viewports themselves

ranged from 300◦C-350◦C ratings. The insulation on the wire we used for all of our

slower and MOT coils was only rated to 160◦ C. However, the biggest worries were

thermal gradients. While gradients across CF �anges have, in our experience, been quite

robust, we still try to limit them to no larger than 20◦C. Viewports present a unique

problem because there is no good way to monitor the temperature of the glass, thermal

conductivity over glass-metal seals is low, and the di�erent expansion coe�cients make

them uniquely susceptible to large gradients. Much of our methodology evolution was

focused on being careful about viewport monitoring and heating.

We typically run our regular UHV bakes at around 180◦C for about 2 weeks, in-

cluding ramp-up and cool-down. We �nd that with a target temperature of 180◦C, our

coldest spots are around 165◦C (around areas with large thermal mass or near supports

that draw heat to the optical table), and our hottest spots are around 200-210◦C (areas

around ion gauges, which run hot). Viewports are not allowed past around 190◦C.

3If your tape is thinner, good luck getting it o� the roll.
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B.3 Methodology

B.3.1 Pre-bake

We �rst identify locations with large thermal mass (for example, gate valves, larger CF

�anges, ion pump connections) and place band heaters in those areas, in case we need to

provide a little bit of conductive heating to those places. We take care to label the band

heater cords with their size and location on the machine, in case we need to connect them

to variacs. If we are baking an oven and have band heaters around the metal reservoir,

we just use those for the bake.

We place some �ne wire mesh which has been properly cleaned and sonicated over

each of the viewports, and attach them to the �anges with Kapton. This is to keep us

from accidentally scratching any coatings with aluminum foil.

We make sure that only one of the supports on the chamber to be baked is �rmly

attached to the optical table. This is to account for thermal expansion, which is non-

negligible over a machine that is roughly 8 feet long. We also place small sheet-metal

shims between the supports and the optical table, which helps lower thermal conduction

to the table and makes our bake more e�cient.

We initially plan out locations for all thermocouples, keeping in mind areas like view-

ports (which may require more monitoring) and areas like the centers of nipples and tees

(which require less), to maximize the amount of information we get. This allows us to

start writing a GUI in parallel with other bake preparation. Bayonet TCs are assigned to

sensitive areas (viewport CF �anges in particular) since they stay �rmly in place during

the bake. Dinky TCs are attached to locations on the machine with large amounts of

Kapton tape, and then are �rmly strain-relieved with nearby hose clamps. We plug all
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of the thermocouples into the USB-TC boxes, plug the boxes into a computer that has

been designated for the bake, and make sure they all work.

Once this is done, we wrap the entire machine in a few initial layers of aluminum foil,

taking care to route all of the TC and heating element cords out of the foil in as few places

as possible. This extends out to the bellows leading to our turbo pump, just to be safe

about gradients across our valve. This foil, beyond providing layers of insulation, ensures

that the majority of our heating will be convective rather than conductive. The only

exception to the foil-wrapping procedure is the ion pumps, which have such a large mass

that we need to heat them directly. We then wrap heating tape around the entire machine.

We make sure to think about the locations of each tape in reference to what it will be

heating, so that when we adjust the power sent to that tape, we are e�ectively specifying

and heating one location on the machine. As we do this, we create a spreadsheet which

keeps track of the heating tape size (e.g. its power requirement), its location on the

machine, and any nearby thermocouples. This is a very useful spreadsheet during the

bake. We also label the heating tape cord with its size and location, which is useful to

connect the variacs once everything is insulated.

Setback: Our initial bake protocol involved heating all �anges, including viewport

�anges, directly with band heaters. During that �rst bake, we also used only

the dinky types of thermocouples, which were poorly attached with Kapton tape;

several became disconnected during the course of the bake, and several others gave

poor readings. A combination of these circumstances and a goal bake temperature

of 200◦C resulted in a bad bake, wherein the thermal gradient across one of the

viewport glass-metal seals was too high and the vacuum broke. We did not make

that mistake again. Bake convectively.

After the heating tapes are wound, we prepare packets of the Superwool surrounded

by aluminum foil, and place these packets around the entire machine in at least one layer.
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Figure B.1: a,b: The bake panel (front and back) with variacs and connections. c: Mesh
protection over a viewport to keep us from accidentally scratching the coatings. d: Ther-
mocouples and band heaters are attached directly to the machine (Sr oven bake pictured).
e: Foil is wrapped around all but the ion pump. f: Heating tape is wrapped around the
foil layer (Li main chamber bake pictured). g: The heating tape is covered with insu-
lation and more foil. Thermocouple readout boxes are attached to thermocouples and
control computer.
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We go back and cover the packets with yet more aluminum foil until we are satis�ed. We

connect each of the heating tapes to a variac which will provide the appropriate amount

of wattage.

If we can, we also attach a webcam to the computer to monitor our chamber pressures

remotely.

B.3.2 The actual bake

We ramp up the variacs by a few percent at a time and let the temperatures stabilize. We

then correct for any areas which are heating too slowly or quickly. This process iterates

using human PIDs, or �grad-student-in-the-loop� technology, until we reach the desired

temperatures of around 180◦C.4 We allow it to bake until we are happy with our turbo

pressure (and RGA pressures, if we happen to be monitoring those), and towards the

end of the bake degas of all of our ion gauges �laments, as long as our pressures are low

enough. Our bakes have been at temperature for between 5 and 12 days, during which

time we continue to actively monitor pressures and temperatures.

We then try to ramp down temperatures no faster than around 25◦C/hour while

turning on ion gauges and ion pumps, although we occasionally get impatient.

B.3.3 Post-bake

Our bakes have resulted in pressures around 10−9 Torr in our ovens, where we typically

use elastomer-based valves and do not have Ti-sub pumps, and 10−11-10−12 Torr in our

mainchambers, where we typically care more about the quality of our pumps and are

more careful during chamber assembly.

4This can be an arduous several-day process which you will likely share with others. It is important
to �nd the right music to play during this time, and perhaps the right beers to drink, to encourage
relaxation and group harmony.

210



Appendix C

Lab Infrastructure

This appendix discusses gruesome details, chronicles growing pains, and imparts a few

small useful lessons learned while the lab has been built up.

C.1 Temperature, humidity, and seismic stability

Our lab is divided roughly into quadrants by four pneumatically-�oated optical tables,

three of which have �clouds� made of Unistrut and plywood hanging above them from the

ceiling. The lithium laser table was bought at the inception of the lab and placed under

one of the clouds, and to my knowledge there have been no problems. The strontium

laser table was gifted to the lab from Prof. Dave Cannell, and dates back to the 1960s;

while this table was �oated soon after moving to the new lab space, the positioning of

the pneumatic legs was poor, a�ecting the stability of the table to vibrations. One of the

lasers on that table, a Toptica SHG-Pro 461 nm laser with a frequency-doubling cavity,

was extremely susceptible to these vibrations, and we found that repositioning the legs

was immensely helpful to the stability of the cavity lock.

The other two optical tables, the machine tables, rest under clouds which are both

humidity- and temperature-controlled by an HVAC system, and enclosed by custom 80/20
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enclosures. For many years, the setpoints and PID parameters on this system were not

enough to combat the heat loads from machine operation, and we found that resulting

variation of around 3◦F would result in noticeable alignment and/or polarization shifts

of our beams over the course of the day (for example, if we aligned our ODTs while the

machine was �hot,� we would need to wait for the enclosure to heat up to retrieve the

same atom number). We took several steps to make our optics setups more robust, which

are outlined in Appendix E, but we additionally put some e�ort into tuning setpoints

and �owrates for the HVAC, which has made our recent experimental lives easier.

All of the visible laser systems (the 671 nm system, 461 nm system, and 689 nm

system) are housed within small 80/20 and PVC custom enclosures to protect against

dust; the 1064 nm system is housed similarly, using aluminum instead of PVC for safety.

We also �nd that the covers for these enclosures generally help pointing stability.

C.2 Water system

In order to cool our magnets, electronics, and some lasers, we have a closed-loop water

system in our lab which is separate from the building water. The biggest part of this

system is a Neslabs III chiller (70 kW capacity), which contains a heat exchanger to cool

our lab's closed-loop water system using the building chilled water supply, and a pump

to circulate water at 50 psi. The chilled water is directed to a high-pressure booster

pump (Flint and Walling PB1016S151), which provides us with the �ow rates we need to

e�ectively cool our magnets (our setpoint is around 100 psi). The chiller pump failed in

November 2018; please see Appendix K for more information on the pump replacement

and other chiller details. A schematic of water lines in the core is shown in Fig. C.1.

The high-pressure water lines in our lab are directed to water manifolds in the clouds

above both machine tables, which break out cooling lines for each magnet. These mani-

folds also contain RTDs (Omega PR-20-2-100-3/16-2-E-T) and �ow rate sensors (Malema
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Figure C.1: An approximate diagram of water �ow in the core. The low-pressure and
high-pressure supply and return lines lead to breakout manifolds in the lab.

M-10000-S3051-00 and M-10000-S2031-00) to monitor temperatures and pressures for

each line.

Setback: When our chiller does not have enough water in its reservoir, it shuts itself

o�. Back in June 2014, when we were running without any interlocks and very min-

imal water temperature monitors, this auto-shuto� occurred when we were running

the booster pump, causing the input pressure to the booster to run extremely low.

The booster subsequently overheated and broke. We installed water temperature

monitors immediately afterwards. Build interlocks early.

In late 2016/early 2017, we found a large buildup of algae in the water system. We

replaced the water in the chiller reservoir with a 10% solution by volume of isopropyl

alcohol diluted with distilled water. This has worked �ne for us so far; none of the

materials in our pumps are rated lower than a �B� grade for 100% isopropyl alcohol. We

also began shunting water away from the booster pump and through a cleaning �lter

at the end of every day, and directing it back at the start of every day, in the name of

213



Lab Infrastructure Chapter C

keeping our water as clean as possible.

C.3 Control hardware and software

Both of our machines use the Atticus server and Cicero software platforms developed

at MIT to control our experiments [153]. The server interfaces with a 10MHz Opal

Kelly XEM3001 FPGA (connected with the control computer via USB) and 4 National

Instruments output cards (32-channel digital cards, PCIe-6535, and 8-channel analog

cards, PCI-6713) mounted in the control computer. On the lithium machine, a network

clock is used to sync the cards as well as triggers for external circuits; on the strontium

machines, the timebases are directly synced.

The log�les generated by Cicero for each experimental run are associated with the

camera images taken during that run using timestamps. All processing is accomplished

in Matlab. For every set of data, the images are analyzed for basic useful information,

and the resulting output is stored in a large Matlab struct called atomdata.mat; rather

than reanalyzing the data every time we need to access it, we simply load the relevant

atomdata �le, and continue with any further analysis.

All of our data is saved directly onto our lab server, which is backed up onto box.com.

Data backup is important.

C.4 Electronics

There are a few electronic architectures which we have developed in the lab over the past

few years, which will be brie�y detailed below.
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C.4.1 AOM drivers

The most ubiquitous drivers (indeed, electronics) in lab are voltage controlled oscillator

(VCO)-based AOM drivers, which were developed by an undergraduate researcher in

2013, and which we modify as necessary to give us the center frequencies, resolutions,

and bandwidths we require for speci�c applications. Their stability tends to be limited

by the thermal drift of VCOs and various passive elements in the circuitry, even after

taking care to purchase low-thermal-coe�cient coe�cients. We work around slow drift

by occasionally checking the outputs on a spectrum analyzer. The frequency at which we

can either amplitude- or frequency-modulate the AOMs is actually limited by the 1 µs

output resolution of Cicero. To overcome this problem on the lithium machine, Cora

Fujiwara developed a DDS (direct digital synthesizer)-based driver using a Beaglebone

platform, which allows modulation up to around 2 MHz; more on this architecture may

be found in her thesis [47].

C.4.2 Beam shutters

We went through several iterations of home-built beam shutters using scavenged iPod

hard drives. They had extremely fast (∼ 10 µs) closing speeds, but the arms would

�bounce� due to the undamped force of the shutter actuation, requiring more compli-

cated Arduino-based pulse sequences to drive them. Additionally, that same actuation

force required additional damping when mounting on the optical tables, as they would

otherwise a�ect cavity locks. Zach Geiger eventually developed an inexpensive stepper-

motor based design housed in a custom 3d-printed mount. These have a slower shutter

speed of around 1 ms, but have been much more reliable and have the nice property of

only requiring a TTL to open or close. We use them in all near-resonant beam paths.
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C.4.3 PIDs

We use homebuilt PIDs to stabilize all of our atom-trapping beams. We went through

several iterations of PIDs; the original designs only allowed us to follow setpoints up to

around 2 kHz before we began to see signi�cant distortions and gain problems. We still

use these designs to stabilize our optical dipole traps during cooling, but for all other

stabilization we use a circuit designed by our postdoc Toshihiko Shimasaki, which follows

setpoints nicely up to 10 kHz and only results in phase delays up to 40 kHz. This design

was based o� of one used in the DeMille group at Yale, which in turn was developed from

a design used at Innsbruck; the schematic may be found in Fig. C.2.

C.5 Magnet winding

For all of our large magnets, we decided to use square-pro�le hollow copper wire, both

to ease wire-stacking during the winding process and to make water-cooling possible.

We settled on alloy 101 OD 0.1875� wire with a wall thickness of 0.032�, custom from

Small Tube Products; Small Tube Products directly shipped to S&W Wire Co, which

insulated the wire with Daglass (�berglass) insulation rated to 180◦C (we never baked the

wire above 160◦C, just to be safe). Throughout the winding process, we used thermally-

conducting electrically-insulating Duralco NM25 epoxy; the resulting e�ective thickness

of each wound layer of wire was 0.2�. We were careful not to mix too much epoxy at

one time, as we found that large batches could not be properly mixed and thus bonded

the wire poorly. We also outgassed each batch of epoxy, once mixed, in a small vacuum

chamber for ten minutes.

We constructed a custom jig out of 80/20 hardware (Fig. C.3A), and took special

precautions to make sure there was tension on the thick wire at all times, such that our

wire spacing in both radial and axial dimensions remained constant. While winding a

given layer, we made sure there was enough radial tension on the wire by levering the spool
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Figure C.3: The winding rig and various spacers are shown during the process of winding
a slower solenoid.

in the opposite direction from which the solenoid was being wound (e.g, if we torqued the

solenoid axle in ẑ to wind the magnet, the spool would be simultaneously torqued heavily

in −ẑ). We machined a custom jig which supported long screws at di�erent radii, and

used them, along with plastic spacers, to exert axial force on every layer of the solenoid

such that tension would not be lost while that solenoid layer dried. We also used spacers

to create gaps in the solenoid layers where needed (Fig. C.3B). Since a large amount

of force needed to be exerted both on the solenoid axle and the wire spool during the

winding process and epoxy needed to be applied to the wire progressively, winding was

typically a 3-person job.

C.6 Interconnects for water-cooled electronics

The square shape of the wire meant that we had to somehow engineer a sound connection

to round Swage-Lok PVC connectors. The process was eventually developed largely by

one of our intrepid undergraduate students, and involved �tting a length of copper tubing

onto the stripped square wire and connecting them by �owing large amounts of solder
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into the gaps with a blowtorch. Swage connectors could then be �t onto the copper

tubing and used to interface with PVC connections. More details on this process may be

found in Ruwan Senaratne's thesis [22].
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Appendix D

Strontium Polarizability Calculations

The concept of polarizability, the metric of how much an atom responds to an AC electric

�eld of a certain magnitude and frequency, is central to understanding light shifts and,

by extension, trapping potentials. In the contexts of atomic clocks, where one wishes to

measure a transition frequency with extremely high precision, it is highly desirable to trap

atoms such that the transition frequency is una�ected. Unfortunately, the vast majority

of trapping frequencies will shift ground and excited states by di�erent amounts because

the states will have di�erent polarizabilities. Not only will the transition frequency

be shifted, but it will also be generally broadened due to inhomogeneity of trapping

intensities. However, for some transitions, there exists a trapping frequency at which

the ground state and excited state have the same polarizability, and transitions are thus

una�ected by the trapping potential. This is called the magic wavelength.

The de�nition of polarizability is deceptively simple. In addition to dependence on

the electric �eld frequency and magnitude, it can also depend on the polarization of the

�eld; any polarizability which is only dependent on the external electric �eld is usually

referred to as scalar polarizability. There are also higher-order polarizabilities which are

dependent on the total angular momentum of the state to �rst and second order; these

are usually called the vector and tensor polarizabilities.
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Even scalar polarizabilities are extremely di�cult to calculate. Recall from Sec-

tion 2.2.4 that this quantity depends on the square of dipole matrix element between

the ground and excited state. However, for atoms heavier than helium, it becomes expo-

nentially more di�cult to determine those states exactly. Atoms are strongly-correlated

quantum systems, and no tractable exact theory exists, even of their static properties.

Several theorists, such as Marianna Safronova, have dedicated signi�cant e�ort to ab-

initio calculations to determine various contributions to the polarizability of certain

atomic transitions. Experimentalists at JILA, among other places, have spent many

years measuring these polarizabilities with extremely high precision for strontium opti-

cal clocks [174]. While theorists can help experimentalists predict approximate magic

wavelengths, which is critical when deciding what lasers to buy, magic wavelengths are

usually only precisely found and characterized via direct experimental measurement.

In this appendix, I detail some calculations done in collaboration with Alexandre

Cooper-Roy at Caltech, following the calculation method detailed in the Boyd thesis [175].

There are alternative calculation methods [176], but this one happens to work well for

many of the values found in literature. The references used for the calculations may be

found in Tables D.1, D.2,and D.3.

D.1 Calculations

The general form of the scalar polarizability α for a ground state g in a trapping potential

with frequency ωL is

αg(ωL) = 2e2
∑
k

~ωgk|〈ϕk|d|ϕg〉|2

~2(ω2
gk − ω2

L)
(D.1)

where the sum is taken over all excited states k with corresponding transition frequencies

ωgk, and d is the dipole operator. This may be rewritten in terms of the transition rates
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Agk for each transition from state g

αg(ωL) = 6πε0c
3
∑
k

Agk
ω2
gk(ω

2
gk − ω2

L)
, (D.2)

so all we need to know are measured transition rates for all transitions from the ground

state to every excited state (at least where the data is available), and the corresponding

transition frequencies ωgk (again, where data are available).

Literature commonly provides the total transition rate AT from an excited state (e.g.,

the lifetime of the excited state), which accounts for all possible states to which it can

decay. We need to calculate the probability of falling into a particular ground state

g. This requires knowing the branching ratio β, which may be calculated based on the

quantum numbers of the ground and excited states:

βgk =

(2Jg + 1)

{
Jg Jk 1
Lk Lg S

}2

∑|Lg+S|
J=|Lg−S|(2J + 1)

{
J Jk 1
Lk Lg S

}2

Jk∑
mk

(2Jk + 1)

(
Jg 1 Jk
mg p −mk

)2

, (D.3)

where matrices denoted by {} are Wigner 6-j symbols and by () are Wigner 3-j symbols.

p refers to the polarization of light: -1, 0, 1 correspond to σ−, π, σ+. We can then write

Agk = AT × βgk × ζ(ωgk), (D.4)

where ζ is an energy correction term also commonly found in literature.

Various sources provide energies instead of frequencies, determine Agk instead of pro-

viding AT , etc; we can also directly add known polarizability corrections to the �nal

calculation of αg; for example, [176] provides core corrections for 1S0 and 3P0 which are

taken into account in the calculation.

The resulting calculations are shown in Fig. D.1 for absolute polarizability, an example

of typical AC Stark Shifts, and zooms-in on the magic wavelengths for the clock transition

as well as linearly- and circularly-polarized 3P1 transitions. Note that determinations for
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Figure D.1: Calculated strontium polarizability for 1S0, 3P0, and selected 3P1 states.

the 1S0 →3 P0 and 1S0 →3 P1(∆m = 0, p = 1) magic wavelengths greatly di�er from the

experimentally-determined values of 813.4 nm and 915 nm [177] [175]. The exact magic

wavelength for 1S0 →3 P1(∆m = 0, p = 0) is unknown but starting to come into use in

strontium optical tweezer experiments [178, 179].

D.2 References

The numbers listed here are not necessarily the ones given in the references listed, but

have been calculated based on the given quantities. They have also been rounded. Tran-

sitions are grouped into tables by ground state g, which may be found in the captions.

For the ground state, there are no energy corrections ζ, nor branching ratios β since

there is no state to decay into; Agk values are typically available in the literature.

k ωgk Agk Ref.
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5s5p3P1 2.732 0.0469 [180]

5s5p1P1 4.0872 190.0057 [181]

5s6p3P1 6.425 1.87 [182]

4d5p1P1 7.029 0.15 [182]

5s7p1P1 7.331 5.34 [182]

5s8p1P1 7.758 16.85 [182]

5s9p1P1 8.001 18.34 [182]

5s10p1P1 8.164 11.50 [182]

5s11p1P1 8.279 6.65 [182]

5s12p1P1 8.357 3.724 [183]

5s13p1P1 8.415 2.356 [183]

5s14p1P1 8.458 1.574 [183]

5s15p1P1 8.491 1.166 [183]

5s16p1P1 8.516 0.850 [183]

5s17p1P1 8.535 0.644 [183]

5s18p1P1 8.551 0.504 [183]

5s19p1P1 8.564 4.246 [183]

5s20p1P1 8.574 0.321 [183]

5s21p1P1 8.583 0.256 [183]

5s22p1P1 8.590 0.207 [183]

5s23p1P1 8.596 0.175 [183]

5s24p1P1 8.602 0.143 [183]

5s25p1P1 8.606 0.124 [183]

5s26p1P1 8.610 0.101 [183]

5s27p1P1 8.614 0.083 [184]
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5s28p1P1 8.617 0.0763 [184]

5s29p1P1 8.619 0.0722 [184]

5s30p1P1 8.622 0.0550 [184]

5s31p1P1 8.624 0.0503 [184]

5s32p1P1 8.626 0.0466 [184]

5s33p1P1 8.628 0.0418 [184]

5s34p1P1 8.629 0.0315 [184]

5s35p1P1 8.631 0.0284 [184]

5s36p1P1 8.632 0.0213 [184]

5s37p1P1 8.633 0.0155 [184]

5s38p1P1 8.634 0.0128 [184]

5s39p1P1 8.635 0.0120 [184]

5s40p1P1 8.636 0.0090 [184]

5s41p1P1 8.637 0.0079 [184]

5s42p1P1 8.638 0.0070 [184]

5s43p1P1 8.639 0.0060 [184]

5s44p1P1 8.639 0.0054 [184]

Table D.1: Strontium polarizability data for ground state

1S0
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k ωgk AT ζ Ref.
5s6s3S1 2.773 84.996 1.0828 [185]
5s7s3S1 4.353 11.998 1.0517 [185]
5s8s3S1 4.981 8.2162 1.0450 [185]
5s9s3S1 5.299 4.5336 1.0422 [185]
5s10s3S1 5.483 2.7671 1.0408 [185]
5p2 3P1 3.9712 120 1.0373 [185]
5s4d3D1 0.7236 0.4123 1.2660 [185]
5s5d3D1 3.8972 60.999 1.0544 [185]
5s6d3D1 4.7785 24.620 1.0457 [185]
5s7d3D1 5.1889 14.199 1.0424 [185]
5s8d3D1 5.4153 8.5097 1.0407 [185]
5s9d3D1 5.5549 5.5108 1.0400 [185]

Table D.2: Strontium polarizability data for ground state 3P0

k ωgk AT ζ Ref.
5s6s3S1 2.739 84.9995 1.0421 [185, 186]
5s7s3S1 4.329 12.0012 1.0264 [185, 186]
5s8s3S1 4.947 8.2199 1.0230 [185]
5s9s3S1 5.265 4.5311 1.0216 [185]
5s10s3S1 5.448 2.7714 1.0208 [185]
5p2 3P1 3.937 120.00 1.0099 [185, 186]
5p2 3P2 3.889 120.00 1.0503 [185, 186]
5s4d3D1 0.6884 0.4117 1.0901 [185]
5s5d3D1 3.863 60.9999 1.0261 [185, 186]
5s6d3D1 4.745 24.6195 1.0228 [185]
5s7d3D1 5.155 14.2007 1.0213 [185]
5s8d3D1 5.380 8.5103 1.0206 [185]
5s9d3D1 5.520 5.5090 1.0203 [185]
5s4d3D2 0.6997 0.4124 1.1444 [185]
5s5d3D2 3.866 60.9996 1.0284 [185, 186]
5s6d3D2 4.746 24.6199 1.0234 [185]
5s7d3D2 5.156 14.1997 1.0219 [185]
5s8d3D2 5.381 8.5106 1.0210 [185]
5s9d3D2 5.520 5.5095 1.0203 [185]

Table D.3: Strontium polarizability data for ground state 3P1
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Appendix E

Trap and Lattice Stability

Around the time we started to work on lattice experiments, we noticed some small

mechanical and optical instabilities which soon became untenable, as drifting alignment

and power changed our lattice depth by more than a few percent. Brie�y listed here are

various steps we eventually took which helped the overall stability of lattice experiments

speci�cally, and the overall machine operation generally.

E.1 Mechanical

E.1.1 Breadboard supports/forti�cation

Since our strontium breadboards sit around 15� above the optical table, there is a greater

chance for vibrational instability. When a collimated beam was placed on one of the side

breadboards and imaged around 3 feet away on the other side breadboard using a beam

pro�les, we saw drift of the beam center on the order of ±10 µm. To �x this issue, we

put two clamping feet on each breadboard support to attach to the optical table, and

tightened then down as much as was physically possible. We attached 6� 45◦ supports

between each support and the breadboard in at least 1 dimension (2 dimensions if space
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allowed). We also a�xed metal plates to the bottoms of the breadboards to attach each

side breadboard to the back breadboard. These �xes reduced the beam center drift in

the same measurement to ±2 µm.

We also bought a sack of lead shot to �ll the hollow 80/20 supports, but we are waiting

for a true rainy day scenario (a main chamber rebake, or something with similarly grave

implications) to implement this.

E.1.2 Steel mirror mounts

We have found that the thermal drift from aluminum mirror mounts can result in large

changes in alignment and coupling e�ciency over time. To �x this, in cases where

alignment was important for machine stability, we switched out certain mirror mounts

for steel mounts. At really crucial places, we used double-sprung steel mounts for maximal

stability.

E.1.3 Lids on optics

Our machines are contained in enclosures underneath clouds which include HVAC systems

for temperature and humidity control. There are vents which should produce laminar

�ow inside the enclosure. In addition to this, there are also air currents produced by

thermal gradients in the enclosure, especially where magnet wires dissipate heat near the

chamber. We have found it critical to erect makeshift �enclosures� for the breadboard

optics using 1/2� posts and custom-bent sheet metal (we do this ourselves in the machine

shop); without them, the beam positions at the atoms are liable to drift on the order of

around 10 µm.
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E.2 Optical

E.2.1 Angle-polished �bers

One of the dangers with �ber-coupled lattice beams is that light inevitably will hit

the front surface of the �ber, whether that light is from a retrore�ection or a separate

counterpropagating beam. This can actually make lattice alignment much easier, since

recoupling light into the �ber provides a nice constraint on how well the two beams are

overlapped. However, if any of that retrore�ected light (which propagates normal to

the �ber face) re�ects from the �ber facet, it can generate a third beam almost parallel

to the lattice which can interfere to change the lattice depth (in theory, this beam can

retrore�ect many times). Since the path length for this third beam is very long, its

phase is accordingly more susceptible to any thermal drifts of optical components. The

maximum amount by which it can change the depth of the lattice goes as intensity to

the 4th power, which means that even very weak beams re�ected from the �ber face can

produce signi�cant changes in the lattice depth. The e�ect is even more pronounced if

the lattice is being phase-modulated, as is the case in our experiment.

The amount of light which is re�ected from the �ber face can be signi�cantly sup-

pressed by using angle-polished �bers, such that any re�ections are de�ected by an angle

of around 16◦. We were not aware for a long time that the �bers we initially used were

�at-polished (we had ordered APC �bers), and debugging and �xing this issue led to

much more stable lattice depths.

E.2.2 Dichroics

In our lattice experiments, we use short-pass dichroic mirrors to separate the lattice

beams from imaging beams. If any lattice light is transmitted through the dichroic

rather than re�ected, it could potentially retrore�ect o� of optics in the imaging beam

231



Trap and Lattice Stability Chapter E

path and cause unwanted interference with the other lattice beams. Most dichroics have

a preferred polarization for which the extinction ratio is increased by a factor of order

∼10. Changing our lattice beam polarizations to the dichroic-preferred one also led to

more stable lattice depths.

E.2.3 Cleanup cubes

Dissipated power in the 1064 nm isolators, as well as overall dissipated heat in the

enclosures, increases the temperatures inside both the machine enclosure and the 1064 nm

enclosure. One of the biggest resultant thermal e�ects we see on our optics is drift in

polarization, particularly for the high-power 1064 nm laser. We use zero-order waveplates

wherever possible, but we see drift nonetheless, usually observed in the context of drifting

powers in various beams post-polarizing beam splitters. The drift also comes from small

changes in 45◦ mirrors, which scramble any non-linear polarization. We added so-called

�cleanup cubes,� which are just polarizing beam splitter cubes, at many locations in the

optical setup but most critically near the polarization-dependent light picko�s for our

PIDs, which guarantee that our light remains linearly polarized until/unless we need it

to be otherwise. Adding these cubes increased the lifetime by our ODTs by a factor

of a little less than two. Additionally, it helped �x drift in our evaporation endpoints

throughout the course of the day.
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Imaging System and Alignment Tricks

This appendix contains a brief list of some tricks we have found useful to align a 4f

absorption imaging system and lattice beams. It also includes pictures of the strontium

red MOT 1 taken along every imaging axis currently set up, with labels to point out the

directions of gravity and the oven on the image.

F.1 Imaging and alignment tricks

When setting up any kind of beam which will have a small waist at the atomic plane (like

an ODT), it is useful to have an imaging axis along the same axis to help with alignment.

We use 4f telescope systems on either side of our chamber: one on the ingoing side to

expand the imaging beam to �ll the camera sensor (lenses 1 and 2), and one on the

outgoing side to magnify the image of our atoms (lenses 3 and 4). In each telescope, at

least one lens (often the one closer to the chamber) is mounted on a precision stage, such

that we can be sure of our beam focusing and our image magni�cation.

We typically set up the imaging beam and the ODT at the same time, using the

following methodology. Lens 1 is of relatively little importance, as only the imaging light

hits it. Lens 2, the focusing lens, is typically an achromat doublet; we have found this
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necessary on the strontium machine due to large chromatic aberrations from 461 nm to

1064 nm. We place this lens such that the imaging beam is roughly collimated, and set

up a very rough telescope with lenses 3 and 4 after the chamber. We then take an image

of the cloud along that axis with an irised-down imaging beam. We use the iris pinhole

and the image on the camera to roughly align the ODT. We use a perpendicular axis

to image atoms trapped in the ODT for di�erent trapped hold times to observe their

motion, and use this to walk lens 2 such that the focus is in approximately the right

place. We move lens 1 to collimate the imaging beam through the chamber.

After the chamber, lenses 3 and 4 are achromat doublets. Lens 3, the objective lens

is placed to collimate the ODT beam out to as far as we can, which is usually 2-3 m (we

check this using a beam pro�ler). Lens 4 is placed around f3 +f4 away from lens 3, and a

camera is set f4 from lens 4. We walk lens 4 and the camera to focus images of the atoms

onto the camera (Babinet's principle states that the lack of a point source behaves like

a point source); this is usually done using an ODT which has some component normal

to the axis being set up. Once these lenses are well-focused, the ODT can be aligned (at

low power) to the location of the atomic image on the camera. Looking at the waist of

the ODT on the camera (which should be an image plane of the atoms) should allow �ne

walking of lens 2 to minimize spot size.

If knowing the magni�cation of the imaging axis to a relatively high precision is

important, especially if using a heavier atom, it can be useful to �t the acceleration of

an atomic cloud time-of-light fall, which can be compared to gravity.

F.1.1 Setting up a lens

In the pursuit of minimizing astigmatism and coma as much as possible, we have found

it important to set the �at surface of plano-convex lenses as normally as possible to the

direction of light propagation. By iterating between an iris/pinhole immediately after
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the lens and a pinhole at some distance from the lens, a�xed by a lens tube, we can

ensure this. We have also found it useful to keep the �at surface of the lenses towards

the middle of a telescope, in accordance with the Abbe sine criterion.

F.2 Imaging axes on the strontium machine

A full list of the speci�cations for each of our imaging axes may be found in Table 5.7.

In Fig. F.1 are raw OD images of a red MOT 1 taken along each axis, with the direction

of gravity and approximate direction of the oven indicated.1 Note that the directions

marked on the Andor assume that the beams all travel orthogonally to each other. The

lattice and ODT are measured to be orthogonal to within 0.5◦, so those axes have been

used to calibrate the direction of the slower axis. Every other beam is referenced to the

slower axis.

1I am 100% sure of the directions indicated for the Andor, Lattice, and Tight Trap axes; I am 85%
sure of the directions indicated for the ODT and XODT.
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Appendix G

Mainchamber Drawings

In this appendix, you will �nd technical drawings for the following parts:

� Lithium main chamber (5 pages)

� Lithium bucket windows (2 pages)

� Lithium breadboards (4 pages)

� Strontium main chamber (4 pages)

� Strontium breadboards (4 pages).
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Figure G.2: Lithium main chamber page 2
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Appendix H

Viewport AR Curves

In this appendix, you will �nd theoretical AR curves provided by various companies for

the following:

� Lithium main chamber side viewports (coated by Lesker).

� Lithium bucket windows (coated by UKAEA).

� Strontium main chamber side viewports (coated by Optical Filter Source (OFS)).

� Strontium QGM side viewports (coated by OFS, purchased but need to order 2

replacement 2.75� CF viewports).

� Strontium QGM bucket windows (curves from OFS, not yet purchased).

� Strontium QGM bucket windows at low incident angles from the normal (curves

from OFS, not yet purchased).

� Strontium QGM bucket windows at high incident angles from the normal, since we

have been considering 1064 nm shallow-angle re�ection for transport and loading

(curves from OFS, not yet purchased).
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Figure H.4: AR curves for OFS coatings for strontium QGM side viewports. These were
ordered, but two were stolen for a rebuild of the strontium oven transverse cooling section
and have not been replaced. We ordered the orange (severe abrasion-resistant) version.
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Figure H.5: AR curves for OFS coatings for strontium QGM bucket windows. These
have not yet been ordered.
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Figure H.6: AR curves for OFS coatings for strontium QGM bucket windows at various
low angles from the normal (0 degrees).
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Figure H.7: AR curves for OFS coatings for strontium QGM bucket windows at various
high angles from the normal (0 degrees). These curves predict s-polarization values;
p-polarization can vary from 0 to 15% from these.
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Appendix I

Other Custom Part Drawings

In this appendix, you will �nd technical drawings for several custom-designed parts that

we use on the strontium machine:

� Viewport caps for MOT cagemounted optics (2 pages)

� MOT coil supports (2 pages)

� Jig for the Andor camera front face (1 page)

� Imaging jig to connect our vertical objective lens to the top breadboard via a 1�

cagemount system (1 page)

� The current 689 nm spectroscopy cell design, as well as an improved one for the

next iteration (2 pages)

� Supports for the strontium oven and slower (5 pages)

� Feet to interface between 80/20 supports and the optical table (4 pages).

265



Other Custom Part Drawings Chapter I

 1.580 

 .220 

 .080 

 .660 

2X  .089  .280
4-40 UNC   .150

 .388 

 .153 

 R.300 

 R.790 

 R.300 

 .511  R.300 

 R.790 

8X  .089  .177
4-40 UNC   .150

 R.6715 

 R.188 

 R.367 

 R.6715 

 .030 

 R.300 

 R.050 

This arc is centered .030 inches
lower than the other five.

 .5235 

316 Stainless

Sr 133 Viewport Optics Mount

WEIGHT: 

6MOT Optics Mount

J Hines 8/29/2014

COMMENTS:

SHEET 1 OF 2

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

DATENAMEDIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

DO  NOT  SCALE  DRAWING

FINISH

MATERIAL

REV.

A
DWG.  NO.SIZE

SCALE:1:1
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Appendix J

Notes on Paci�c Laser Equipment

Waveplate Rotators

The strontium machine uses waveplate rotators to redirect power from ODTs to lattices

and back. These were designed and made by Paci�c Laser Equipment (PLE). They

are programmed with software macros via Hyperterminal, and 2π radians corresponds

to 3240 discrete rotation positions. Descriptions of macros 1, 2, and 3 can be found

in Section J.1. If the currently programmed macros 1 and 2 di�er slightly from those

below, don't worry about changing them. If the rotator controller box ever loses power,

you will need to run the startup sequence in Section J.2. If you are curious what various

commands are, Section J.3 provides explanations as well as input syntax if not described

elsewhere.

J.1 Macros

� Our zero macros are unnecessary and have been erased. If they are not erased on

startup, they can mess up calibration of the starting position of the waveplates.

Our one macros have been reprogrammed and set to recalibrate at an arbitrary
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position of 600. Their programming is as follows, for x = 1 or 2 is the channel

address:

� xDM1: LN,ST,MN,MR500,MR-10000,WA1000,DH,LF,MA600

� Our two macros have been set as a "warmup". These should just force the rotators

to turn back and forth over and over until they warm up enough to run their full

range of motion (one should see the numbers on the tracking output approach 1000

and -1000.

� xDM2: (MA1000, WA300, MA-1000,WA300)RP99

� The three macros have been set to the following:

� xDM3 = ST,RN,AL1234,FD43,SV90000,SA500,SQ900, SC300, SR25, UD,

RR1234

� We have manually set SR25 to SR50. This refers to the percentage of power

being dumped into the rotators when they are idle; we are hoping the increase

keeps them warmer. If we ever power on again, we should set this manually

via 1sr50 〈 enter 〉 2sr50 〈 enter 〉.

� xDM7 = RAxxxx. Executes motion on digital low TTL to absolute position xxxx

(may be xxx depending on value needed- do not need bu�er zeroes).

� xDM8 = RAxxxx. Executes motion on digital high TTL to absolute position xxxx

(may be xxx depending on value needed- do not need bu�er zeroes).

J.2 Startup Procedure

� Open Hyperterm and make sure connection is established

� If recently power cycled, type 1em0 〈enter〉 and 2em0 〈enter〉 to erase macros 0.
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� Turn reporting on by typing 1RN 〈enter〉 and 2RN 〈enter〉. This will allow the

rotators to report back to the hyperterm so you can see what is going on.

� Check macros 1, 2, and 3 by typing 'xTMy' for x channel and y macro. If they do

not match the macros above, reinput macros 1,2,and 3 for each of the two channels,

taking care to replace SR25 with SR50 in macro 3. NB: If the numbers following

RP or WA for either channel's Macro 2 are slightly di�erent from those above, it's

ok. Those just set wait times and repeat numbers.

� Run macro 1 for both channels by typing 1CM1 〈enter〉 2CM1 〈enter〉. This will

calibrate the positions of both rotators and should stop at position 600 for both.

� Run macro 2 for both channels by typing 1CM2 〈enter〉 2CM2 〈enter〉. This will

warm up the rotators. Let this run until both output tracking positions that appear

to swing up to 1000 and down to -1000.

� Troubleshoot: If the rotators appear to be stagnant (give them a couple of

minutes to start moving), it means there is not enough torque to start the

driving even after some time. In this case, type 1ab and 2ab as many times

as it takes for the drivers to stop running and stop outputting anything (there

might be some gibberish output). Then type 1sv5000 〈 enter 〉 2sv5000 〈 enter

〉. This will decrease the rotating velocity and increase torque until rotation

begins. Once they have warmed up a bit, increase velocity again via 1sv90000

〈 enter 〉 2sv90000 〈 enter 〉.

� Once rotators warm up, check the status of xDM7 and xDM8- they should re�ect

the positions you want at low and high levels. Test high and low levels via digital

TTL. At any point, you can make the rotators tell you exactly where they are via

xTP, for channel x. This is 100% reliable in our experience.
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� Troubleshoot: If, at any point, you forget to type a channel number, it will start

throwing gibberish at you. If this happens, type 1ab 〈 enter 〉 2ab 〈 enter 〉 as many

times as necessary.

J.3 Commands key

None of these are caps sensitive. None of these should ever be used directly from

the hyperterm command without a channel number preceding. If part of a

macro de�nition, said macro de�nition should have a channel number, but nothing after

the equals sign should.

� LN- Lineswitch on. If this is on, the rotator will stop at position 0 regardless of

which direction it approaches from, and regardless of which position it was headed

to.

� LF- Lineswitch o�. See LN.

� ST- Stop. Tells rotator to stop what it's doing.

� MN- Turns motor on.

� MR- Move relative. Will only start when previous command is �nished. Number

refers to positions to move- positive is clockwise, negative counterclockwise. 2π

radians corresponds to 3240 spaces.

� MA- Move absolute. Will only start when previous command is �nished. Number

refers to position to move to- see MR for more.

� RA- Remote absolute. Like MA, but will start as soon as command is received.

� WA- Wait. Number refers to number of milliseconds to wait.
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� DH- De�ne home. Sets current position to 0.

� RP- Repeat all preceding commands which were in parentheses. Number after

refers to number of times commands will repeat.

� RN- Reporting on. Will make rotators output tracking information.

� RF- Reporting o�. See RN.

� AL1234- Allows administrative access.

� FD43- Sabin told me what this did but I tuned out because it was boring and

irrelevant.

� SV- Set velocity. Lower velocity is more torque. Number is some absolute value.

� GV- Get velocity. Returns velocity value.

� SA- I have forgotten. There are a lot of these. It in�uences available torque.

� GA- Get A, whatever that is.

� SQ- refers to how much power is utilized when not idle. Number is a percentage

times ten of the total available power.

� GQ- Get Q value.

� SC- Set current. Number is in mA. Currently set at current limit.

� GC- Get current value.

� SR- Set resting. Number is percentage of total power available that gets dumped

into rotators when idle.

� GR- Get resting power percentage.
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� UD- Update. Writes all changes from RAM onto device EEPROM.

� RR1234- Reboots device.

� CMy- tells channel to execute macro y.

� DMy- must be followed by an equals sign and then a de�nition. De�nes macro y.

� TMy- Outputs the currently programmed de�nition of macro y.

� TP- Tells current tracked position of the channel.
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Appendix K

Notes on Chiller Revival

In November of 2018, our chiller developed a large internal leak which did not allow for

operation anymore. This appendix details a few notes on the �xes, and what we learned

in the process.

We found out that there was an issue because we continuously needed to re�ll the

chiller once every two hours. We found a leak at the bottom which we measured to be

around 30 mL/min, which was roughly consistent with the re�lls. We opened up the

chiller and found evidence of some corrosion on the internal pump, roughly underneath

the location of its internal mechanical seal. We ordered replacement parts for the internal

seal (0118 and 0232) from Halsted and Hoggan, local distributors for Price Pump. In the

meantime, we began to open the pump for replacement. Once we extricated the pump

electrically and mechanically from the chiller, we found it di�cult to remove anything

past the impeller; in particular, the mechanical seal stayed stuck to the shaft. UCSB's

head water guy, Brandon, came out to lend us his puller (a Pronto J4234B) to pry o�

the seals.

We ended up �nding that the mechanical seal was, in fact the source of the ticking.

The mechanical seal consists of a ceramic te�on-coated seat, which sits stationary in the

gasket. There is then a carbon ring which rotates with the shaft and slides on the surface

289



Notes on Chiller Revival Chapter K

of the ceramic. Then there is a spring to provide tension, and the seat head, which sits

against the impeller. The impeller screws onto the end of the shaft. Here's what we

think could have happened, but there's not really any one culprit which we can say is a

smoking gun:

1. Some awful incident a long time ago (possibly the incident where the old booster

melted) caused some small amount of damage to the ceramic part of the seal, which

may be thermally sensitive? That's what Brandon seemed to think, at least.

2. That small seal issue started letting water into the other side of the pump.

3. The water on the other side of the pump began to corrode the shaft (Fig. K.1a),

to the point where there was a very large amount of buildup on it. This corrosion

was the reason the seal spring and head were so stuck. We especially noticed lots

of buildup where the ceramic ring sits on the shaft, and quite a bit of wear on the

inside of that ring.

4. We also noticed that the carbon ring, which is supposed to rotate against the

ceramic surface, was shattered in multiple places (Fig. K.1b)- though it's not clear

which part of this happened before or after our wrenching the part o� of the seal.

In the instruction manual, the reassembly instructions state very clearly that the

pump shaft needs to be thoroughly cleaned, with no evidence of grooving, pitting, or

fretting. It says to polish with extra-�ne emery cloth, and if the shaft is grooved, fretted,

or worn, replace the entire motor. We acquired emery cloth to attempt to sand down the

shaft corrosion, but were unsuccessful. We decided to replace the pump (from Halsted

and Hoggan: PN HP75BN-550-06111-100-36-1D6).

When the new pump arrived, we noticed it had a di�erent motor from the old pump

(new: JL1309A, old:3807BA), which meant that the wiring was di�erent. The wiring

diagrams were all in the manuals, though, and we �gured it out. Once the pump was
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Figure K.1: (a) shows the extent of the corrosion on the pump shaft. (b) shows the
damage on the carbon ring, part of the mechanical seal that failed and caused the leak.

replaced mechanically and electrically, some hose clamps and tubing were purchased from

Home Depot so we could test the pump. Unfortunately, it did not turn on. We spent

some time trying to debug the internal electrical connections, as it is a very old model

that nobody seems to have wiring diagrams for. We thought we may have blown a fuse,

but couldn't �nd internal fuses.

We �nally called Trillium (the local distributor for Thermo-Scienti�c, the chiller

brand) and talked to Danial, who put us in touch with Marvin, the head engineer.

Marvin is great and was nice enough to Facetime with us to help us debug. From talk-

ing to him and wire-tracing, we �gured out that we don't have any internal fuses, and

established the wiring diagram for the most relevant wires (Fig. K.2). Once we checked

the DC voltage (across the purple wires), we realized that the voltage was derated by

some proportionality constant which was consistent with the two possible input voltage

settings: 208 V vs 240 V. This setting is set by a switch external to the wiring panel

rather close to the pump, which means we could have inadvertently �ipped it. Once it

was reset to 208 V, the chiller worked again.
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Figure K.2: This schematic is not meant to help the reader understand the electrical
workings of the chiller, but if that is your goal, this should help you trace the wires, at
least until the terminal blocks. Those were di�cult enough to access that we basically
gave up trying to make sense of them.

We got Tony from UCSB maintenance to help us make connections back to the

building's water system; much of the Te�on on the brass connectors was extremely worn.

The connections were redone using KeyTite, a liquid lubricant and sealant which he

heavily recommended over Te�on. If we ever wanted to replace the torn-o� insulation

from those seals to prevent condensation, he recommended cork insulation.

We bought a Midget Twist-Lock connector for the interlock on the back of the chiller,

and ran wires from the core to the lab. When connected, those lines will be closed if

the chiller is operational, and open if it turns itself o�. These will be connected to an

interlock in the lab.

A �nal note for future Weld Lab members: there is a weldlabupdates thread called

�Chiller's dead, long live the chiller� which contains all of the hyperlinks, manuals, dia-

grams, photos, and more detail about this process. I hope you never have to refer to it,

but it exists.
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Appendix L

�Better Know a Strontium Machine�

The fightin' Strontium!

This appendix is intended for a new student on the strontium machine to use as a

quick reference guide to what things are and where they are in the lab, and includes a

small section on machine start-up. It will likely become outdated very quickly and serve

as a reminder of the state of the machine circa 2019.

L.1 Strontium machine turn-on procedure

1. Start heating up the oven, ensuring that the nozzle is always hotter than the

cup. This takes a while, as the nozzle is more poorly insulated. Continue turning

up in stages until the cup is 600◦C, the nozzle 650◦C; this can happen in parallel

with turning up various other things and checking/tweaking up laser powers if

necessary. Once the heater thermocouples read the correct temperatures, it will

take some extra time for the oven to reach thermal equilibrium; use the MOT

�uorescence to decide when that has happened.

2. Turn the 461 nm laser on to let the 922 nm master equilibrate.
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3. Connect the 689 nm spec cell variacs, which are color-coded (will take around

an hour to heat enough to lock to), and turn on the 461 nm spec cell heater

(will take around 15 min to heat enough to lock to).

4. Turn on the 403 nm laser, 689 nm master and TAs, and lock the 461 nm

cavity. Make sure there has not been a brownout; if there has been, turn on the

TECs for all Arroyo controllers.

5. Turn the key on the 1064 nm ampli�er to enable it. Check that the panel

says �Remote Control.�

6. Turn on the 915 nm laser and TA if you will be using it.

7. Check that your water monitor has not crashed. It is unsafe to run the

machine without a working water monitor.

8. Open the water shunt and �ip the valves in the core to close the �lter path

and open the booster pump path. Check that the chiller pressure is nominal.

9. If you are turning on the magnets, turn on the booster pump switch. Check

that the high pressure gauge reads 100 psi; if not, adjust the shunt valve until it

does. Check that the water monitors read around 19◦C.

10. Turn on the magnets. The steady-state water monitor temperatures should not

rise above 33◦C if all is well. Happy machine-running!

L.2 Images
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Figure L.1: 1: AOM RF ampli�ers for ODT and XODT. 2: NKT AdjustiK seed. 3:
NKT BoostiK ampli�er. 4: MiniMOT analog controller. 5: MiniMOT power supply. 6:
Voltage summing ampli�er for piezo driver. 7: AA Systems A303 piezo driver. 8: Band
heater controllers for oven. 9: Tarth (control computer for water monitors, 1064 nm
seed, 1064 nm ampli�er). 10: RTDs and �owmeters for water manifold.
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Figure L.2: 1: Thorlabs Fabry-Perot cavity driver. 2: 403 nm Sacher laser controller. 3:
Blackfyre (control computer for waveplate rotators, picomotors, and general analysis). 4:
One of many UPSs to protect the machine against power outages. 5: Ion gauge controller.
6: 915 nm Sacher laser controller. 7: 915 nm TA controller. 8: 689 nm controllers for
TAs. 9: Toptica DLCPro controller for 689 nm master laser. 10: Picomotor controller
box for tight trap alignment. 11: Ion pump controllers.
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Figure L.3: 1: Shim current supplies. 2: Slower current MOSFET control. 3: Power for
miniMOT analog controller. 4: Atomic beam shutter power supply. 5: RF ampli�ers for
1064 nm AOMs. 6: Zeeman slower power supplies. 7: MOSFETs. 8: Homebuilt AOM
driver boxes (precision, 4 drivers/box). 9: PIDs (old design; used for ODT, XODT,
tight trap). 10: Analog controls for MOT power supplies. 11: MOT power supplies.
12: IntraAction driver for spectroscopy double-pass AOM. 13: Power supplies for analog
switch and sample-and-hold circuits. 14: Homebuilt AOM driver boxes (non-precision,
4 drivers/box). 15: Arryn (control computer for 461 nm software, 403 nm software,
689 nm software, Atticus, and Cicero; main experimental control computer, contains NI
cards.) 16: Digital breakout boxes (analog breakouts are on other side of this rack).
17: Toptica control modules for SHG-Pro 461 nm laser. 18: Analog switch circuit. 19:
Sample-and-hold circuit. 20: Old shutter Arduino control box; outdated. 21: PID (new
design; used for 689 nm MOT power and all lattice beams). 22: Scope to monitor 461 nm
cavity photodiode and scan signals.
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Figure L.4: 1: Rivers monitor. 2: Tarth monitor. 3: Rivers (control computer for
403 nm digital lock to cavity signal, scope traces from Kapitza-Dirac di�raction). 4:
Monitor for lattice PIDs. 5: Monitor for ODT/XODT PIDs. 6: Monitor for MOT
currents, 689 nm MOT PID. 7: MOT �uorescence camera monitor. 8: Arryn monitors.
9: Blackfyre monitors. Left: �What about that shadowy place?� �That's beyond our
borders. You must never go there.�
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Appendix M

Lullaby for a 461 Laser

Keeping the 461 nm laser1 running requires some TLC. Here is a list of things that need

to be done to ensure its upkeep, roughly in order of decreasing frequency.

For cavity alignment, cavity cleaning, and overall power drops, I o�er a disclaimer that

before following the steps detailed below, you should call Toptica support-

they are incredibly helpful and will be able to con�rm problems and provide

guidance, and anyway I can't guarantee that I haven't misremembered or forgotten

something here.

M.1 TA recoupling

At least once a week, we �nd that the coupling of the master seed to the internal TA

has drifted. The few times we have checked the actual TA IR output, the drift has

corresponded to a 940-950 mW output rather than the usual 1.05-1.10 W. We are typically

still able to lock the cavity to a mode, but the blue output falls by 10-20 mW.

We usually just look at the blue power on a power meter and recouple the TA using

the external access holes and a couple of M2.5 drivers. The majority of the power can
1I like to think of it as Obi-Wan (Alec, obviously, not Ewan) to the lithium 671 nm's Darth Vader.
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usually be retrieved by changing the vertical adjustment of the �rst mirror, and the rest

can usually be retrieved via horizontal adjustment of the same. We will occasionally do

a full two-mirror walk to make sure we haven't inadvertently wandered into a bad corner

of phase space, but it's not necessary on a weekly basis.

M.2 Desiccant packet switching

Unfortunately, water has a strong absorption line at 922 nm, which means that the

circulating power in the cavity attenuates if the humidity is high. We need to switch out

the desiccant fairly regularly; the longest we have gone with the same packets is around

4 months, but if it is rainy outside, we may have to switch it out several times in a week.

We put two packets in the cavity each time; �tting the desiccant lid back on without

interfering with the o-ring seal becomes tight, but it's worth it for the longer lifetime.

The packets are kept in a vacuum-tight jar with silicone desiccant and indicators; they

may be reused several times provided they are baked prior to each use. After several

bakes, the plastic seals on the packets begins to deteriorate. Toptica is usually very nice

about sending us replacements as needed. The easiest way to tell that the desiccant

needs switching is that the cavity lock will start to fail at the edge of a 1 V scan around

the resonance.

After the desiccant is switched, it can be nice to reset the cavity lock PID parameters

(if the power still drops out after multiple desiccant-switch attempts, the gain on the

PID may need to be increased slightly and the parameters reset). The parameters for a

good DC lock typically do not work for a scan, so they should be set while the Digilock is

scanning the master at our typical scan speeds (∼11 Hz). The gain on that lock should

not be increased beyond around 6; nominal values are 3 to 4, and we try not to take it

above 5. We typically set I such that the power just barely does not drop out at the

edges of the scan; too much higher and we start to see ringing. The P and D parameters
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are set by looking at the noise on the cavity photodiode signal.

M.3 Frequency mode

We have not had to manually touch the grating in 5 years. We occasionally monitor

the master on a cavity (using the aux port), but we have never seen it go multimode.

The laser is rarely ever mode-hoppy. If it becomes so, a piezo o�set/current walk on the

controller modules has always allowed us to recover.

M.4 Cavity realignment

Cavity alignment should typically not require redoing unless one of the PZTs needs

replacement, which it did in early 2016; measurement across PZT1 read only 240 ohms.

Luckily, PZT2 still worked, and we were able to operate during the replacement leadtime

by adjusting the PID parameters. Once the replacement arrived, we were able to follow

Toptica's instructions for replacement and then realign the cavity. NB: If the PZT stack

does need replacement, check that the o-ring between the new replacement assembly and

cavity housing is in place.

In the event that the cavity requires realignment, the following steps should be fol-

lowed. The mirrors are referred to in the order in which the light hits them in the bowtie

cavity: RM1, RM2 (attached to the PZT assembly), RM3, and RM4 (see Fig.M.1).

Each has 3 adjustment screws, but using the 2 decoupled ones will su�ce; be careful that

you're not accidentally trying to loosen the full mirror assembly. You will need to be

a little bit careful accessing some of the vertical adjustment screws, as an L-driver can

easily interfere with the beam. An IR viewer is very helpful. You'll need an M2 driver

for crystal movement, (2) M1.5 drivers for the cavity adjustment, and an M2.5 driver for

the second incoupling mirror, all of which are stored in a cup near the laser. If they are
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Figure M.1: (a) shows the alignment tool if the cavity ever needs to be removed for a
gross realignment of the incoupling beam path. (b) shows the cavity, with some features
of interest marked.

not there, yell at people until they are, and make sure they are never moved.

1. In the event that the two incoupling mirrors are grossly misaligned, and in this case

only, the cavity may be removed from the laser housing. Toptica provided us with

an alignment tool which may be placed in a groove in the laser housing and slid

along the correct incoupling line to correctly align those two mirrors. The target on

the tool is quite small, so the alignment can be adjusted quite precisely by placing

an optics cleaning sheet in the IR beam path to locate the center of the beam (this

should be done at low TA current). Once the cavity is replaced, the beams should

be hitting the center of RM1 and RM3 (RM2 is not adjustable).

2. RM3 should be adjusted to send the light through the center of the doubling crys-

tal such that it hits the center of RM4. The two faces of the crystal should be

perpendicular to the beam.
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3. Adjust RM4 such that the re�ected IR light hits RM1 and overlaps with the in-

coming beam.

4. Adjust RM1 such that the re�ected IR light hits RM2 and overlaps with the in-

coming beam. At this point, you should start to see cavity modes on the cavity

photodiode when scanning the piezo, and some small amount of blue light escaping

the cavity, and the cavity lid can be closed and the TA current increased. Make

sure nothing interferes with the o-ring seal on the cavity, as it is important for both

humidity and dust control.

5. RM3 is the mirror which controls the angle of the outgoing 461 nm light, and it is

imperative that that light hit the center of the downstream lens and prism pair. If

this is not the case, walk the second incoupling mirror and RM3 to get the light to

propagate through the crystal and through the optics after the cavity; the second

incoupling mirror should not require too much movement.

6. Walk RM4 and RM1 to maximize the size of the main cavity mode. The active area

of the photodiode is not large, so depending on the characteristics of the cavity,

the absolute signal size may change slightly. It is also not a good metric for the

absolute 461 nm power out of the cavity. It should be used as a metric for the

quality of the mode matching, and the relative size of the main cavity mode should

be at least 10 times larger than the next largest mode.

7. The vertical crystal alignment is quite robust and mostly decoupled from other

adjustments; it can be quickly walked to maximize the 461 nm power exiting the

laser housing.

8. Looking at the 461 nm power out of the laser housing, slightly walk the horizontal

crystal alignment and the horizontal RM4 alignment to improve phase-matching,

then walk RM4 and RM1 to maximize the cavity mode, and then do a small walk
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of the incoupling mirrors. Iterating this step should restore the total power. The

laser housing lid should then be closed.

M.5 Cavity cleaning

The cavity lid and laser housing lid should almost always be closed to minimize dust/particulates.

However, if dirty cavity mirrors are suspected as a source of cavity badness, they can be

cleaned. The last time this happened, it manifested as an inability to extinguish higher-

order cavity modes when adjusting the alignment. If this becomes necessary, acquire

cotton swabs and use the very-high-quality acetone which is in the �ammables cabinet.

Align the ring cavity to maximize the main mode as well as possible. Check the blue

power.

1. Block the IR light.

2. Remove the cavity cover and carefully swipe a mirror once, cleanly, with acetone

using the cotton swab.

3. Wait a few seconds for any extra acetone to evaporate, and then close the cavity

cover.

4. Unblock the IR light and check the blue power out of the cavity.

5. If the power is the same, try a di�erent mirror. If the power is less than where you

started, follow steps 1-4 until the power is retrived. If the power is increased, clean

the same mirror again and iterate until power no longer increases.

After the mirrors are cleaned, the cavity mode size and the phase matching may need

to be reoptimized.
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M.6 Overall power drops

Some groups have had issues with power damage on their crystals. The recommended

solution for this is to translate the crystal (1 full turn of all 3 adjustment screws at a

time) so that the light hits a di�erent spot. However, doing so has never �xed any of the

issues we've had, and we have never seen any sign of power damage so far.

The overall power has dropped from around 600 mW when we �rst bought the laser

in 2012 to 380 mW in 2014 (both measured using a thermal head, which is important); it

has remained constant since then. Some amount of that may be caused by slight mode

mismatches between the TA outcoupling mode and the cavity mode, and could be due to

slight drift in the TA outcoupling lens. Adjustments to this lens are extremely sensitive,

so I have been loathe to touch it when someone from Toptica has not been present.

However, it may become necessary if the power drops too much further. At that point,

I'd call Toptica support to see what they recommend. I cannot possibly recommend them

highly enough.
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